
1

Computer System Architecture

Instruction Set Principles and
Examples

Chalermek Intanagonwiwat

Slides courtesy of Graham Kirby, Mike Schulte, and
Peiyi Tang

Hot Topics in
Computer Architecture

• 1950s and 1960s:
– Computer Arithmetic

• 1970 and 1980s:
– Instruction Set Design
– ISA Appropriate for Compilers

• 1990s:
– Design of CPU
– Design of memory system
– Instruction Set Extensions

Hot Topics in
Computer Architecture (cont.)
• 2000s:

– Computer Arithmetic
– Design of I/O system
– Parallelism

Instruction Set
Architecture (ISA)

• “Instruction set architecture is the
structure of a computer that a machine
language programmer must understand to
write a correct (timing independent)
program for that machine.”

– Source: IBM in 1964 when introducing the
IBM 360 architecture, which eliminated 7
different IBM instruction sets.

2

ISA (cont.)

• The instruction set architecture is also
the machine description that a hardware
designer must understand to design a
correct implementation of the computer.

ISA (cont.)

• The instruction set architecture
serves as the interface between
software and hardware.

• It provides the mechanism by which
the software tells the hardware what
should be done.

ISA (cont.)

instruction set

High level language code : C, C++, Java, Fortan,

hardware

Assembly language code: architecture specific statements

Machine language code: architecture specific bit patterns

software

compiler

assembler

ISA Metrics
• Orthogonality

– No special registers, few special cases,
all operand modes available with any
data type or instruction type

• Completeness
– Support for a wide range of operations

and target applications

3

ISA Metrics (cont.)
• Regularity

– No overloading for the meanings of
instruction fields

• Streamlined
– Resource needs easily determined

• Ease of compilation (or assembly
language programming)

• Ease of implementation

Instruction Set Design Issues

• Instruction set design issues include:
– Where are operands stored?

• registers, memory, stack, accumulator
– How many explicit operands are there?

• 0, 1, 2, or 3
– How is the operand location specified?

• register, immediate, indirect, . . .

Instruction Set Design Issues
(cont.)

– What type & size of operands are
supported?
• byte, int, float, double, string, vector. . .

– What operations are supported?
• add, sub, mul, move, compare . . .

Evolution of Instruction Sets
Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
 from Implementation

High-level Language Based Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 8086 1977-80) (CDC 6600, Cray 1 1963-76)

(Mips,Sparc,88000,IBM RS6000, . . .1987+)

4

Classifying ISAs

Accumulator (before 1960):
1 address add A acc ← acc + mem[A]

Stack (1960s to 1970s):
0 address add tos ← tos + next

Memory-Memory (1970s to 1980s):
2 address add A, B mem[A] ← mem[A] + mem[B]
3 address add A, B, C mem[A] ← mem[B] + mem[C]

Classifying ISAs (cont.)

Register-Memory (1970s to present):
 2 address add R1, A R1 ← R1 + mem[A]

load R1, A R1 ← mem[A]

Register-Register (Load/Store)
(1960s to present):

3 address add R1, R2, R3 R1 ← R2 + R3
load R1, R2 R1 ← mem[R2]
store R1, R2 mem[R1] ← R2

Classifying ISAs (cont.) Accumulator Architectures
• Instruction set: add A, sub A, mult A, div

A, load A, store A
• Example: A*B - (A+C*B)

load B
mul C
add A
store D
load A
mul B
sub D

B B*C A+B*C AA+B*C A*B result

5

Accumulators: Pros and Cons

• Pros
– Very low hardware requirements
– Easy to design and understand

• Cons
– Accumulator becomes the bottleneck
– Little ability for parallelism or pipelining
– High memory traffic

Stack Architectures
• Instruction set: add, sub, mul, div, . . .

push A, pop A
• Example: A*B - (A+C*B)

push A
push B
mul
push A
push C
push B
mul
add
sub

A B
A

A*B
A*B

A*B
A*B

A
A
C

A*B
A A*B

A C B B*C A+B*C result

Stacks: Pros and Cons
• Pros

– Good code density (implicit top of stack)
– Low hardware requirements
– Easy to write a simpler compiler for stack

architectures

Stacks: Pros and Cons (cont.)
• Cons

– Stack becomes the bottleneck
– Little ability for parallelism or pipelining
– Data is not always at the top of stack when

need
– Difficult to write an optimizing compiler for

stack architectures

6

Memory-Memory Architectures
• Instruction set:

(3 operands) add A, B, C sub A, B, C
mul A, B, C

(2 operands) add A, B sub A, B mul A, B
• Example: A*B - (A+C*B)

– 3 operands 2 operands
mul D, A, B mov D, A
mul E, C, B mul D, B
add E, A, E mov E, C
sub E, D, E mul E, B

add E, A
sub E, D

Memory-Memory:
Pros and Cons

• Pros
– Requires fewer instructions
– Easy to write compilers for

• Cons
– Very high memory traffic
– Variable number of clocks per instruction
– With two operands, more data movements are

required

Register-Memory Architectures
• Instruction set:

add R1, A sub R1, A mul R1, B
load R1, A store R1, A

• Example: A*B - (A+C*B)
load R1, A
mul R1, B /* A*B */
store R1, D
load R2, C
mul R2, B /* C*B */
add R2, A /* A + CB */
sub R2, D /* AB - (A + C*B) */

Memory-Register:
Pros and Cons

• Pros
– Some data can be accessed without loading

first
– Instruction format easy to encode
– Good code density

• Cons
– Operands are not equivalent (poor orthogonal)
– Variable number of clocks per instruction
– May limit number of registers

7

Register-Register/Load-Store
Architectures

• Instruction set:
add R1, R2, R3 sub R1, R2, R3 mul R1, R2, R3
load R1, A store R1, A move R1, R2

• Example: A*B - (A+C*B)
load R1, A
load R2, B
load R3, C
mul R7, R3, R2 /* C*B */
add R8, R7, R1 /* A + C*B */
mul R9, R1, R2 /* A*B */
sub R10, R9, R8 /* A*B - (A+C*B) */

Register-Register/Load-Store:
Pros and Cons

• Pros
– Simple, fixed length instruction encodings
– Instructions take similar number of cycles
– Relatively easy to pipeline

• Cons
– Higher instruction count
– Dependent on good compiler

Registers:
Advantages and Disadvantages

• Advantages
– Faster than cache or main memory (no

addressing mode)
– Deterministic (no misses)
– Can replicate (multiple read ports)
– Short identifier (typically 3 to 8 bits)
– Reduce memory traffic

Registers:
Advantages and Disadvantages

(cont.)
• Disadvantages

– Need to save and restore on procedure calls
and context switch

– Can’t take the address of a register (for
pointers)

– Fixed size (can’t store strings or structures
efficiently)

– Compiler must manage
– Limited number

8

Current Trends: Computation
Model

• Practically every modern design uses a
load-store architecture

• For a new ISA design:
– would expect to see load-store with plenty

of general purpose registers

Byte Ordering
• Little Endian (e.g., in DEC, Intel)

» low order byte stored at lowest address
» byte0 byte1 byte2 byte3

• Big Endian (e.g., in IBM, Motorolla, Sun, HP)
» high order byte stored at lowest address
» byte3 byte2 byte1 byte0

• Programmers/protocols should be careful
when transferring binary data between Big
Endian and Little Endian machines

Operand Alignment

• An access to an operand of size s bytes
at byte address A is said to be aligned
if

A mod s = 0

40 41 42 43 44

D0 D1 D2 D3

D0 D1 D2 D3

Unrestricted Alignment
• If the architecture does not restrict

memory accesses to be aligned then
– Software is simple
– Hardware must detect misalignment and

make two memory accesses
– Expensive logic to perform detection
– Can slow down all references
– Sometimes required for backwards

compatibility

9

Restricted Alignment

• If the architecture restricts memory
accesses to be aligned then
– Software must guarantee alignment
– Hardware detects misalignment access and

traps
– No extra time is spent when data is aligned

• Since we want to make the common case
fast, having restricted alignment is often
a better choice, unless compatibility is an
issue.

Types of Addressing Modes
(VAX)

Addressing Mode Example Action
1. Register direct Add R4, R3 R4 <- R4 + R3
2.Immediate Add R4, #3 R4 <- R4 + 3
3.Displacement Add R4, 100(R1) R4 <- R4 + M[100 + R1]
4.Register indirect Add R4, (R1) R4 <- R4 + M[R1]
5.Indexed Add R4, (R1 + R2) R4 <- R4 + M[R1 + R2]
6.Direct Add R4, (1000) R4 <- R4 + M[1000]
7.Memory Indirect Add R4, @(R3) R4 <- R4 + M[M[R3]]

Types of Addressing Modes
(cont.)

8.Autoincrement Add R4, (R2)+ R4 <- R4 + M[R2]
R2 <- R2 + d

9.Autodecrement Add R4, (R2)- R4 <- R4 + M[R2]
R2 <- R2 - d

10.Scaled Add R4, 100(R2)[R3] R4 <- R4 +
M[100 + R2 + R3*d]

• Studies by [Clark and Emer] indicate that modes 1-4
account for 93% of all operands on the VAX.

Use of Addressing Modes
(VAX)

• Displacement dominates the memory addressing mode
(32% - 55%).

• Immediate tails displacement (17% - 43%).

10

Displacement Value Distribution Immediate Value Distribution

Current Trends: Memory
Addressing

• For a new ISA design would expect to see:
– support for displacement, immediate and register

indirect addressing modes
»75% to 99% of SPEC measurements

– size of address for displacement to be at least 12-16
bits

– size of immediate field to be at least 8-16 bits
• As use of compilers becomes more dominant,

emphasis is on simpler addressing modes

Types of Operations

• Arithmetic and Logic: AND, ADD
• Data Transfer: MOVE, LOAD, STORE
• Control BRANCH, JUMP, CALL
• System OS CALL
• Floating Point ADDF, MULF, DIVF
• Decimal ADDD, CONVERT
• String MOVE, COMPARE
• Graphics (DE)COMPRESS

11

Instruction Frequency (Intel
80x86 Integer)

Current Trends: Operations
and Operands

• For a new ISA design would expect to
see:
– support for 8, 16, 32, (64) bit integers
– support for 32 and 64 bit IEEE 754

floating point
– emphasis on efficient implementation of

the simple common operations

Control Flow Addressing Modes

• Need to specify destination address
– usually explicitly

»displacement relative to PC (why?)
– sometimes not known statically

»specify register containing address

12

Jump Distances (Alpha) Comparisons in Conditional
Branches (Alpha)

Procedure Call/Return

• Need to save return address somewhere
(minimum)
– special register or GPR

• CISC architectures tended to provide
more complex support
– e.g. saving whole batch of registers
– now just get the compiler to generate code

for this

Procedure Call/Return (cont.)

• Caller save
– calling procedure saves registers it will need

afterwards
• Callee save

– called procedure saves registers it needs to
use

13

CALLS Instruction (VAX)

• Callee save
1. Align stack if needed
2. Push argument count on stack
3. Save registers indicated by
procedure call mask on stack
4. Push return address on stack, push
top & base pointers

CALLS Instruction (cont.)

5. Clear condition codes
6. Push status word
7. Update stack pointers
8. Branch to first instruction

Current Trends: Control Flow

• For a new ISA design would expect to
see:
– conditional branches able to jump hundreds

of instructions forwards or backwards
»PC-relative branch displacement of at
least 8 bits

– jumps using PC-relative and register
indirect addressing

Encoding Instruction Set

• Encoding of instructions affects:
– size of compiled program
– decoding work required by processor

• Depends on:
– range of addressing modes
– degree of independence between opcodes

and modes

14

Three Competing Forces

• Desire to have as many registers and
addressing modes as possible

• Desire to reduce the size of instructions
and programs

• Desire to ease the decoding and
implementation of instructions

Three Basic Variations

• Variable instruction length (VAX)
– independence between addressing mode and

opcode (operation)
– use address specifier: (mode, reg)

• Fixed instruction length (MIPS)
– small number of addressing modes
– use opcode to imply the addressing mode

• Hybrid approach

Three Basic Variations (cont.) Performance Ratio between MIPS
and VAX

15

Why does MIPS beat VAX?

• ICMIPS is about 2*ICVAX

• CPIMIPS is about CPIVAX/6
• MIPS is about 3 times as fast as VAX

given the same clock cycle times

Current Trends: Encoding
Instruction Set

• For a new ISA design would expect to
see:
– fixed length instruction encoding, or hybrid
– choice will be dictated by previous design

decisions

The Role of Compiler

• Why is compiler important to computer
designers?

• Instruction set architecture is the
target of compiler.
– Instruction set architecture should allow

compilers to generate efficient code.

The Role of Compiler (cont.)

• Compiler optimization affects the
performance of the code generated.
– Instruction set architecture should allow to

simplify compilers. efficient code.
– Computer designers should know the

limitation of compiler optimization.

16

Compiler Structure Compiler Goals

• Correctness
• Speed of compiled code
• Speed of compiler
• Debugging support

Optimizations

• High-level
– Procedure integration: procedure in-lining

• Local: within basic block (linear code
fragment)
– Common expression elimination (18%)
– Constant propagation (22%)
– Stack height reduction

Optimizations (cont.)

• Global: across branches, loop optimization
– Global common expression elimination (13%)
– Copy propagation (11%)
– Code motion (16%)
– Induction variable elimination (2%)

• Machine-Dependent
– Strength reduction
– Pipeline scheduling
– Branch offset optimization

17

Effectiveness of Optimization Limitation of Compiler
Optimization

• Phase-ordering problem
– too hard, and expensive, to undo

transformation steps
– high-level transformations carried out

before form of resulting code is known
• Alias prevents allocating registers to

variables

How the Architect Can Help
the Compiler Writer

• Factors behind compiler complexity:
– programs are locally simple but globally

complex
– structure of compilers means optimization

decisions are made linearly

How the Architect Can Help
the Compiler Writer (cont.)

• Graph coloring for register allocation is
more efficient with more than 16
registers.

• Alias limits the use of large number of
registers

• Make the frequent cases fast and the
rare case correct...

18

How the Architect Can Help
the Compiler Writer (cont.)

• Desirable ISA properties
– Regularity

• Orthogonality among addressing mode, data
types, and operations

– Simplicity
• Provide primitives, not solutions

– Simplify tradeoffs
• That the compiler has to make

– Provide instructions that bind the quantities
known at compile-time

