Computer System Architecture
Pipelining Part T
Chalermek Intanagonwiwat

Slides courtesy of David Patterson

Pipelining is Natural!
* Laundry Example BBBD

* Ann, Brian, Cathy, Dave

each have one load of clothes

to wash, dry, and fold
+ Washer takes 30 minutes ' —
* Dryer takes 30 minutes R E’
+ "Folder" takes 30 minutes

- "Stasher” takes 30 minutes A
to put clothes into drawers

Sequential Laundry

6|PM 7 8 9 10 11 12 1 2AM

| | | | |] | | | | | | | | | |
30'30730'30'30'30'30'30'30'30'30"30"30'30 30" 30'

;

~ . Time
ALY SRS
k @ A . A

= = .

o3 A
¢+ Sequential laundry takes 8 hours for 4
’ loads

* If they learned pipelining, how long
would laundry take?

Pipelined Laundry: Start work
ASAP

6|PM 7 8 9 10 11 12 1 Z:AM

I >
3030130 30°30.30.30 Time

.
(| BELA

k| B S

|8 BE5LA

ot SRS

d

® + Pipelined laundry takes 3.5 hours for 4

loads!

X0 Q0 -

So QS0

Pipelining Lessons

6PMm 7 8 ° . Pipelining doesn't

' Time ™ help latency of

3030 30%5_30 30 single task, it helps
Y SN throughput of
B Sk entire workload
B i K . zAul’ripI.e tasks

=1 perating
o ﬁ simultaneously using
different resources

* Potential speedup =
Number pipe stages

X0 Q0 -

Pipelining Lessons (cont.)
6|PM 7 8 9

l Time =

* Pipeline rate
limited by slowest

;ﬁﬁﬁlﬁ pipeline stage
Y SN » Unbalanced lengths
= of pipe stages

& = ._ reduces speedup

The Five Stages of Load

Cycle 1 éCycle 2 Cycle 3 éCycle 4 éCycle 5 i
[SN I A I KN B SO B B
Load | Ifetch "Reg/Dec " Exec || Mem || Wr |

« Ifetch: Instruction Fetch

- Fetch the instruction from the Instruction
Memory

* Reg/Dec: Registers Fetch and

Instruction Decode

+ Exec: Calculate the memory address

o =
~® K + Time fo “fill"
d & I pipeline and time
e to "drain” it
r reduces speedup
- Stall for
Dependences
The Five Stages of Load
(cont.)
Load |Ifetch ||Reg/Dec || Exec " Mem " Wr |

+ Mem: Read the data from the Data

Memory

* Wr: Write the data back to the register

file

Conventional Pipelined Execution

Representation

Time

v

|IFetch|Dcd IExec ||Mem |WB |

|IFetch|Dcd ||Exec IMem IWB |

|IFetch||Dcd |Exec IMem |WB |

|IFetch|Dcd IExec IMem IWB |

|IFetch|Dcd IExec IMem IWB |

Program Flow

|IFetch|Dcd IExec IMem |WB |

Clk

Sing;

g Cycle 1 L Cycle 2 >

e Cycle Implementation:

Load Store Waste

Clk

Multi

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5: Cycle 6 Cycle 7 Cycle 8 Cycle 9 iCycl(10

[N S Y Yy ey Y Y Y S

ple Cycle Implementation:
Load Store R-type
Ifetchl Reg I Exec “ Mem I Wr Ifetchl Reg “ Exec I Mem Ifetchl

Pipel

Single Cycle,

ne Implementation:

Loadl Ifetchl Reg I Exec “ Mem I Wr |

Multiple

Storel Ifetchl Reg “ Exec IMem I Wr |

Cycle, vs.
Pipeline

R-typel Ifetchl Reg IExec I Mem I Wr |

Why Pipeline?

+ Suppose we execute 100 instructions
+ Single Cycle Machine
- 45 ns/cycle x 1CPI x 100 inst = 4500 ns
* Multicycle Machine
- 10 ns/cycle x 4.6 CPTI (due to inst mix) x
100 inst = 4600 ns
+ Ideal pipelined machine

- 10 ns/cycle x (1 CPI x 100 inst + 4 cycle
drain) = 1040 ns

S ~0n 3 —

S~o® Q>0

Why Pipeline? Because the
resources are therel

Time (clock cycles)

Inst 0 [™ |

Inst 1

Inst 2
Inst 3

vinst 4

Can pipelining get us into Can pipelining get us into

trouble? trouble? (cont.)
T - data hazards: attempt to use item before
* Yes: Pipeline Hazards it is ready
- structural hazards: attempt fo use the - Eg., one sock of pair in dryer and one in
same resource two different ways at the washer; can't fold until get sock from washer
same time through dryer
« E.g., combined washer/dryer would be a * instruction depends on result of prior
structural hazard or folder busy doing instruction still in the pipeline

something else (watching TV)

Can pipelining get us into Single Memory is a Structural
trouble? (cont.) Hazard

Time (clock cycles)

- control hazards: attempt to make a

decision before condition is evaluated I -Mem . Reg @r M Hpe
- E.g., washing football uniforms and need to 5 Load - -
get proper detergent level; need to see after t |Instr 1 Mem [ifReg em J{Res |
dryer before next load in r
- branch instructions o |Instr2 Mem PR @r e | -E
iy ;
- Can always resolve hazards by waiting 5 linstr 3 ﬁ% R
- pipeline control must detect the hazard :
pip " Mnstr 4 Mem | Reg IE Reg

- take action (or delay action) to resolve
hazards

Detection is easy in this case! (right half highlight means read, left half write)

Control Hazard Solutions
+ Stall: wait until decision is clear

- Its possible o move up decision to 2nd stage
by adding hardware to check registers as

being read
! Time (clock cycles) >
n :
¢ |Add —
7 |Load
d
’ v H H H H :
* Impact: 2 clock cycles per branch

instruction => slow

Control Hazard Solutions (cont.)

* Predict: guess one direction then back
up if wrong
- Predict not taken

Time (clock cycles)

Mem || Reg » em Reg
Add s IE ,
Beq Mem IE’ emI Reg
Load R IE o] e

S ~0n 3 —

S0 Q>0

Control Hazard Solutions (cont.)
* Impact: 1 clock cycles per branch
instruction if right, 2 if wrong (right -
50% of time)

* More dynamic scheme: history of 1
branch (- 90%)

Time (clock cycles)

S ~0 3 =
>
Q.
[«

load [l el fe]

S~oaQ~0

Control Hazard Solutions (cont.)

* Redefine branch behavior (takes place
after next instruction) “delayed branch”

Time (clock cycles)

Add Mem % emI Reg

Beg o @r] [
Misc Mem | [|Reg % Reg
| Load i E "

v

S0 Q=0 S ~0n 3> -

S ~0n 3 -~

Control Hazard Solutions (cont.)

* Impact: O clock cycles per branch
instruction if can find instruction to put

in "slot” (- BO

% of time)

* As launch more instruction per clock
cycle, less useful

Time (clock cycles)

Mem

i

Mem

Add
Beq
Misc
! Load

S0 Q>0

=

])
]

7

L]

S}
L] :

Mem

Data Hazard on rl

add r1 ,r2,r3

subr4, r1,r3

and r6, r1 ,r7

or r8,r1,r9

xor r10, r1 ,r11

S ~0n 3 —

SoQa~0

Data Hazard on rl: (cont.)

* Dependencies backwards in time are hazards

Time (clock cycles)

IF
add r1,r2,r3 [|
sub r4,r1,r3
and r6,r1,r7

or r8,r1,r9

(xor r10,r1,r11

ID/RF

e B e LB
7]

m
7

X: MEW W8

: IReg

)
[~

[
il

o

Reg

S ~0n 3 —

S~oaQ~0

{xorr10,r1,r11

Data Hazard Solution:

* “Forward” result from one stage to another

Time (clock cycles)

TF
add r1,r2,r3 [}
sub r4,r1,r3
and r6,r1,r7

or r8,r1,r9

ID/R

oo

X WMEM _WB
N :

c,

R

Im

S Dm |

Ir

Elm

D Reg

S|e

A)
i

1R

Reg

* “or” OK if define read/write properly

[Dm

A>

[Dm

Forwarding (or Bypassing):
What about Loads

Time (clock cycles)

TDIRE (EXT MENT WE

TF
Iw r1,0(r2) E % > ”
sub r4,r1,r3 Eﬂ@ o |: [Ree

* Dependencies backwards in time are hazards
* Can’t solve with forwarding:
* Must delay/stall instruction dependent on loads

