
1

Computer System Architecture

Processor Part IV

Chalermek Intanagonwiwat

Slides courtesy of John Hennessy and David Patterson

“Macroinstruction” Interpretation

Main
Memory

execution
unit

control
memory

CPU

ADD
SUB
AND

DATA

.

.

.

User program
plus Data

this can change!

AND microsequence

e.g., Fetch
 Calc Operand Addr
 Fetch Operand(s)
 Calculate
 Save Answer(s)

one of these is
mapped into one
of these

Microprogramming

• What are the “microinstructions” ?

PCWrite

PCWriteCond
IorD

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

AddrCtl

Outputs

Microcode memory

IRWrite

MemRead

MemWrite

RegDst

Control unit

Input

Microprogram counter

Address select logic

O
p
[5
–
0
]

Adder

1

Datapath

Instruction register

opcode field

BWrite

Microprogramming Pros and Cons

• Ease of design
• Flexibility

– Easy to adapt to changes in organization,
timing, technology

– Can make changes late in design cycle, or
even in the field

• Can implement very powerful instruction
sets (just more control memory)

2

Microprogramming Pros and Cons
(cont.)

• Generality
– Can implement multiple instruction sets on

same machine.
– Can tailor instruction set to application.

• Compatibility
– Many organizations, same instruction set

• Slow

Exceptions

user program

normal control flow:
 sequential, jumps, branches, calls, returns

System
Exception
Handler

Exception:

return from
exception

Exceptions (cont.)

• Exception = unprogrammed control
transfer
– system takes action to handle the

exception
• must record the address of the offending

instruction
– returns control to user
– must save & restore user state

Two Types of Exceptions

• Interrupts
– caused by external events
– asynchronous to program execution
– may be handled between instructions
– simply suspend and resume user program

3

Two Types of Exceptions
(cont.)

• Traps
– caused by internal events

• exceptional conditions (overflow)
• errors (parity)
• faults (non-resident page)

– synchronous to program execution
– condition must be remedied by the handler
– instruction may be retried or simulated and

program continued or program may be aborted

MIPS Convention
Type of event From where? MIPS terminology
I/O device request External Interrupt

 Invoke OS from user
 program Internal Exception

 Arithmetic overflow Internal Exception

 Using an undefined
 instruction Internal Exception

Addressing the Exception
Handler

• Traditional Approach: Interupt Vector
– PC <- MEM[IV_base + cause || 00]
– E.g., Vax, 80x86

iv_base
cause

handler
code

Addressing the Exception
Handler (cont.)

• RISC Handler Table
– PC <– IV_base + cause || 0000
– saves state and jumps
– E.g., Sparc

iv_base
cause

handler entry code

4

Addressing the Exception
Handler (cont.)

• MIPS Approach: fixed entry
– PC <– EXC_addr

Saving State
• Push it onto the stack

– Vax, 68k, 80x86
• Save it in special registers

– MIPS EPC, BadVaddr, Status, Cause
• Shadow Registers

– M88k
– Save state in a shadow of the internal

pipeline registers

Additions to MIPS ISA to
support Exceptions?

• EPC–a 32-bit register used to hold the address
of the affected instruction

• Cause–a register used to record the cause of
the exception.
– In the MIPS architecture this register is 32 bits,

though some bits are currently unused.
– Assume that bits 5 to 2 of this register encodes the

two possible exception sources mentioned above:
• undefined instruction=0 and arithmetic overflow=1

Additions to MIPS ISA to
support Exceptions? (cont.)

• BadVAddr - register contained memory
address at which memory reference occurred

• Status - interrupt mask and enable bits

• Control signals to write EPC , Cause,
BadVAddr, and Status

5

Additions to MIPS ISA to
support Exceptions? (cont.)

• Be able to write exception address into PC,
increase mux to add as input 01000000
00000000 00000000 01000000two (8000
0080hex)

• May have to undo PC = PC + 4, since want EPC
to point to offending instruction (not its
successor); PC = PC - 4

Precise Interrupts
• Precise => state of the machine is

preserved as if program executed upto
the offending instruction
– Same system code will work on different

implementations of the architecture
– Difficult in the presence of pipelining, out-ot-

order execution, ...
– MIPS takes this position

Precise Interrupts (cont.)

• Imprecise => system software has to
figure out what is where and put it all
back together

• Performance goals often lead designers to
forsake precise interrupts
– system software developers, user, markets

etc. usually wish they had not done this

How Control Detects
Exceptions in our FSM

• Undefined Instruction–detected when no
next state is defined from state 1 for the
op value.
– We handle this exception by defining the

next state value for all op values other than
lw, sw, 0 (R-type), jmp, beq, and ori as new
state 12.

– Shown symbolically using “other” to indicate
that the op field does not match any of the
opcodes that label arcs out of state 1.

6

How Control Detects
Exceptions in our FSM (cont.)

• Arithmetic overflow
– Chapter 4 (HW/SW book) included logic in

the ALU to detect overflow, and a signal
called Overflow is provided as an output from
the ALU.

– This signal is used in the modified finite state
machine to specify an additional possible next
state

Modification to the Control Specification
IR <= MEM[PC]
PC <= PC + 4

R-type

A <= R[rs]
B <= R[rt]

S <= A fun B

R[rd] <= S

S <= A op ZX

R[rt] <= S

ORi

S <= A + SX

R[rt] <= M

M <= MEM[S]

LW

S <= A + SX

MEM[S] <= B

SW

other

undefined instruction

EPC <= PC - 4
PC <= exp_addr
cause <= 10 (RI)

EPC <= PC - 4
PC <= exp_addr
cause <= 12 (Ovf)

overflow

Additional condition from
Datapath

Equal

BEQ

PC <= PC +
 SX || 00

0010

0011

S <= A - B ~Equal

Summary
• Specialize state-diagrams easily captured

by microsequencer
– simple increment & “branch” fields
– datapath control fields

• Control design reduces to
Microprogramming

• Exceptions are the hard part of control

Summary (cont.)
• Need to find convenient place to detect

exceptions and to branch to state or
microinstruction that saves PC and
invokes the operating system

• As we get pipelined CPUs that support
page faults on memory accesses which
means that the instruction cannot
complete AND you must be able to
restart the program at exactly the
instruction with the exception, it gets
even harder

7

Summary: Microprogramming
one inspiration for RISC

• If simple instruction could execute at very
high clock rate…

• If you could even write compilers to
produce microinstructions…

• If most programs use simple instructions
and addressing modes…

• If microcode is kept in RAM instead of
ROM so as to fix bugs …

Summary: Microprogramming
one inspiration for RISC (cont.)
• If same memory used for control memory

could be used instead as cache for
“macroinstructions”…

• Then why not skip instruction
interpretation by a microprogram and
simply compile directly into lowest
language of machine?

