

Abstract— Recent advances in buffer-overflow protection are

able to eliminate several common types of buffer-overflow
attacks (e.g. stack smashing, jump table). In this paper, we
introduce arbitrary copy, a type of buffer-overflow attack that is
capable of bypassing most buffer-overflow solutions. By
overflowing both source and destination pointers of any string
copy (or similar) function, arbitrary copy is able to utilize a
useful local address for attacking a system. This method can
bypass even the most promising buffer-overflow protection that
enforces the integrity of address such as Secure Bit [24] and
MINOS [8]. Later, we analyze conditions necessary for the
success of this attack. Though satisfying all necessary conditions
for this attack should be difficult, our conclusion is that it is a
potential threat and requires consideration.

Index Terms—Buffer overflow, Buffer-Overflow Attacks,
Computer security, Intrusion Detection, Intrusion Prevention

I. INTRODUCTION
N this paper, we will present a type of buffer-overflow
attack that is able to bypass most buffer-overflow

protections. We refer to this attack as “arbitrary copy”.
Arbitrary copy is an attack on two data pointers. The
successful attack allows an attacker to copy data from one
location to another arbitrarily.

Although, they date back to the infamous MORRIS worm
of 1988 [26], buffer-overflow attacks remain the most
common. Though skilled programmers should write code
without buffer overflows, no program is guaranteed free from
bugs so it cannot be considered completely secure against
buffer-overflow attacks. The persistence of buffer-overflow
vulnerabilities speaks to the difficulty of eliminating them. In
addition, as buffer overflow vulnerabilities are eliminated in
operating systems, they are being found and exploited in
applications. When applications are run with root or
administrator privileges the impact of a buffer overflow is
equally devastating.

In an effort to avoid relying on individual programming
skill, a number of researchers have proposed a variety of

K. Piromsopa is a Ph.D. student in the Department of Computer Science

and Engineering, Michigan State University, East Lansing, MI 48824 USA
(corresponding author to provide phone: 517-353-3148; fax: 517-432-1061; e-
mail: piromsop@cse.msu.edu).

R. J. Enbody is with the Department of Computer Science and
Engineering, Michigan State University, East Lansing, MI 48824 USA. (e-
mail: enbody@cse.msu.edu).

methods to protect systems from buffer-overflow attacks.
Most of them are not able to provide complete protection. For
example, some only prevent the original stack-smashing
attack, but can be circumvented by more recent attacks.

The goal of this paper is to provide a rudimentary
understanding of arbitrary copy attacks. We begin with
background of buffer-overflow attacks and current protection
schemes. Next, we examine the arbitrary copy and its potential
threat. Later is the analysis of a possible solution.

II. BACKGROUND
This section begins by reviewing the characteristics of

buffer-overflow vulnerabilities and attacks. Later we briefly
analyze current solutions against buffer-overflow attacks. In
particular, we will focus on a promising approach, namely
input protection.

A. Buffer-Overflow Attacks
Buffer-overflow attacks occur when a malformed input is

being used to overflow a buffer causing a malicious or
unexpected result. Some metadata is necessary for prevention
[13].

There are two main targets of buffer-overflow attacks:
control data and local variables. In the vast majority of attacks,
control data is the target so prevention schemes have focused
on control data. Control data can be divided into several types:
return addresses, function pointers, and branch slots. Return
addresses have been the primary target since their location can
easily be guessed. More advanced buffer-overflow attacks
target other control data. Some literature refers to attacks on
return addresses as first-generation attacks, and those on
function pointers as second-generation attacks [3].

B. Current Protection Schemes
Current approaches against buffer-overflow attacks can be

partitioned into three broad categories: static analysis,
dynamic solutions, and isolation. Static analysis tries to fix
functions that are vulnerable to buffer-overflow attacks.
Dynamic approaches monitor or protect data that is either a
target or the source of buffer-overflow attacks. Isolation seeks
to limit the damage of attacks.

The main idea of “Static analysis” is to find and solve the
problem before deploying the program. To do so, we first
analyze the source code or disassembly of the program by
looking for code with a predefined signature. Examples of

Arbitrary Copy:
Bypassing Buffer-Overflow Protections

Krerk Piromsopa, Member, IEEE, and Richard J. Enbody, Member, IEEE

I

tools in this category are: ITS4 [30], FlawFinder [11], RATS
[25], and STOBO [14]

Knowing which data are critical to attacks, we can prevent
attacks by validating the integrity of that data. As mentioned
above, the data of interest are control data such as (but not
limited to) return addresses. We name these “Dynamic
Solutions” because data are dynamically managed and verified
in the run-time environment. We will further elaborate the
tools in this category later.

Isolation schemes isolate the attacker either to eliminate an
attack vector or to contain damage after a successful attack.
Preventing the execution of code in stack memory isolates the
stack from the attacker. Alternatively, limiting the memory of
a process can isolate a compromised process. NX
nonexecutable memory is an example of the former while
sandboxing is an example of the latter. Examples include
AMD NX [19], non-executable stack [28], SPEF [18], and
sandboxing.

In a survey of buffer-overflow protection [24], it is
suggested that metadata is necessary for validating the
integrity of data. While the assumptions of critical data and the
methods for storing and validating metadata vary from one
solution to another, dynamic solutions can be classified into
four groups:

• Address Protection
• Input Protection
• Bounds Checking
• Obfuscation

The address protection schemes share the assumption that

addresses (e.g. return address) are critical data and must be
tagged. In these schemes the metadata is created by functions
that create the address (e.g. call instruction), and verified by
the many instructions that use the address (e.g. return
instruction). The schemes within this group are differentiated
by the types of metadata they use. Examples are StackGuard
[6], ProPolice [10], PointGuard [7], Hardware Supported
PointGuard [27], StackGhost [12], RAS [20], RAD [4], DISE
[5], SCACHE [16].

The input protection schemes are latest and most promising.
These schemes assume that external data are untrustworthy
and should not be used as internal control data. The
underlining concept is that “All input is evil until proven
otherwise” [15]. In most cases, metadata are tightly coupled to
the data in hardware (e.g. tagged memory). Data from external
sources are tagged so it can be recognized, if there is an
attempt to use it as control data. Implementing the metadata in
hardware makes attacking the protocol difficult—maybe
impossible. The schemes in this group differ in the
management of metadata. In the next section, we will focus on
this approach.

Rather than tagging data, bounds checking schemes
explicitly bound buffers to prevent overflow. In this case, the
metadata is associated with every block of allocated data and
is used to bound accesses. The notable tools are Array Bounds
Checking [17], Segmentation, and type-safe programming
languages.

Instead of protecting the data directly, obfuscation schemes
reorganize memory to obscure memory making malicious
manipulation of memory through buffer overflows more
difficult. These schemes assume that attackers rely on a
certain snapshot of addresses to overflow the critical data. If
the snapshot is random or difficult to guess, an attack is more
difficult. Address Obfuscation [1] and ASLR [22] are good
examples.

Taxonomy and more details of buffer-overflow protection
schemes can be found in a survey of buffer-overflow
protection [24].

C. Input Protection
Input protection schemes are dynamic solutions against

buffer-overflow attacks. The underlying assumption is that
input data should be treated differently from local data, and
should not be used as control data. We will review four
methods: Minos [8] and [9], Tainted Pointer [2], Dynamic
Flow Tracking [29], Dynamic Taint Analysis [21], and Secure
Bit [23] that share the same assumption, but different
implementations. Minos views data across segments as input.
Tainted Pointer considers data passed from the operating
system as input. Dynamic Flow Tracking relies on operating
systems for marking input. Secure Bit treats data passing
between processes through the kernel as input.

In addition to addresses, Tainted Pointer also tried to
prevent input from being used as a pointer. However, input is
sometimes used as a part of pointer arithmetic (e.g. indexing).
This aspect of Tainted Pointer may raise false alarms in many
programs.

The other schemes protect a process from external control
data, but do not prevent buffer-overflow attacks on non-
control data. That raises the question: can an attacker use a
buffer-overflow attack on non-control data to manipulate local
control data to modify control flow?

III. ARBITRARY COPY

There exists an arbitrary copy primitive which may allow
attackers to modify control flow without using external control
data. Using strcpy one can construct a vulnerable routine such
that using a buffer-overflow to modify source and destination
pointers, an attacker can arbitrarily copy any data from one
location to another. This technique allows an existing piece of
control data, an address with no Secure Bit set, to overwrite
another piece of control data. The result is control flow other
than what the original programmer intended. Necessary
conditions for the success of this type of attack are:

1. A vulnerable copy function such that a user can

modify both arguments (source and destination
pointers) (possibly using buffer-overflow attacks)
as exemplified in Figure 1.

2. The (useful) control data is stored in the local
memory area.

char *src,*dest;
char buff[10];

gets(buff);
...
strcpy(src,dest);

Figure 1 Vulnerable code

Both of these conditions must be true. If one fails, the attack
fails. Though the first condition could be satisfied in any
arbitrarily program, the code generated by the compiler will
likely render the attack impossible. For example, any level of
optimization will use registers for storing the source and
destination variables. If either or both are in registers, a buffer-
overflow to modify both variables will fail. We will analyze
the possible cases where both conditions concurrently occur
later.

A. Example
To ease understanding, Figure 2 presents a sample case of

an attack on non-control data where the vulnerability might be
applicable.

int b() {
 char *src,*dest;
 char buff[10];
 printf("Input string:.\n");
// Overflow *src, *dest
 gets(buff);
// Copy src to dest
 strcpy(src,dest);
}

int a() {
 …
 b();
 …
}

int main (int argc,char *argv[]) {
 a();
}

Figure 2 Sample Buffer-Overflow attacks on non-

control data

In this example, main calls function “a” which then calls
the vulnerable function “b”. Within “b” the user inputs buff
which can overflow to both overwrite *src to point to the
return address of a previous call (e.g. "a()") and overwrite
*dest to point to the target address (e.g. return address of
“b()” or “main()”). Note that this overflow is possible only
if all optimization is turned off so that neither src nor dest
is in a register. Under these circumstances it is possible to
change the control flow without replacing control data with

external data—only internal data is used. Note that the damage
in this example is to create an infinite loop or crash the
program, effectively a denial of service to the process.

While most internal data targets will be benign, one can
imagine malicious possibilities, even if they are a bit far-
fetched. For example, if for some reason a programmer
created a function pointer to shell and had both a vulnerable
copy routine and no optimization; one could copy that shell
pointer elsewhere to allow a shell call someplace different
than the programmer intended. Note that the desired
privileged-elevated shell is not possible with this attack
because the best buffer-overflow prevention schemes will
prevent privilege-elevation attacks. Alternatively, (again with
a vulnerable copy routine and no optimization) if one had
function pointers to both an authorization “accept” function
and a “reject” function one might be able to redirect program
flow to subvert an authorization routine to the “accept”
function when the “reject” function was expected.

Figure 3 a possible scenario

IV. ISSUES
Consider the second condition of arbitrary copy: the

presence of a useful address in local memory. We know that a
mechanism like Secure Bit prevents the use of input as control
data, thus only purely local data that is not derived from input
is a potential threat. One’s first thought might be that any
function call could provide an address of that function.
However, because of relocation, local calls use relative
addresses which cannot be used for this attack. Other sources
of control targets such as jumps are also relative addresses and
not useful. Given this observation, potential sources of
addresses are narrowed to the presence of a shared library or a
function pointer.

Shared library. In the case of shared libraries (the function

is located in the shared library), a call to the function means
there exists a useful entry in the Global Offset Table (GOT).

Function Pointer. The assignment of a function address to

src

dest

Global Offset Table
Entry Address
accept() 0xAAAAAA
reject() 0xAAAAAA

main() {
 …
 vulnerable();
 …
if (valid)
 accept();
else
 reject();
}

a function pointer (frequently found in C++) would create a
pointer available for reuse.

If a useful address is stored as an entry in the GOT or a

function pointer, the buffer-overflow described above can be
used to replace a target address with this address. Target
addresses might be return addresses, function pointers, or an
entry in GOT itself.

The probability that all conditions are applicable is
considered to be low. In fact, some researchers [8] do not
believe that it will be a problem or suggest that encoding
addresses in GOT should be sufficient for preventing the
attack. However, that prevention might not be able to protect
some function pointers in C++.

V. POSSIBLE SOLUTIONS
Though the attack sounds probabilistically low, it is not

impossible, and experience suggests that no matter how
remote the possibility, someone, sometime will exploit it. We
have already mentioned that the most simplistic optimization
prevents the attack. To protect against this attack in the
presence of no optimization, we simply have to eliminate at
least one critical condition. There are three possible methods.

• Prevent a raw address from being stored directly in
the program.

• Secure the target address from being modified (e.g.
GOT and function pointers).

• Validate that both the source and destination
pointer have not been maliciously modified.

Rather than storing an address directly into the GOT table
or function pointer, we may choose to store an encoded
version of an address or store a relative address. Even a trivial
encoding such as XOR (like PointGuard [7]) with some
constant would be sufficient. However, this approach does not
prevent a copy between locations that share the same encoding
scheme or key used to encrypt the address (e.g. between
function pointers or entries in the GOT). Note that PointGuard
[7] can be used to reduce the probability of overwriting source
and destination pointers. However, if the key and algorithm
can be circumvented, it is possible to overwrite it with a valid
copy. In fact, we may be able to overflow the value (e.g.
index) that is used for pointer arithmetic rather than modifying
the pointer directly.

Rather than making the useful address useless, we can
protect the target from being modified. In the case of GOT, we
can protect the GOT from being a target by declaring it as
read-only after the shared library is configured. Nonetheless,
we cannot apply the same idea to protect function pointers or
return addresses in general.

Alternatively, we can validate (assert) the source and
destination pointers before running the “strcpy(..)” function. If
the source and destination pointers can be validated, the attack
can be prevented. However, a false alarm may be generated
when a pointer is the arithmetic result of input.

VI. CONCLUSIONS
Arbitrary copy is a potential threat that can bypass current

state-of-the-art buffer-overflow protection schemes. While
other (easier) vectors of attacks still exist, it is unlikely that
arbitrary copy will be used as a tool. However, the recent
advances in buffer-overflow protection will make existing
attacks obsolete. While trivial optimization eliminates the
threat, one cannot count on non-optimization as a complete
solution. We should pay a close attention to this problem.

We are now working on extending Secure Bit to protect
against buffer-overflows of non-control data. In addition to
the broader protection provided, this specific attack can be
prevented by preserving the integrity of the source and
destination pointers from illegal modification. The common
practice of using user input as array indices complicates
identifying illegal modification.

.

REFERENCES

[1] S. Bhatkar, D. C. Duvarney, and R. Sekar, “Address Obfuscation: an
Efficient Approach to Combat a Broad Range of Memory Error
Exploits,” In Proc. of the 12th USENIX Security Symposium. 2003.

[2] S. Chen, J. Xu, N. Nakka, Z. KalbarcZyk, and R. K. Iyer, “Defeating
Memory Corruption Attacks via Pointer Taintedness Detection,” in
Proc. Of IEEE International Conf. on Dependable Systems and
Networks (DSN), Yokohama, Japan, June 28 - July 1, 2005

[3] E. Chien, and P. Szor, “Blended Attacks Exploits, Vulnerabilities and
Buffer-Overflow Techniques in Computer Viruses,” In Proc. of Virus
Bulletin Conf, 2002

[4] T. Chiueh, F. Hsu, “RAD: A Compile-Time Solution to Buffer Overflow
Attacks,” In Intl. Conf. on Distributed Computing Systems, 2001.

[5] M.L. Corliss, E.C. Lewis, and A. Roth, “Using DISE to Protect Return
Addresses from Attack,” ACM SIGARCH, Vol 33. No. 1, 2005.

[6] C. Cowan, S. Beattie, R.F. Day, C. Pu, P. Wagle, and E. Walthinsen,
”Protecting Systems from Stack Smashing Attacks with StackGuard,”
the Linux Expo, Raleigh, NC,1999

[7] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “PointGuard:
Protecting Pointers From Buffer Overflow Vulnerabilities,” In Proc. of
the 12th USENIX Security Symposium, 2003

[8] J.R. Crandall, and F.T. Chong, “Minos: Control Data Attack Prevention
Orthogonal to Memory Model,” Intl. Sym. on Microarchitecture, 2004.

[9] J.R. Crandall, and F.T. Chong, “A Security Assessment of the Minos
Architecture,” ACM SIGARCH, Vol 33. No. 1, 2005.

[10] J. Etoh, “GCC extension for protecting applications from stack-
smashing attacks,” IBM, 2000.

[11] Flawfinder, Available: http://www.dwheeler.com/flawfinder/
[12] M.S. Frantzen, “StackGhost: Hardware facilitated stack protection,” In

Proc. of the 10th USENIX Security Symposium, 2000.
[13] A. Glew, "Segments, Capabilities, and Buffer Overrun Attacks,"

Computer Architecture NEWS, ACM SIG Computer Architecture
Vol.31, No.4 - September 2003, pp. 26 – 31

[14] E. Haugh, and M. Bishop, “Testing C Programs for Buffer Overflow
Vulnerabilities,” In Proc. of the 2003 Symposium on Networked and
Distributed System Security (SNDSS 2003) (Feb. 2003)

[15] M. Howard, D. Leblance, Chapter 10:All Input Is Evil!. Writing Secure
Code, Microsoft Press, 2nd ed.(1965)

[16] K. Inoue, “Energy-Security Tradeoff in a Secure Cache Architecture
Against Buffer Overflow Attacks,” ACM SIGARCH, Vol 33. No. 1,
2005.

[17] R.W.M. Jones, and P.H.J. Kelly, “Backwards-compatible bounds
checking for arrays and pointers in C programs,” In The 3rd Intl.
Workshop on Automated Debugging, 1997.

[18] D. Kirovski, M. Drinic, and M. Potkonjak, “Enabling Trusted Software
Integrity,” ACM Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, 2002.

[19] T. Krazit, “PCWorld - News - AMD Chips Guard Against Trojan
Horses,” IDG News Service, 2004.

[20] J.P. Mcgregor, D.K. Karig, Z. Shi, R.B. Lee, “A Processor Architecture
Defense against Buffer Overflow Attacks,” In Proc. of the IEEE Intl.
Conf. on Information Tech.: Research and Education (ITRE 2003), 243-
250.

[21] J. Newsome, and D. Song, “Dynamic Taint Analysis: Automatic
Detection and Generation of Software Exploit Attacks,” In NDSS (Feb,
2005)

[22] PAX TEAM. 2003. Documentation for the PaX project
[23] K. Piromsopa, and R. Enbody, “Secure Bit2 : Transparent, Hardware

Buffer-Overflow Protection,” Technical Reports #MSU-CSE-05-9,
Department of Computer Science and Engineering, Michigan State
University, 2005.

[24] K. Piromsopa, and R. Enbody, “Survey of Buffer-Overflow Protection,”
Technical Reports #MSU-CSE-06-3, , Department of Computer Science
and Engineering, Michigan State University, 2006.

[25] RATS, Available: http://www.securesw.com/rats/
[26] C. Schmidt, and T. Darby, “The What, Why, and How of the 1988

Internet Worm,” Available:
http://www.snowplow.org/tom/worm/worm.html

[27] Z. Shao, Q. Zhuge, Y. He, and E.H. Sha, “Defending Embedded
Systems Against Buffer Overflow via Hardware/Software,” In Proc. of
the 20th Annual Computer Security Applications Conference, Tucson,
Arizona (Dec. 6-10, 2004)

[28] SOLAR DESIGNER, Linux kernel patch from the Openwall Project
(Non-Executable User Stack), 2002. Available:
http://www.openwall.com/

[29] G. Suh, J. Lee, and S. Devadas, “Secure program execution via dynamic
information flow tracking,” In ASPLOS XI (Oct, 2004.)

[30] J. Viega, J.T. Bloch, Y. Kohno, and G. Mcgraw, “ITS4: A Static
Vulnerability Scanner for C and C++ Code,” In Proc. of the 16th Annual
Computer Security Applications Conference, 2000.

