

Abstract— We propose a framework for protecting against

buffer overflow attacks—the oldest and most pervasive attack
technique. The malicious nature of buffer-overflow attacks is the
use of external data (input) as addresses (or control data). With
this observation, we establish a sufficient condition for
preventing buffer-overflow attacks and prove that it creates a
secure system with respect to buffer-overflow attacks. The
underlying concept is that input is untrustworthy, and should not
be use as addresses (return addresses and function pointers.). If
input can be identified, buffer-overflow attacks can be caught.
We used this framework to create an effective, hardware, buffer-
overflow prevention tool.

Index Terms—Buffer overflow, Buffer-Overflow Attacks,
Computer security, Function-Pointer Attacks, Intrusion
Detection, Intrusion Prevention

I. INTRODUCTION
E create a theoretical foundation for a secure system
with respect to buffer-overflow attacks. The goal is to

use the foundation to provide a framework for implementing
buffer-overflow protection.

Although they date back to the infamous MORRIS worm of
1988 [3], buffer-overflow attacks remain the most common.
Though skilled programmers should write code without buffer
overflows, no program is guaranteed free from bugs so it
cannot be considered completely secure against buffer-
overflow attacks. The persistence of buffer-overflow
vulnerabilities speaks to the difficulty of eliminating them. In
addition, as buffer overflow vulnerabilities are eliminated in
operating systems, they are being found and exploited in
applications. When applications are run with root or
administrator privileges the impact of a buffer overflow is
equally devastating.

In an effort to avoid relying on individual programming

skill, a number of researchers have proposed a variety of
methods to protect systems from buffer-overflow attacks.
Most of them are not able to provide complete protection. For
example, some only prevent the original stack-smashing
attack, but can be circumvented by more recent attacks.

It is worth clarifying that buffer-overflow attacks can be

K. Piromsopa is a Ph.D. student in the Department of Computer Science

and Engineering, Michigan State University, East Lansing, MI 48824 USA
(corresponding author to provide phone: 517-353-3148; fax: 517-432-1061; e-
mail: piromsop@cse.msu.edu).

R. J. Enbody is with the Department of Computer Science and
Engineering, Michigan State University, East Lansing, MI 48824 USA. (e-
mail: enbody@cse.msu.edu).

done on any data and variables. This paper focuses on buffer-
overflow attacks on control data, but is not limited to control
data.

The goal of this paper is to provide a generic framework for
preventing buffer-overflow attacks. We begin by defining
buffer overflows in general. Next, we establish a sufficient
condition for preventing buffer-overflow attacks and prove
that it will create a secure system with respect to buffer-
overflow attacks.

II. BACKGROUND
This section is intended to be a gentle introduction to buffer

overflows

A. Fundamental of Buffer-Overflow Attacks
First, we define buffer overflow(from the Webopedia [18]).

Definition 1:
A buffer overflow is the condition wherein the data

transferred to a buffer exceeds the storage capacity of the
buffer and some of the data "overflows" into another buffer,
one that the data was not intended to go into.

Since buffers can only hold a specific amount of data, when

that capacity has been reached the data has to flow somewhere
else, typically into another buffer, which can corrupt data
already in that buffer.

Exploiting buffer overflow can lead to a serious system
security breach (buffer-overflow attack) when necessary
conditions are met. The seriousness of buffer-overflow attacks
ranges from writing into another variable, another process’
memory (segmentation fault), or redirecting the program flow
to execute malicious or unexpected code. Based on the
definition of buffer overflow, Definition 2 defines buffer-
overflow attacks.

Definition 2:
A buffer-overflow attack is an attack that (possibly

implicitly) uses memory-manipulating operations to overflow
a buffer which results in the modification of an address to
point to malicious or unexpected code.

In general, a buffer-overflow attack is an attack on any data

(including variables and addresses). To make this paper
readable, the term “buffer-overflow attacks” is used to refer to
attacks on control data.

Observation: An analysis of buffer-overflow attacks

Buffer-Overflow Protection: The Theory
Krerk Piromsopa, Member, IEEE, and Richard J. Enbody, Member, IEEE

W

indicates that a buffer of a process is always overflowed with a
buffer passed from another domain (machine, process)—hence
its malicious nature.

Assumption 1:
In an attack, a buffer is always overflowed using a buffer

passed from another domain.

This concept is not new. For example, Howard and LeBlanc

state in their book “All input is evil until proven otherwise”
[9]. Accordingly, an intuitive way to prevent buffer-overflow
attacks is to detect and validate input, especially input which is
eventually used for control.

In early attacks, the attacked address was a return address,
but later other control data (e.g. function pointers, jump table)
were attacked. In all cases, the eventual access of that address
(e.g. by a return, function call or jump) will redirect the
program control flow to execute the malicious or unexpected
code. If the address was modified by something other than a
buffer overflow, it is a race condition, a Trojan horse, or other
type of attack.
.

B. Sample Attacks and Variations
There are two main targets of buffer-overflow attacks:

control data and local variables. In the vast majority of attacks,
control data is the target so prevention schemes have focused
on control data. Control data can be divided into several types:
return addresses, function pointers, and branch slots. Return
addresses have been the primary target since their location can
easily be guessed. More advanced buffer-overflow attacks
target other control data. Some literature refers to attacks on
return addresses as first-generation attacks, and those on
function pointers as second-generation attacks [5].

The first step-by-step description of how to construct a
buffer-overflow attack was written by Elias Levy (a.k.a. Aleph
One) in 1996 [11]. He first used the term “Stack Smashing” to
refer to plastering the stack with shell code and its address to
set up an eventual overflow of a return address on the stack.

Figure 1 shows a stack-smashing example. In this example,

an attacker (shown in the black hat) passes a buffer containing
malicious code (e.g. shell) and multiple copies of the address
of the target buffer as an argument to the vulnerable program
(through parameter p). A buffer manipulation function (e.g.
strcpy in this example) will overflow the function’s return
address with the address of the target buffer containing
malicious code. The eventual result is that the return
instruction will use the address of the target buffer as a return
address and return the program flow to execute that malicious
code. Additional attack vectors are provided (but not used) in
the code such as function pointer fp. As outlined above, it is
important to note that the critical component of this attack is
the modification of the return address (replaced by the address
of the target buffer).

Figure 1 Stack Smashing

To illustrate an advanced buffer-overflow attack, we
provide a multistage buffer-overflow attack [10] (a.k.a.
Hannibal Exploit [6]) that can bypass most software buffer-
overflow solutions. Fundamental to a multistage buffer-
overflow attack is that there exists a vulnerable pointer to a
buffer. That is, there is a user-writeable buffer sufficiently
near a useful pointer. First, the pointer is modified (by
overflowing) to point to a specific location (e.g. a jump slot or
a function pointer). In the second stage of the attack, an input
is stored at the pointer’s target. These two steps allow
attackers to create a pointer to any location (first stage) and
overwrite the pointer’s target with a desired value (second
stage). The next time some program jumps to that target, it
will be redirected based on the value inserted by the attacker.
In particular the program will be redirected to the attacker’s
malicious code. For example, if the program is running in
privileged mode and the pointer points to shell code, the
attacker will have created a privileged shell allowing free
reign. Figure 2 is an example of such a vulnerable program.

Before examining the code, let’s review how a jump table is
used. Consider the slot in the table for the pointer to the printf
executable. A call to printf indexes to that slot in the table and
then jumps to the printf executable. To attack this type of
program, the buffer-overflow is done in two stages. First, the
ptr pointer is overflowed to point to a desired memory
location (1), e.g. the printf slot in the jump table. In particular,
argv[1] controlled by the attacker will contain the address of
the printf slot in the jump table. The strcpy routine will copy
argv[1] into buffer, but overflows to overwrite ptr with the
printf address slot. In the figure, we see that the pointer ptr
originally pointed to ‘buffer’ (arc labeled ‘Before’) but now
points to the jump slot (arc labeled ‘After). Now that ptr
points to the printf slot in the jump table, we need to insert a
desired value into that slot. Suppose, for illustration, that we
also have determined the address of resident shell code (we’ll
call it residentcode). Using our modified ptr we will overwrite
the jump table slot with the residentcode address. We use the
second strcpy call (2) to write argv[2] (also controlled by the
attacker and whose value is residentcode) into the target of ptr

which now points to the printf entry in the jump table. The
result of that second strcpy call is that we have placed the
address residentcode (resident shell code) into the printf slot
of the jump table. The attacker has achieved his goal. Now
when a program calls printf, control passes as usual to the
printf entry in the jump table, but now the attacker has
redirected control to residentcode, the address of the shell
code. Instead of printf a shell will be started. If the program
which called printf was operating in privileged mode, the
attacker will have succeeded in creating a privileged shell with
full system access. (See [13] for more details). As we will see
below, this multi-stage attack gets around most buffer-
overflow protection schemes. Less obvious is that we can use
a similar approach to circumvent some software solutions to
buffer-overflow attacks by modifying a handling vector which
can allow us to bypass the buffer-overflow handling routine.

Figure 2 An example of a vulnerable program

Another variation which most schemes cannot protect is an
attack on generic pointers. By modifying both the source and
destination pointers, copying from one arbitrary memory
location to another is possible. Figure 3 illustrates an attack
based on attacking pointers. In this figure, the first strcpy will
allow attackers to overflow buffer b so the src and des pointers
are replaced with two pointers of the attacker’s choice: in this
case, valid control data and target address respectively. The
second strcpy will then copy from the src location to the des
location. Using this approach, it is possible to modify any
memory entry with a known local entry while avoiding most
protection mechanisms. For example, an encoded function
pointer can be used to attack another function pointer (e.g.
jump slot).

A related attack is worth noting here: printf vulnerabilities

[17]. Malformed formatting instructions can allow arbitrary
memory to be overwritten. It is not a buffer-overflow attack,
but with the ability to overwrite arbitrary memory the attack
then proceeds like many buffer-overflow attacks by attacking
control data. Some buffer-overflow schemes can prevent some
of those attacks. However, any variable can also be attacked,
and no buffer-overflow scheme protects arbitrary data.
Fortunately, simple static analysis of source code can identify
printf vulnerabilities. As we will see below, static analysis is
not sufficient for buffer overflows.

Figure 3 Buffer-Overflow Attacks on Pointers

Recently “integer overflows” (known more generically as
“integer arithmetic” attacks) have emerged as a variation [2].
In these attacks guard data which protects buffers is attacked.
After defeating the guard data some buffer-overflow attack is
used. Therefore, these attacks can be considered as a variation
of a buffer-overflow attack which the more robust schemes
can protect against.

An attack on local variables is exemplified by the classic
password attack from a 1987 paper [19]. Basically, a variable
is being overflowed allowing an arbitrary password to be
validated resulting in root or administrator access. No control
data is involved so no existing buffer-overflow protection
schemes protect against this type of attack.

III. PREVENTION
This section discusses the necessary conditions for

preventing buffer-overflow attacks on control data.

Postulate 1:
In buffer-overflow attacks on control data, the generic

buffer/memory-manipulating operations are used by the
vulnerable routine to overflow the address (e.g. a return
address or a function pointer).

From Definition 2, we observe that preserving the integrity

of the address is a sufficient condition to prevent this class of
buffer-overflow attacks. To clarify, Definition 3 shows the
meaning of the integrity of an address in this context.

Definition 3:
Maintaining the integrity of an address means that the

address has not been modified by overflowing with a buffer
passed from another domain.

Consider the implication of Definition 3 in light of our

“Observation” about Definition 2 which noted the importance
of attacks working across domains (machines, processes): in
order to preserve the integrity of the address (e.g. a return
address or a function pointer), an address cannot be created

from data passed across domains (e.g. machines, processes)
via buffer overflow.

To maintain its integrity, the address created locally can be
signed when it is created and is validated by associated
instructions (e.g. return, call, and jump instructions) before
they are completely executed. Implicitly, a signature
represents some metadata associated with the address.
Necessarily, the signature must not be passed across domains.
If the signature could be passed across domains, a valid
address could be used for attacking a system. If we assume
that a signature only exists locally, the last condition is
enforced when a buffer is passed across a network/hardware
device where the signature cannot be passed.

If local data can be differentiated from data passed from
another domain, we can detect buffer-overflow attacks on
control data. Thus we may reverse the signature by signing
data that passed across domains and leave the local data
unsigned. This scheme provides better backward-
compatibility, since no modification is required for legacy
processes.

With these definitions, Theorem 1, and its corollary are
introduced. The corollary is the key to the entire framework
presented in this paper since it defines a sufficient condition
for buffer-overflow attacks.

Theorem 1:
Modifying an address by replacing (“overflowing”) it using

a buffer passed from another domain is a necessary condition
for a buffer-overflow attack on control data.

Restatement: If there is to be a buffer-overflow attack on

control data, an address must be modified using a buffer
passed from another domain.

Proof:
Theorem 1 follows directly from Definitions 1 and 2.

QED
Corollary 1.1:
Preserving the integrity of an address is a sufficient

condition for preventing a buffer-overflow attack.

Restatement: If the integrity of an address is preserved, that

is a sufficient condition for preventing a buffer-overflow
attack.

Proof:
From Theorem 1, “If there is to be a buffer-overflow attack,

an address must be modified by manipulating a buffer from
another domain.” The contrapositive of that statement is “If an
address cannot be modified (or such modification can be
detected), then a buffer-overflow attack is not possible.” We
know that the contrapositive of a true statement is true.

QED
Intuitively, from Definition 2, the attack is the ability to

redirect the program flow to execute malicious or unexpected
code. To achieve this goal, the address must be modified. If
the address cannot be modified, the buffer-overflow attack

fails. If modification of the address can be recognized, the
buffer-overflow attack can be recognized and stopped. On the
other hand, if the address can be validated, execution can
proceed safely.

IV. SECURE SYSTEM
To claim that this framework can enforce the integrity of

the addresses and result in a secure system, a validation will
be discussed. Assuming that a computer system can be
represented as a finite-state automation with a set of transition
functions, we can define a secure system (with Definitions 4
and 5).

Definition 4:
A security policy is a statement that partitions the states of

the system into a set of authorized, or secure, states and a set
of unauthorized, or insecure, states [1].

In the case of buffer-overflow attacks, the security policy is

simply the statement:

Protocol 1:
Overflowing a buffer cannot create a valid address
(e.g. a return address or a function pointer)

which follows from Corollary 1.1. Before going further, we

first define a secure system.

Definition 5:
A secure system is a system that starts in an authorized

state and cannot enter an unauthorized state. [1].

Theorem 2:
A system which preserves the integrity of an address (e.g. a

return addresses or a function pointer) is a secure system with
respect to buffer-overflow attacks.

Restatement: A system that does not use input as a control

data is a secure system with respect to buffer-overflow attacks
on control data.

Proof:
Assume that a system is partitioned into two states: normal

operation and buffer-overflow attack. By the definition of
buffer-overflow attacks (Definition 2), only overwriting the
address (e.g. a return address or a function pointer) with an
address passed as a buffer (input) to vulnerable programs will
result in the state of buffer-overflow attack. By the definition
of preservation of the address (Definition 3), if such
overflowing can be recognized and prevented, the system will
not result in the state of buffer-overflow attacks. With respect
to Definition 5, our system cannot enter an unauthorized state
and is considered to be a secure system.

QED

Figure 4 State diagram of buffer-overflow attacks.

Hitherto, we will show that the enforcement of Protocol 1

(stated early) results in a secure system with respect to buffer-
overflow attacks.

Theorem 3:
A system that enforces Protocol 1 can preserve the integrity

of an address, and result in a secure system with respect to
buffer-overflow attacks.

Proof:
By enforcing Protocol 1, we can detect that an address (e.g.

a return address or a function pointer) is overflowed by a
buffer passed from another domain (including input). If we
can detect that an address is modified by a buffer from another
domain, we can preserve the integrity of the address. This
follows directly from Definition 3. Thus a system that can
enforce Protocol 1 preserves the integrity of the address and is
a secure system with respect to buffer-overflow attacks. This
follows directly from Theorem 2

QED

V. IMPLEMENTATIONS
It was suggested that metadata is a key to preventing buffer-

overflow attacks in a 2003 article [8]. There exist at least four
methods that follow our proposed framework by using
metadata for tracking input. These methods are Minos [6] [7],
Tainted Pointer [3], Dynamic Flow Tracking [16] and Secure
Bit [14]. These methods share the same assumption that input
should not be used as control data.

All methods required an additional bit augmented to each
memory word (or byte). This bit is used for tracking input.
Whenever input is passed to a process, the bit is marked. Upon
execution, Jump, Call or Return instructions validate that
control data is not derived from input. If input is about to be
used as an address, an exception is raised.

However, the implementations differ. Minos views data
across segments as input. Tainted Pointer considers data
passed from the operating system as input. Dynamic Flow
Tracking relies on operating systems for marking input.
Secure Bit treats data passing between processes through the
kernel as input. More details of buffer-overflow attacks and
protection schemes can be found in [12] and [15] respectively.

VI. SUMMARY
Buffer-overflow attacks on control data require overflowing

addresses (return addresses and function pointers) with a
buffer passed from another domain (machine, and process). In
this paper we developed a formal argument that “a necessary
condition for preventing buffer-overflow attacks is the
preservation of the integrity of addresses across domains”.
We then show how a protocol based on that statement
supports a variety of successful hardware-based methods to
prevent buffer overflow attacks. Our formalism lends credence
to their claims of success.

.

REFERENCES
[1] M. Bishop, Computer Security, Addison-Wesley, (Dec. 2002)
[2] Blexim, “Basic Integer Overflow,” 2002. Available:

http://www.phrack.org/phrack/60/p60-0x0a.txt
[3] C. Schmidt, and T. Darby, “The What, Why, and How of the 1988

Internet Worm,” http://www.snowplow.org/tom/worm/worm.html
[4] S. Chen, J. Xu, N. Nakka, Z. KalbarcZyk, and R. K. Iyer, “Defeating

Memory Corruption Attacks via Pointer Taintedness Detection,” Proc.
Of IEEE International Conf. on Dependable Systems and Networks
(DSN), Yokohama, Japan, June 28 - July 1, 2005

[5] E. Chien, and P. Szor, “Blended Attacks Exploits, Vulnerabilities and
Buffer-Overflow Techniques in Computer Viruses,” Proc. of Virus
Bulletin Conf, 2002

[6] J.R. Crandall, and F.T. Chong, “Minos: Control Data Attack Prevention
Orthogonal to Memory Model,” Intl. Sym. on Microarchitecture, 2004.

[7] J.R. Crandall, and F.T. Chong, “A Security Assessment of the Minos
Architecture,” ACM SIGARCH, Vol 33. No. 1, 2005.

[8] A. Glew, "Segments, Capabilities, and Buffer Overrun Attacks,"
Computer Architecture NEWS, ACM SIG Computer Architecture
Vol.31, No.4 - September 2003, pp. 26 – 31

[9] M. Howard, D. Leblance, Chapter 10:All Input Is Evil!. Writing Secure
Code, Microsoft Press, 2nd ed.(1965)

[10] S. Hsiangren, “Apache/mod_ssl (slapper) Worm,” GIAC Certified
Incident Handler, 2002

[11] A. One, “Smashing stack for fun and benefit,” Phrack Mag, 49(7), 1996.
[12] J. Pincus, and B. Baker, “Beyond Stack Smashing: Recent Advances in

Exploiting Buffer Overruns,” IEEE Security & Privacy, Vol. 2, No. 4,
July/August 2004, pp. 20 - 27

[13] K. Piromsopa, and R. Enbody, “Buffer Overflow: Fundamental,”
Technical Report #MSU-CSE-04-47, Dept. of Computer Science and
Engineering, Michigan State University, 2004.

[14] K. Piromsopa, and R. Enbody, “Secure Bit2 : Transparent, Hardware
Buffer-Overflow Protection,” Tech.Report #MSU-CSE-05-9, Dept of
Computer Science and Engineering, Michigan State University, 2005.

[15] K. Piromsopa, and R. Enbody. “Survey of Buffer-Overflow
Protection,”Technical Reports #MSU-CSE-06-3, Department of
Computer Science and Engineering, Michigan State University, 2006.

[16] G. Suh, J. Lee, S. Devadas, “Secure program execution via dynamic
information flow tracking,” In ASPLOS XI (Oct, 2004.)

[17] U. Shankar, K. Talway, J.S. Foster, and D. Wagner, “Detecting Format
String Vulnerabilities with Type Qualifiers,” In Proc. of the 10th
USENIX Security Symposium

[18] Webopedia. What is buffer overflow?,
http://www.webopedia.com/TERM/B/buffer_overflow.html

[19] W.D. Young, “Coding for a Believable Specification to Implementation
Mapping,” IEEE Symp on Security and Privacy 1987: pp. 140-149.

Normal
Operation

Buffer - Overflow
Attacks

1 . Overflow the address in
another domain

