
1

Computer System Architecture

Pipelining Part I

Chalermek Intanagonwiwat

Slides courtesy of David Patterson

Pipelining is Natural!
• Laundry Example
• Ann, Brian, Cathy, Dave

each have one load of clothes
to wash, dry, and fold

• Washer takes 30 minutes
• Dryer takes 30 minutes
• “Folder” takes 30 minutes
• “Stasher” takes 30 minutes

to put clothes into drawers

A B C D

Sequential Laundry

• Sequential laundry takes 8 hours for 4
loads

• If they learned pipelining, how long
would laundry take?

30T
a
s
k

O
r
d
e
r

B

C
D

A Time
30 30 3030 30 3030 30 30 3030 30 30 3030

6 PM 7 8 9 10 11 12 1 2 AM

Pipelined Laundry: Start work
ASAP

• Pipelined laundry takes 3.5 hours for 4
loads!

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time

B
C
D

A
3030 30 3030 30 30

2

Pipelining Lessons
• Pipelining doesn’t

help latency of
single task, it helps
throughput of
entire workload

• Multiple tasks
operating
simultaneously using
different resources

• Potential speedup =
Number pipe stages

6 PM 7 8 9
Time

B
C
D

A
3030 30 3030 30 30

T
a
s
k

O
r
d
e
r

Pipelining Lessons (cont.)
• Pipeline rate

limited by slowest
pipeline stage

• Unbalanced lengths
of pipe stages
reduces speedup

• Time to “fill”
pipeline and time
to “drain” it
reduces speedup

• Stall for
Dependences

6 PM 7 8 9
Time

B
C
D

A
3030 30 3030 30 30

T
a
s
k

O
r
d
e
r

The Five Stages of Load

• Ifetch: Instruction Fetch
– Fetch the instruction from the Instruction

Memory
• Reg/Dec: Registers Fetch and

Instruction Decode
• Exec: Calculate the memory address

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad

The Five Stages of Load
(cont.)

• Mem: Read the data from the Data
Memory

• Wr: Write the data back to the register
file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad

3

Conventional Pipelined Execution
Representation

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB
Program Flow

Time

Single Cycle,
Multiple
Cycle, vs.
Pipeline

Clk

Cycle 1

Multiple Cycle Implementation:

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Load Ifetch Reg Exec Mem Wr

Ifetch Reg Exec Mem
Load Store

Pipeline Implementation:

Ifetch Reg Exec Mem WrStore

Clk

Single Cycle Implementation:

Load Store Waste

Ifetch
R-type

Ifetch Reg Exec Mem WrR-type

Cycle 1 Cycle 2

Why Pipeline?
• Suppose we execute 100 instructions
• Single Cycle Machine

– 45 ns/cycle x 1 CPI x 100 inst = 4500 ns
• Multicycle Machine

– 10 ns/cycle x 4.6 CPI (due to inst mix) x
100 inst = 4600 ns

• Ideal pipelined machine
– 10 ns/cycle x (1 CPI x 100 inst + 4 cycle

drain) = 1040 ns

Why Pipeline? Because the
resources are there!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

4

Can pipelining get us into
trouble?

• Yes: Pipeline Hazards
– structural hazards: attempt to use the

same resource two different ways at the
same time
• E.g., combined washer/dryer would be a

structural hazard or folder busy doing
something else (watching TV)

Can pipelining get us into
trouble? (cont.)

– data hazards: attempt to use item before
it is ready
• E.g., one sock of pair in dryer and one in

washer; can’t fold until get sock from washer
through dryer

• instruction depends on result of prior
instruction still in the pipeline

Can pipelining get us into
trouble? (cont.)

– control hazards: attempt to make a
decision before condition is evaluated
• E.g., washing football uniforms and need to

get proper detergent level; need to see after
dryer before next load in

• branch instructions

• Can always resolve hazards by waiting
– pipeline control must detect the hazard
– take action (or delay action) to resolve

hazards

Single Memory is a Structural
Hazard

Mem

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UReg Mem Reg

A
L

UMem Reg Mem Reg

Detection is easy in this case! (right half highlight means read, left half write)

5

• Stall: wait until decision is clear
– Its possible to move up decision to 2nd stage

by adding hardware to check registers as
being read

• Impact: 2 clock cycles per branch
instruction => slow

Control Hazard Solutions

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Add
Beq
Load

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UReg Mem RegMem

• Predict: guess one direction then back
up if wrong
– Predict not taken

Control Hazard Solutions (cont.)

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Add

Beq

Load

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

Mem

A
L

UReg Mem Reg

• Impact: 1 clock cycles per branch
instruction if right, 2 if wrong (right
50% of time)

• More dynamic scheme: history of 1
branch (90%)

Control Hazard Solutions (cont.)

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Add
Beq
Load

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

Mem

A
L

UReg Mem Reg

• Redefine branch behavior (takes place
after next instruction) “delayed branch”

Control Hazard Solutions (cont.)

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Add

Beq

Misc

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

Mem

A
L

UReg Mem Reg

Load Mem

A
L

UReg Mem Reg

6

• Impact: 0 clock cycles per branch
instruction if can find instruction to put
in “slot” (50% of time)

• As launch more instruction per clock
cycle, less useful

Control Hazard Solutions (cont.)

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Add

Beq

Misc

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

Mem

A
L

UReg Mem Reg

Load Mem

A
L

UReg Mem Reg

Data Hazard on r1

add r1 ,r2,r3

sub r4, r1 ,r3

and r6, r1 ,r7

or r8, r1 ,r9

xor r10, r1 ,r11

• Dependencies backwards in time are hazards

Data Hazard on r1: (cont.)

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

• “Forward” result from one stage to another

• “or” OK if define read/write properly

Data Hazard Solution:

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

7

• Dependencies backwards in time are hazards
• Can’t solve with forwarding:
• Must delay/stall instruction dependent on loads

Forwarding (or Bypassing):
What about Loads

Time (clock cycles)

lw r1,0(r2)

sub r4,r1,r3

IF ID/RF EX MEM WB

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

