
 

  
Abstract— Recent advances in buffer-overflow protection are 

able to eliminate several common types of buffer-overflow 
attacks (e.g. stack smashing, jump table). In this paper, we 
introduce arbitrary copy, a type of buffer-overflow attack that is 
capable of bypassing most buffer-overflow solutions. By 
overflowing both source and destination pointers of any string 
copy (or similar) function, arbitrary copy is able to utilize a 
useful local address for attacking a system. This method can 
bypass even the most promising buffer-overflow protection that 
enforces the integrity of address such as Secure Bit [24] and 
MINOS [8]. Later, we analyze conditions necessary for the 
success of this attack. Though satisfying all necessary conditions 
for this attack should be difficult, our conclusion is that it is a 
potential threat and requires consideration. 
 

Index Terms—Buffer overflow, Buffer-Overflow Attacks, 
Computer security, Intrusion Detection, Intrusion Prevention 
 

I. INTRODUCTION 
N this paper, we will present a type of buffer-overflow 
attack that is able to bypass most buffer-overflow 

protections. We refer to this attack as “arbitrary copy”. 
Arbitrary copy is an attack on two data pointers. The 
successful attack allows an attacker to copy data from one 
location to another arbitrarily. 

Although, they date back to the infamous MORRIS worm 
of 1988 [26], buffer-overflow attacks remain the most 
common. Though skilled programmers should write code 
without buffer overflows, no program is guaranteed free from 
bugs so it cannot be considered completely secure against 
buffer-overflow attacks. The persistence of buffer-overflow 
vulnerabilities speaks to the difficulty of eliminating them. In 
addition, as buffer overflow vulnerabilities are eliminated in 
operating systems, they are being found and exploited in 
applications. When applications are run with root or 
administrator privileges the impact of a buffer overflow is 
equally devastating. 

In an effort to avoid relying on individual programming 
skill, a number of researchers have proposed a variety of 
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methods to protect systems from buffer-overflow attacks. 
Most of them are not able to provide complete protection. For 
example, some only prevent the original stack-smashing 
attack, but can be circumvented by more recent attacks.  

The goal of this paper is to provide a rudimentary 
understanding of arbitrary copy attacks. We begin with 
background of buffer-overflow attacks and current protection 
schemes. Next, we examine the arbitrary copy and its potential 
threat. Later is the analysis of a possible solution.  

 

II. BACKGROUND 
This section begins by reviewing the characteristics of 

buffer-overflow vulnerabilities and attacks. Later we briefly 
analyze current solutions against buffer-overflow attacks. In 
particular, we will focus on a promising approach, namely 
input protection. 

A. Buffer-Overflow Attacks 
Buffer-overflow attacks occur when a malformed input is 

being used to overflow a buffer causing a malicious or 
unexpected result. Some metadata is necessary for prevention 
[13]. 

There are two main targets of buffer-overflow attacks: 
control data and local variables. In the vast majority of attacks, 
control data is the target so prevention schemes have focused 
on control data. Control data can be divided into several types: 
return addresses, function pointers, and branch slots. Return 
addresses have been the primary target since their location can 
easily be guessed. More advanced buffer-overflow attacks 
target other control data. Some literature refers to attacks on 
return addresses as first-generation attacks, and those on 
function pointers as second-generation attacks [3]. 

 

B. Current Protection Schemes 
Current approaches against buffer-overflow attacks can be 

partitioned into three broad categories: static analysis, 
dynamic solutions, and isolation. Static analysis tries to fix 
functions that are vulnerable to buffer-overflow attacks. 
Dynamic approaches monitor or protect data that is either a 
target or the source of buffer-overflow attacks. Isolation seeks 
to limit the damage of attacks.  

The main idea of “Static analysis” is to find and solve the 
problem before deploying the program. To do so, we first 
analyze the source code or disassembly of the program by 
looking for code with a predefined signature. Examples of 
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tools in this category are: ITS4 [30], FlawFinder [11], RATS 
[25], and STOBO [14] 

Knowing which data are critical to attacks, we can prevent 
attacks by validating the integrity of that data. As mentioned 
above, the data of interest are control data such as (but not 
limited to) return addresses. We name these “Dynamic 
Solutions” because data are dynamically managed and verified 
in the run-time environment. We will further elaborate the 
tools in this category later. 

Isolation schemes isolate the attacker either to eliminate an 
attack vector or to contain damage after a successful attack. 
Preventing the execution of code in stack memory isolates the 
stack from the attacker.  Alternatively, limiting the memory of 
a process can isolate a compromised process. NX 
nonexecutable memory is an example of the former while 
sandboxing is an example of the latter. Examples include 
AMD NX [19], non-executable stack [28], SPEF [18], and 
sandboxing. 

In a survey of buffer-overflow protection [24], it is 
suggested that metadata is necessary for validating the 
integrity of data. While the assumptions of critical data and the 
methods for storing and validating metadata vary from one 
solution to another, dynamic solutions can be classified into 
four groups: 

• Address Protection 
• Input Protection 
• Bounds Checking 
• Obfuscation 

 
The address protection schemes share the assumption that 

addresses (e.g. return address) are critical data and must be 
tagged. In these schemes the metadata is created by functions 
that create the address (e.g. call instruction), and verified by 
the many instructions that use the address (e.g. return 
instruction). The schemes within this group are differentiated 
by the types of metadata they use. Examples are StackGuard 
[6], ProPolice [10], PointGuard [7], Hardware Supported 
PointGuard [27], StackGhost [12], RAS [20], RAD [4], DISE 
[5], SCACHE [16].  

The input protection schemes are latest and most promising. 
These schemes assume that external data are untrustworthy 
and should not be used as internal control data. The 
underlining concept is that “All input is evil until proven 
otherwise” [15]. In most cases, metadata are tightly coupled to 
the data in hardware (e.g. tagged memory). Data from external 
sources are tagged so it can be recognized, if there is an 
attempt to use it as control data. Implementing the metadata in 
hardware makes attacking the protocol difficult—maybe 
impossible. The schemes in this group differ in the 
management of metadata. In the next section, we will focus on 
this approach. 

Rather than tagging data, bounds checking schemes 
explicitly bound buffers to prevent overflow.  In this case, the 
metadata is associated with every block of allocated data and 
is used to bound accesses. The notable tools are Array Bounds 
Checking [17], Segmentation, and type-safe programming 
languages. 

Instead of protecting the data directly, obfuscation schemes 
reorganize memory to obscure memory making malicious 
manipulation of memory through buffer overflows more 
difficult. These schemes assume that attackers rely on a 
certain snapshot of addresses to overflow the critical data. If 
the snapshot is random or difficult to guess, an attack is more 
difficult. Address Obfuscation [1] and ASLR [22] are good 
examples. 

Taxonomy and more details of buffer-overflow protection 
schemes can be found in a survey of buffer-overflow 
protection [24]. 

 

C. Input Protection 
Input protection schemes are dynamic solutions against 

buffer-overflow attacks. The underlying assumption is that 
input data should be treated differently from local data, and 
should not be used as control data. We will review four 
methods: Minos [8] and [9], Tainted Pointer [2], Dynamic 
Flow Tracking [29], Dynamic Taint Analysis [21], and Secure 
Bit [23] that share the same assumption, but different 
implementations. Minos views data across segments as input. 
Tainted Pointer considers data passed from the operating 
system as input. Dynamic Flow Tracking relies on operating 
systems for marking input. Secure Bit treats data passing 
between processes through the kernel as input. 

In addition to addresses, Tainted Pointer also tried to 
prevent input from being used as a pointer. However, input is 
sometimes used as a part of pointer arithmetic (e.g. indexing). 
This aspect of Tainted Pointer may raise false alarms in many 
programs. 

The other schemes protect a process from external control 
data, but do not prevent buffer-overflow attacks on non-
control data. That raises the question: can an attacker use a 
buffer-overflow attack on non-control data to manipulate local 
control data to modify control flow? 
 

III. ARBITRARY COPY 
 

There exists an arbitrary copy primitive which may allow 
attackers to modify control flow without using external control 
data. Using strcpy one can construct a vulnerable routine such 
that using a buffer-overflow to modify source and destination 
pointers, an attacker can arbitrarily copy any data from one 
location to another. This technique allows an existing piece of 
control data, an address with no Secure Bit set, to overwrite 
another piece of control data. The result is control flow other 
than what the original programmer intended. Necessary 
conditions for the success of this type of attack are: 

 
1. A vulnerable copy function such that a user can 

modify both arguments (source and destination 
pointers) (possibly using buffer-overflow attacks) 
as exemplified in Figure 1. 

2. The (useful) control data is stored in the local 
memory area.  



 

 
char *src,*dest; 
char buff[10]; 
 
gets(buff); 
... 
strcpy(src,dest); 

Figure 1 Vulnerable code 

Both of these conditions must be true. If one fails, the attack 
fails. Though the first condition could be satisfied in any 
arbitrarily program, the code generated by the compiler will 
likely render the attack impossible. For example, any level of 
optimization will use registers for storing the source and 
destination variables. If either or both are in registers, a buffer-
overflow to modify both variables will fail. We will analyze 
the possible cases where both conditions concurrently occur 
later. 

 

A. Example 
To ease understanding, Figure 2 presents a sample case of 

an attack on non-control data where the vulnerability might be 
applicable. 
 
int b() { 
 char *src,*dest; 
 char buff[10]; 
 printf("Input string:.\n"); 
// Overflow *src, *dest 
 gets(buff); 
// Copy src to dest 
 strcpy(src,dest); 
} 
 
int a() { 
 … 
 b(); 
 … 
} 
 
int main (int argc,char *argv[]) { 
 a(); 
} 

Figure 2 Sample Buffer-Overflow attacks on non-

control data 

In this example, main calls function “a” which then calls 
the vulnerable function “b”. Within “b” the user inputs buff 
which can overflow to both overwrite *src to point to the 
return address of a previous call (e.g.  "a()") and overwrite 
*dest to point to the target address (e.g. return address of 
“b()” or “main()”). Note that this overflow is possible only 
if all optimization is turned off so that neither src nor dest 
is in a register. Under these circumstances it is possible to 
change the control flow without replacing control data with 

external data—only internal data is used. Note that the damage 
in this example is to create an infinite loop or crash the 
program, effectively a denial of service to the process.  

While most internal data targets will be benign, one can 
imagine malicious possibilities, even if they are a bit far-
fetched. For example, if for some reason a programmer 
created a function pointer to shell and had both a vulnerable 
copy routine and no optimization; one could copy that shell 
pointer elsewhere to allow a shell call someplace different 
than the programmer intended. Note that the desired 
privileged-elevated shell is not possible with this attack 
because the best buffer-overflow prevention schemes will 
prevent privilege-elevation attacks. Alternatively, (again with 
a vulnerable copy routine and no optimization) if one had 
function pointers to both an authorization “accept” function 
and a “reject” function one might be able to redirect program 
flow to subvert an authorization routine to the “accept” 
function when the “reject” function was expected. 
 

 
Figure 3 a possible scenario 

 

IV. ISSUES 
Consider the second condition of arbitrary copy: the 

presence of a useful address in local memory. We know that a 
mechanism like Secure Bit prevents the use of input as control 
data, thus only purely local data that is not derived from input 
is a potential threat. One’s first thought might be that any 
function call could provide an address of that function. 
However, because of relocation, local calls use relative 
addresses which cannot be used for this attack. Other sources 
of control targets such as jumps are also relative addresses and 
not useful. Given this observation, potential sources of 
addresses are narrowed to the presence of a shared library or a 
function pointer. 

 
Shared library. In the case of shared libraries (the function 

is located in the shared library), a call to the function means 
there exists a useful entry in the Global Offset Table (GOT).  

 
Function Pointer. The assignment of a function address to 

src

dest

Global Offset Table 
Entry Address 
accept() 0xAAAAAA 
reject() 0xAAAAAA 

main() { 
 … 
 vulnerable(); 
 … 
if (valid) 
 accept(); 
else 
 reject(); 
}



 

a function pointer (frequently found in C++) would create a 
pointer available for reuse. 

 
If a useful address is stored as an entry in the GOT or a 

function pointer, the buffer-overflow described above can be 
used to replace a target address with this address. Target 
addresses might be return addresses, function pointers, or an 
entry in GOT itself. 

The probability that all conditions are applicable is 
considered to be low. In fact, some researchers [8] do not 
believe that it will be a problem or suggest that encoding 
addresses in GOT should be sufficient for preventing the 
attack. However, that prevention might not be able to protect 
some function pointers in C++. 

 

V. POSSIBLE SOLUTIONS 
Though the attack sounds probabilistically low, it is not 

impossible, and experience suggests that no matter how 
remote the possibility, someone, sometime will exploit it. We 
have already mentioned that the most simplistic optimization 
prevents the attack. To protect against this attack in the 
presence of no optimization, we simply have to eliminate at 
least one critical condition. There are three possible methods.  

• Prevent a raw address from being stored directly in 
the program.  

• Secure the target address from being modified (e.g. 
GOT and function pointers).  

• Validate that both the source and destination 
pointer have not been maliciously modified.  

Rather than storing an address directly into the GOT table 
or function pointer, we may choose to store an encoded 
version of an address or store a relative address. Even a trivial 
encoding such as XOR (like PointGuard [7]) with some 
constant would be sufficient. However, this approach does not 
prevent a copy between locations that share the same encoding 
scheme or key used to encrypt the address (e.g. between 
function pointers or entries in the GOT). Note that PointGuard 
[7] can be used to reduce the probability of overwriting source 
and destination pointers. However, if the key and algorithm 
can be circumvented, it is possible to overwrite it with a valid 
copy. In fact, we may be able to overflow the value (e.g. 
index) that is used for pointer arithmetic rather than modifying 
the pointer directly. 

Rather than making the useful address useless, we can 
protect the target from being modified. In the case of GOT, we 
can protect the GOT from being a target by declaring it as 
read-only after the shared library is configured. Nonetheless, 
we cannot apply the same idea to protect function pointers or 
return addresses in general. 

Alternatively, we can validate (assert) the source and 
destination pointers before running the “strcpy(..)” function. If 
the source and destination pointers can be validated, the attack 
can be prevented. However, a false alarm may be generated 
when a pointer is the arithmetic result of input. 

 

VI. CONCLUSIONS 
Arbitrary copy is a potential threat that can bypass current 

state-of-the-art buffer-overflow protection schemes. While 
other (easier) vectors of attacks still exist, it is unlikely that 
arbitrary copy will be used as a tool. However, the recent 
advances in buffer-overflow protection will make existing 
attacks obsolete. While trivial optimization eliminates the 
threat, one cannot count on non-optimization as a complete 
solution. We should pay a close attention to this problem. 

We are now working on extending Secure Bit to protect 
against buffer-overflows of non-control data.  In addition to 
the broader protection provided, this specific attack can be 
prevented by preserving the integrity of the source and 
destination pointers from illegal modification. The common 
practice of using user input as array indices complicates 
identifying illegal modification. 

. 
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