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Computer System Architecture 

Memory Part II 

Chalermek Intanagonwiwat 

Slides courtesy of David Patterson and John Hennessy 

The Art of Memory System 
Design 

Processor 

$ 

MEM 

Memory 

reference stream  
<op,addr>, <op,addr>,<op,addr>,<op,addr>, . . . 

op: i-fetch, read, write 

Optimize the memory system organization 
to minimize the average memory access time 
for typical workloads 

Workload or 
Benchmark 
programs 

• Two issues: 
– How do we know if a data item is in the 

cache? 
– If it is, how do we find it? 

• Our first example: 
–  block size is one word of data 
–  "direct mapped" 

For each item of data at the lower level,  
there is exactly one location in the cache  
where it might be. 
e.g., lots of items at the lower level share locations  
in the upper level 

Cache 
• Mapping:  address is modulo the number 

of blocks in the cache 

Direct Mapped Cache 
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• For MIPS: 
Direct Mapped Cache (cont.) 

Address (showing bit positions)

20 10

Byte
offset

Valid Tag DataIndex
0
1
2

1021
1022
1023

Tag

Index

Hit Data

20 32

31 30       13 12 11       2 1 0 • Taking advantage of spatial locality: 
Direct Mapped Cache (cont.) 

Address (showing bit positions)

16 12 Byte
offset

V Tag Data

Hit Data

16 32

4K
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31      16 15           4 32 1 0

Extreme Example: single big line 

• Cache Size = 4 bytes         
Block Size = 4 bytes 
– Only ONE entry in the cache 

0 

 Cache Data Valid Bit 

Byte 0 Byte 1 Byte 3 

 Cache Tag 

Byte 2 

Extreme Example: single big 
line (cont.) 

•  If an item is accessed, likely  that it will 
be accessed again soon 
– But it is unlikely that it will be accessed 

again immediately!!! 
– The next access will likely to be a miss 

again 
• Continually loading data into the cache but 

discard (force out) them before they are used 
again 

• Worst nightmare of a cache designer: Ping Pong 
Effect 
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•  Increasing the block size tends to 
decrease miss rate: 

Performance 

1 KB
8 KB
16 KB
64 KB
256 KB

256
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64164

Block size (bytes)

• Use split caches because there is more 
spatial locality in code: 

Performance (cont.) 

Program
Block size in 

words
Instruction 
miss rate

Data miss 
rate

Effective combined 
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%

Block Size Tradeoff 
•  In general, larger block size take 

advantage of spatial locality BUT: 
– Larger block size means larger miss penalty: 

• Takes longer time to fill up the block 
– If block size is too big relative to cache 

size, miss rate will go up 
• Too few cache blocks 

•  In general, Average Access Time:  
– = Hit Time x (1 - Miss Rate)  +  Miss Penalty 

x Miss Rate 

Block Size Tradeoff (cont.) 
Miss 
Penalty 

Block Size 

Miss 
Rate Exploits Spatial Locality 

Fewer blocks:  
compromises 
temporal locality 

Block Size 

Average 
Access 
Time 

Increased Miss Penalty 
& Miss Rate 

Block Size 



8/20/08 

4 

• Read hits 
– this is what we want! 

• Read misses 
– stall the CPU, fetch block from memory, 

deliver to cache, restart  

Hits vs. Misses 
• Write hits: 

– can replace data in cache and memory 
(write-through) 

– write the data only into the cache (write-
back the cache later) 

• Write misses: 
– read the entire block into the cache, then 

write the word 

Hits vs. Misses (cont.) 

Direct Mapped Cache and 
Conflict Misses 

• Conflict Misses are misses caused by: 
– Different memory locations  mapped to the 

same cache index 
• Solution 1: make the cache size bigger  
• Solution 2: Multiple entries for the same Cache 

Index 

  
  
  

Decreasing miss ratio with 
associativity 

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data

Four-way set associative

Set

0

1

Tag Data

One-way set associative
(direct mapped)

Block

0

7

1

2

3

4

5

6

Tag Data

Two-way set associative

Set

0

1

2

3

Tag Data
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An implementation 
Address

22 8

V TagIndex
0
1
2

253
254
255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0

Another Extreme Example: Fully 
Associative 

• Fully Associative Cache 
– Forget about the Cache Index 
– Compare the Cache Tags of  all cache 

entries in parallel 
– Example: Block Size = 32 B blocks, we need 

N 27-bit comparators 
• By definition: Conflict Miss = 0 for a 

fully associative cache 

Another Extreme Example: Fully 
Associative (cont.) 

: 

 Cache Data 

Byte 0 

0 4 31 

: 

Cache Tag (27 bits long) 

Valid Bit 

: 

Byte 1 Byte 31 : 

Byte 32 Byte 33 Byte 63 : 

 Cache Tag 

Byte Select 

Ex: 0x01 

X 

X 

X 

X 

X 

A Two-way Set Associative Cache 
• N-way set associative: N entries for 

each Cache Index 
– N direct mapped caches operates in parallel 

• Example: Two-way set associative cache 
– Cache Index selects a “set” from the cache 
– The two tags in the set are compared in 

parallel 
– Data is selected based on the tag result 
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A Two-way Set Associative Cache 
(cont.) 

Cache Data 

Cache Block 0 

Cache Tag Valid 

: : : 

Cache Data 

Cache Block 0 

Cache Tag Valid 

: : : 

Cache Index 

Mux 0 1 Sel1 Sel0 

Cache Block 

Compare 
Adr Tag 

Compare 

OR 

Hit 

Performance 

0%

3%

6%

9%

12%

15%

Eight-wayFour-wayTwo-wayOne-way

1 KB
2 KB
4 KB
8 KB

M
is
s 
ra
te

Associativity 16 KB
32 KB
64 KB
128 KB

Disadvantage of Set Associative 
Cache 

• N-way Set Associative Cache versus 
Direct Mapped Cache: 
– N comparators vs. 1 
– Extra MUX delay for the data 
– Data comes AFTER Hit/Miss decision and 

set selection 
•  In a direct mapped cache, Cache Block is 

available BEFORE Hit/Miss: 
– Possible to assume a hit and continue.  

Recover later if miss. 

Decreasing miss penalty with 
multilevel caches 

• Add a second level cache: 
– often primary cache is on the same chip as 

the processor 
– use SRAMs to add another cache above 

primary memory (DRAM) 
– miss penalty goes down if data is in 2nd 

level cache 
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A Summary on Sources of Cache 
Misses 

• Compulsory (cold start or process 
migration, first reference): first access 
to a block 
– “Cold” fact of life: not a whole lot you can do 

about it 
– Note: If you are going to run “billions” of 

instruction, Compulsory Misses are 
insignificant 

A Summary on Sources of Cache 
Misses (cont.) 

• Conflict (collision): 
– Multiple  memory locations  mapped 

to the same cache location 
– Solution 1: increase  cache size 
– Solution 2: increase associativity 

• Capacity: 
– Cache cannot contain all blocks access by the 

program 
– Solution: increase cache size 

•  Invalidation: other process (e.g., I/O) 
updates memory  

Sources of Cache Misses 
Direct Mapped N-way Set Associative Fully Associative 

Compulsory Miss 

Cache Size 

Capacity  Miss 

Invalidation  Miss 

Big Medium Small 

Note: 
If you are going to run “billions” of instruction, Compulsory Misses are 
insignificant. 

Same Same Same 

Conflict Miss High Medium Zero 

Low Medium High 

Same Same Same 

Improving Cache Performance: 3 
general options 

1. Reduce the miss rate,  
2. Reduce the miss penalty, or 
3. Reduce the time to hit in the cache.  
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4 Questions for Memory 
Hierarchy 

• Q1: Where can a block be placed in the 
upper level? (Block placement) 

• Q2: How is a block found if it is in the 
upper level? 
 (Block identification) 

• Q3: Which block should be replaced on a 
miss?  
(Block replacement) 

• Q4: What happens on a write?  
(Write strategy) 

Q1: Where can a block be 
placed in the upper level?  

• Block 12 placed in 8 block cache: 
– Fully associative, direct mapped, 2-way set 

associative 
– S.A. Mapping = Block Number Modulo 

Number Sets 

Q2: How is a block found if it is 
in the upper level? 

• Tag on each block 
– No need to check index or block offset 

•  Increasing associativity shrinks index, 
expands tag 

Q3: Which block should be 
replaced on a miss? 

•  Easy for Direct Mapped 
•  Set Associative or Fully Associative: 

– Random 
– LRU (Least Recently Used) 

Associativity:  2-way  4-way  8-way 
Size       LRU   Random     LRU   Random    LRU    Random 
16 KB 5.2% 5.7%        4.7%   5.3%       4.4%    5.0% 
64 KB 1.9% 2.0%        1.5%    1.7%        1.4%    1.5% 
256 KB 1.15%  1.17%       1.13%   1.13%       1.12%  1.12% 
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Q4: What happens on a write? 

• Write through—The information is 
written to both the block in the cache and 
to the block in the lower-level memory. 

• Write back—The information is written 
only to the block in the cache. The 
modified cache block is written to main 
memory only when it is replaced. 
–  is block clean or dirty? 

Q4: What happens on a write? 
(cont.) 

•  Pros and Cons of each? 
– WT: read misses cannot result in writes 
– WB: no writes of repeated writes 

• WT always combined with write buffers so 
that don’t wait for lower level memory 

Write Buffer for Write Through 

• A Write Buffer is needed between the 
Cache and Memory 
– Processor: writes data into the cache and 

the write buffer 
– Memory controller: write contents of the 

buffer to memory 

Processor 
Cache 

Write Buffer 

DRAM 

Write Buffer for Write Through 
(cont.) 

• Write buffer is just a FIFO: 
– Typical number of entries: 4 
– Works fine if:  Store frequency (w.r.t. time) 

<< 1 / DRAM write cycle 
• Memory system designer’s nightmare: 

– Store frequency (w.r.t. time)   ->  1 / DRAM 
write cycle 

– Write buffer saturation 
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Write Buffer Saturation 

• Store frequency (w.r.t. time)   ->  1 / 
DRAM write cycle 
– If this condition exist for a long period of 

time (CPU cycle time too quick and/or too 
many store instructions in a row): 
• Store buffer will overflow no matter how big you 

make it 
• The CPU Cycle Time   <=  DRAM Write Cycle 

Time 

Processor 
Cache 

Write Buffer 

DRAM 

Write Buffer Saturation (cont.) 
• Solution for write buffer saturation: 

– Use a write back cache 
– Install a second level (L2) cache: 

Processor 

Cache 

Write Buffer 

DRAM 
L2 

Cache 

Write-miss Policy: Write 
Allocate versus Not Allocate 

• Assume: a 16-bit write to memory 
location 0x0 and causes a miss 
– Do we read in the block? 

• Yes: Write Allocate 
• No: Write Not Allocate 

Write-miss Policy: Write Allocate 
versus Not Allocate (cont.) 

Cache Index 

0 
1 
2 
3 

: 

 Cache Data 
Byte 0 

0 4 31 

: 

Cache Tag Example: 0x00 
Ex: 0x00 

0x00 
Valid Bit 

: 
31 

Byte 1 Byte 31 : 

Byte 32 Byte 33 Byte 63 : 

Byte 992 Byte 1023 : 

 Cache Tag 

Byte Select 
Ex: 0x00 

9 
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Recall: Levels of the Memory 
Hierarchy 

CPU Registers 
100s Bytes 
<10s ns 

Cache 
K Bytes 
10-100 ns 
$.01-.001/bit 

Main Memory 
M Bytes 
100ns-1us 
$.01-.001 

Disk 
G Bytes 
ms 
10   - 10 cents -3 -4 

Capacity 
Access Time 
Cost 

Tape 
infinite 
sec-min 
10 -6 

Registers 

Cache 

Memory 

Disk 

Tape 

Instr. Operands 

Blocks 

Pages 

Files 

Staging 
Xfer Unit 

prog./compiler 
1-8 bytes 

cache cntl 
8-128 bytes 

OS 
512-4K bytes 

user/operator 
Mbytes 

Upper Level 

Lower Level 

faster 

Larger 

Virtual Memory 
• Main memory can act as a cache for the 

secondary storage (disk) 

  

• Advantages: 
–  illusion of having more physical memory 
– program relocation  
– protection 

Physical addresses

Disk addresses

Virtual addresses
Address translation

Basic Issues in Virtual Memory 
System Design 

•  Size of information blocks that are transferred 
from secondary to main storage (M) 

•  Block of information brought into M, and M is 
full, then some region of M must be released to 
make room for the new block --> replacement 
policy 

•  Which region of M is to hold the new block -->  
placement policy  

•  Missing item fetched from secondary memory 
only on the occurrence of a fault  -->  demand 
load policy 

Basic Issues in Virtual Memory 
System Design (cont.) 

Paging Organization 

virtual and physical address space partitioned into blocks of equal size 

page frames 

pages 

pages 

reg 

cache 
mem disk 

frame 
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Pages:  virtual memory blocks 
•  Page faults:  the data is not in memory, 

retrieve it from disk 
– huge miss penalty, thus pages should be 

fairly large (e.g., 4KB) 
– reducing page faults is important (LRU is 

worth the price) 
– can handle the faults in software instead of 

hardware 
– using write-through is too expensive so we 

use writeback 

Address Map 
V = {0, 1, . . . , n - 1}   virtual address space 
M = {0, 1, . . . , m - 1}  physical address space 

MAP:  V -->  M  U  {0}  address mapping function 

n > m 

MAP(a)  =  a'  if data at virtual address a is present in physical  
                           address a'  and  a' in M 

              =  0  if data at virtual address a is not present in M 

Processor 

Addr Trans 
Mechanism 

fault 
handler 

Main 
Memory 

Secondary 
Memory a 

a' 

0 

missing item fault 

physical address OS performs 
this transfer 

Paging Organization 

Address Mapping 

VA page no. disp 
10 

Page Table 

index 
into 
page 
table 

Page Table 
Base Reg 

V Access 
Rights PA + 

table located 
in physical 
memory 

physical 
memory 
address 

actually, concatenation  
is more likely 

frame 0 
1 

7 

0 
1024 

7168 

P.A. 

Physical 
Memory 

1K 
1K 

1K 

Addr 
Trans 
MAP 

page 0 
1 

31 

1K 
1K 

1K 

0 
1024 

31744 

unit of  
mapping 

also unit of 
transfer from 
virtual to 
physical  
memory 

Virtual Memory 

V.A. 
Page Tables 

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not
present in memory

Page table register

Page table

20 12

18

31  30  29  28  27  15  14  13  12  11  10  9  8 3  2  1  0

29  28  27 15  14  13  12  11  10  9  8 3  2  1  0
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Virtual Address and a Cache 
CPU 

Trans- 
lation Cache Main 

Memory 

VA PA miss 

hit 
data 

•  It takes an extra  memory access to translate VA to PA 

•  This makes cache access very expensive, and this is the 
"innermost loop" that you want to go as fast as possible 

•  ASIDE:  Why access cache with PA at all?  VA caches 
have a problem! 

• synonym  / alias problem:  two different virtual 
addresses map to same physical address  =>  two 
different cache entries holding data for the same 
physical address!   
(For example, shared pages) 

Virtual Address and a Cache 
(cont.) 

CPU 
Trans- 
lation Cache Main 

Memory 

VA PA miss 

hit 
data 

• for update:  must update all cache entries with same 
physical address or memory becomes inconsistent 

• determining this requires significant hardware, 
essentially an associative lookup on the physical address 
tags to see if you have multiple hits 

Making Address Translation 
Fast 

• A cache for address translations:  
translation lookaside buffer 

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Physical page
addressValid

TLB

1
1
1
1
0
1

Tag
Virtual page

number

Physical page
or disk address

Physical memory

Disk storage

TLBs 
A way to speed up translation is to use a special cache 
of recently used page table entries  --  this has many 
names, but the most frequently used is Translation 
Lookaside Buffer or TLB 

Virtual Address   Physical Address   Dirty   Ref   Valid   Access 

TLB access time comparable to cache access time 
      (much less than main memory access time) 
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Translation Look-Aside Buffers 
Just like any other cache, the TLB can be organized as fully 
associative, set associative, or direct mapped 

TLBs are usually small, typically not more than 128 - 256 
entries even on high end machines.  This permits fully 
associative lookup on these machines.  Most mid-range 
machines use small n-way set associative organizations. 

CPU 
TLB 

Lookup Cache Main 
Memory 

VA PA miss 

hit 

data 

Trans- 
lation 

hit 

miss 

20 t t 1/2 t 

Translation 
with a TLB 

TLBs and caches 

Yes

Deliver data
to the CPU

Write?

Try to read data
from cache

Write data into cache,
update the tag, and put

the data and the address
into the write buffer

Cache hit?Cache miss stall

TLB hit?

TLB access

Virtual address

TLB miss
exception

No

YesNo

YesNo

Write access
bit on?

YesNo

Write protection
exception

Physical  address

Reducing Translation Time 
Machines with TLBs go one step further 

to reduce # cycles/cache access 

They overlap the cache access with the 
TLB access 

Works because high order bits of the VA 
are used to look in the TLB 

      while low order bits are used as index 
into cache 

Overlapped Cache & TLB Access 

TLB Cache 

10 2 
00 

4 bytes 

index 1 K 

page # disp 
20 12 

assoc 
lookup 32 

PA Hit/ 
Miss Tag Data Hit/ 

Miss 

= 

IF cache hit AND (cache tag = PA)  
then deliver data to CPU 
ELSE IF [cache miss OR (cache tag != PA)] and TLB hit 
 THEN access memory with the PA from the TLB 
 ELSE do standard VA translation 
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Problems With Overlapped TLB 
Access 

Overlapped access only works as long as the address bits 
used to index into the cache do not change  as the result 
of VA translation 

This usually limits things to small caches, large page sizes, 
or high n-way set associative caches if you want a large 
cache 

Example:  suppose everything the same except that the 
cache is increased to 8 K bytes instead of 4 K: 

11 2 
00 

virt page # disp 
20 12 

cache  
index 

This bit is changed 
by VA translation, but 
is needed for cache 
lookup 

Problems With Overlapped TLB 
Access (cont.) 

Solutions: 
      go to 8K byte page sizes; 
      go to 2 way set associative cache; or 
      SW guarantee VA[13]=PA[13] 

1K 
4 4 

10 
2 way set assoc cache 

Summary 
• The Principle of Locality: 

– Program likely to access a relatively small 
portion of the address space at any instant 
of time. 
• Temporal Locality: Locality in Time 
• Spatial Locality: Locality in Space 

Summary (cont.) 
• Three Major Categories of Cache 

Misses: 
– Compulsory Misses: sad facts of life.  

Example: cold start misses. 
– Conflict Misses:  increase cache size and/or 

associativity. 
  Nightmare Scenario: ping pong effect! 

– Capacity Misses: increase cache size 
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Summary: The Cache Design 
Space 

• Several interacting dimensions 
– cache size 
– block size 
– associativity 
– replacement policy 
– write-through vs write-back 
– write allocation 

Associativity 

Cache Size 

Block Size 

Summary: The Cache Design 
Space (cont.) 

• The optimal choice is a compromise 
– depends on access characteristics 

• workload 
• use (I-cache, D-cache, TLB) 

– depends on technology / cost 
• Simplicity often wins 

Summary: TLB, Virtual Memory 
• Caches, TLBs, Virtual Memory all 

understood by examining how they deal 
with 4 questions:  
 1) Where can block be placed? 
 2) How is block found?  
 3) What block is repalced on miss?  
 4) How are writes handled? 

•  Page tables map virtual address to 
physical address 

Summary: TLB, Virtual Memory 
(cont.) 

• TLBs are important for fast translation 
• TLB misses are significant in processor 

performance 
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Summary: Memory Hierachy 
• Virtual memory was controversial at the 

time:  
can SW automatically manage 64KB 
across many programs? 
– 1000X DRAM growth removed the 

controversy 
• Today VM allows many processes to 

share single memory without having to 
swap all processes to disk 

Summary: Memory Hierachy 
(cont.) 

• Today CPU time is a function  of (ops, 
cache misses) vs. just f(ops): 

• What does this mean to Compilers, Data 
structures, Algorithms? 


