
 

  
Abstract— We propose a framework for protecting against 

buffer overflow attacks—the oldest and most pervasive attack 
technique. The malicious nature of buffer-overflow attacks is the 
use of external data (input) as addresses (or control data). With 
this observation, we establish a sufficient condition for 
preventing buffer-overflow attacks and prove that it creates a 
secure system with respect to buffer-overflow attacks. The 
underlying concept is that input is untrustworthy, and should not 
be use as addresses (return addresses and function pointers.). If 
input can be identified, buffer-overflow attacks can be caught. 
We used this framework to create an effective, hardware, buffer-
overflow prevention tool. 
 

Index Terms—Buffer overflow, Buffer-Overflow Attacks, 
Computer security, Function-Pointer Attacks, Intrusion 
Detection, Intrusion Prevention 
 

I. INTRODUCTION 
E create a theoretical foundation for a secure system 
with respect to buffer-overflow attacks. The goal is to 

use the foundation to provide a framework for implementing 
buffer-overflow protection. 

Although they date back to the infamous MORRIS worm of 
1988 [3], buffer-overflow attacks remain the most common. 
Though skilled programmers should write code without buffer 
overflows, no program is guaranteed free from bugs so it 
cannot be considered completely secure against buffer-
overflow attacks. The persistence of buffer-overflow 
vulnerabilities speaks to the difficulty of eliminating them. In 
addition, as buffer overflow vulnerabilities are eliminated in 
operating systems, they are being found and exploited in 
applications. When applications are run with root or 
administrator privileges the impact of a buffer overflow is 
equally devastating. 

 
In an effort to avoid relying on individual programming 

skill, a number of researchers have proposed a variety of 
methods to protect systems from buffer-overflow attacks. 
Most of them are not able to provide complete protection. For 
example, some only prevent the original stack-smashing 
attack, but can be circumvented by more recent attacks. 

It is worth clarifying that buffer-overflow attacks can be 
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done on any data and variables. This paper focuses on buffer-
overflow attacks on control data, but is not limited to control 
data. 

The goal of this paper is to provide a generic framework for 
preventing buffer-overflow attacks. We begin by defining 
buffer overflows in general. Next, we establish a sufficient 
condition for preventing buffer-overflow attacks and prove 
that it will create a secure system with respect to buffer-
overflow attacks.  

 

II. BACKGROUND 
This section is intended to be a gentle introduction to buffer 

overflows 

A. Fundamental of Buffer-Overflow Attacks 
First, we define buffer overflow(from the Webopedia [18]). 
 
Definition 1: 
A buffer overflow is the condition wherein the data 

transferred to a buffer exceeds the storage capacity of the 
buffer and some of the data "overflows" into another buffer, 
one that the data was not intended to go into.  

 
Since buffers can only hold a specific amount of data, when 

that capacity has been reached the data has to flow somewhere 
else, typically into another buffer, which can corrupt data 
already in that buffer. 

Exploiting buffer overflow can lead to a serious system 
security breach (buffer-overflow attack) when necessary 
conditions are met. The seriousness of buffer-overflow attacks 
ranges from writing into another variable, another process’ 
memory (segmentation fault), or redirecting the program flow 
to execute malicious or unexpected code. Based on the 
definition of buffer overflow, Definition 2 defines buffer-
overflow attacks. 

 
Definition 2:  
A buffer-overflow attack is an attack that (possibly 

implicitly) uses memory-manipulating operations to overflow 
a buffer which results in the modification of an address to 
point to malicious or unexpected code.  

 
In general, a buffer-overflow attack is an attack on any data 

(including variables and addresses). To make this paper 
readable, the term “buffer-overflow attacks” is used to refer to 
attacks on control data. 

 
Observation:  An analysis of buffer-overflow attacks 
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indicates that a buffer of a process is always overflowed with a 
buffer passed from another domain (machine, process)—hence 
its malicious nature. 

 
Assumption 1: 
In an attack, a buffer is always overflowed using a buffer 

passed from another domain. 
 
This concept is not new. For example, Howard and LeBlanc 

state in their book “All input is evil until proven otherwise” 
[9]. Accordingly, an intuitive way to prevent buffer-overflow 
attacks is to detect and validate input, especially input which is 
eventually used for control. 

In early attacks, the attacked address was a return address, 
but later other control data (e.g. function pointers, jump table) 
were attacked. In all cases, the eventual access of that address 
(e.g. by a return, function call or jump) will redirect the 
program control flow to execute the malicious or unexpected 
code. If the address was modified by something other than a 
buffer overflow, it is a race condition, a Trojan horse, or other 
type of attack. 
. 

B. Sample Attacks and Variations 
There are two main targets of buffer-overflow attacks: 

control data and local variables. In the vast majority of attacks, 
control data is the target so prevention schemes have focused 
on control data. Control data can be divided into several types: 
return addresses, function pointers, and branch slots. Return 
addresses have been the primary target since their location can 
easily be guessed. More advanced buffer-overflow attacks 
target other control data. Some literature refers to attacks on 
return addresses as first-generation attacks, and those on 
function pointers as second-generation attacks [5]. 

The first step-by-step description of how to construct a 
buffer-overflow attack was written by Elias Levy (a.k.a. Aleph 
One) in 1996 [11]. He first used the term “Stack Smashing” to 
refer to plastering the stack with shell code and its address to 
set up an eventual overflow of a return address on the stack.  

 
Figure 1 shows a stack-smashing example. In this example, 

an attacker (shown in the black hat) passes a buffer containing 
malicious code (e.g. shell) and multiple copies of the address 
of the target buffer as an argument to the vulnerable program 
(through parameter p). A buffer manipulation function (e.g. 
strcpy in this example) will overflow the function’s return 
address with the address of the target buffer containing 
malicious code. The eventual result is that the return 
instruction will use the address of the target buffer as a return 
address and return the program flow to execute that malicious 
code. Additional attack vectors are provided (but not used) in 
the code such as function pointer fp. As outlined above, it is 
important to note that the critical component of this attack is 
the modification of the return address (replaced by the address 
of the target buffer). 

 

Figure 1 Stack Smashing 

To illustrate an advanced buffer-overflow attack, we 
provide a multistage buffer-overflow attack [10] (a.k.a. 
Hannibal Exploit [6]) that can bypass most software buffer-
overflow solutions. Fundamental to a multistage buffer-
overflow attack is that there exists a vulnerable pointer to a 
buffer.  That is, there is a user-writeable buffer sufficiently 
near a useful pointer. First, the pointer is modified (by 
overflowing) to point to a specific location (e.g. a jump slot or 
a function pointer). In the second stage of the attack, an input 
is stored at the pointer’s target. These two steps allow 
attackers to create a pointer to any location (first stage) and 
overwrite the pointer’s target with a desired value (second 
stage). The next time some program jumps to that target, it 
will be redirected based on the value inserted by the attacker. 
In particular the program will be redirected to the attacker’s 
malicious code.  For example, if the program is running in 
privileged mode and the pointer points to shell code, the 
attacker will have created a privileged shell allowing free 
reign. Figure 2 is an example of such a vulnerable program. 

Before examining the code, let’s review how a jump table is 
used. Consider the slot in the table for the pointer to the printf 
executable.  A call to printf indexes to that slot in the table and 
then jumps to the printf executable. To attack this type of 
program, the buffer-overflow is done in two stages. First, the 
ptr pointer is overflowed to point to a desired memory 
location (1), e.g. the printf slot in the jump table.  In particular, 
argv[1] controlled by the attacker will contain the address of 
the printf slot in the jump table. The strcpy routine will copy 
argv[1] into buffer, but overflows to overwrite ptr with the 
printf address slot. In the figure, we see that the pointer ptr 
originally pointed to ‘buffer’ (arc labeled ‘Before’) but now 
points to the jump slot (arc labeled ‘After). Now that ptr 
points to the printf slot in the jump table, we need to insert a 
desired value into that slot. Suppose, for illustration, that we 
also have determined the address of resident shell code (we’ll 
call it residentcode). Using our modified ptr we will overwrite 
the jump table slot with the residentcode address. We use the 
second strcpy call (2) to write argv[2] (also controlled by the 
attacker and whose value is residentcode) into the target of ptr 



 

which now points to the printf entry in the jump table.  The 
result of that second strcpy call is that we have placed the 
address residentcode (resident shell code) into the printf slot 
of the jump table. The attacker has achieved his goal.  Now 
when a program calls printf, control passes as usual to the 
printf entry in the jump table, but now the attacker has 
redirected control to residentcode, the address of the shell 
code. Instead of printf a shell will be started.  If the program 
which called printf was operating in privileged mode, the 
attacker will have succeeded in creating a privileged shell with 
full system access. (See [13] for more details). As we will see 
below, this multi-stage attack gets around most buffer-
overflow protection schemes. Less obvious is that we can use 
a similar approach to circumvent some software solutions to 
buffer-overflow attacks by modifying a handling vector which 
can allow us to bypass the buffer-overflow handling routine.  

 

 
Figure 2 An example of a vulnerable program 

Another variation which most schemes cannot protect is an 
attack on generic pointers. By modifying both the source and 
destination pointers, copying from one arbitrary memory 
location to another is possible. Figure 3 illustrates an attack 
based on attacking pointers. In this figure, the first strcpy will 
allow attackers to overflow buffer b so the src and des pointers 
are replaced with two pointers of the attacker’s choice: in this 
case, valid control data and target address respectively. The 
second strcpy will then copy from the src location to the des 
location. Using this approach, it is possible to modify any 
memory entry with a known local entry while avoiding most 
protection mechanisms. For example, an encoded function 
pointer can be used to attack another function pointer (e.g. 
jump slot). 

 
A related attack is worth noting here: printf vulnerabilities 

[17]. Malformed formatting instructions can allow arbitrary 
memory to be overwritten. It is not a buffer-overflow attack, 
but with the ability to overwrite arbitrary memory the attack 
then proceeds like many buffer-overflow attacks by attacking 
control data. Some buffer-overflow schemes can prevent some 
of those attacks. However, any variable can also be attacked, 
and no buffer-overflow scheme protects arbitrary data. 
Fortunately, simple static analysis of source code can identify 
printf vulnerabilities. As we will see below, static analysis is 
not sufficient for buffer overflows. 

 

  
 

Figure 3 Buffer-Overflow Attacks on Pointers 

Recently “integer overflows” (known more generically as 
“integer arithmetic” attacks) have emerged as a variation [2]. 
In these attacks guard data which protects buffers is attacked. 
After defeating the guard data some buffer-overflow attack is 
used. Therefore, these attacks can be considered as a variation 
of a buffer-overflow attack which the more robust schemes 
can protect against. 

An attack on local variables is exemplified by the classic 
password attack from a 1987 paper [19]. Basically, a variable 
is being overflowed allowing an arbitrary password to be 
validated resulting in root or administrator access.  No control 
data is involved so no existing buffer-overflow protection 
schemes protect against this type of attack. 

 

III. PREVENTION 
This section discusses the necessary conditions for 

preventing buffer-overflow attacks on control data. 
 
Postulate 1: 
In buffer-overflow attacks on control data, the generic 

buffer/memory-manipulating operations are used by the 
vulnerable routine to overflow the address (e.g. a return 
address or a function pointer). 

 
From Definition 2, we observe that preserving the integrity 

of the address is a sufficient condition to prevent this class of 
buffer-overflow attacks. To clarify, Definition 3 shows the 
meaning of the integrity of an address in this context. 

 
Definition 3:  
Maintaining the integrity of an address means that the 

address has not been modified by overflowing with a buffer 
passed from another domain. 

 
Consider the implication of Definition 3 in light of our 

“Observation” about Definition 2 which noted the importance 
of attacks working across domains (machines, processes): in 
order to preserve the integrity of the address (e.g. a  return 
address or a function pointer), an address cannot be created 



 

from data passed across domains (e.g. machines, processes) 
via buffer overflow.  

To maintain its integrity, the address created locally can be 
signed when it is created and is validated by associated 
instructions (e.g. return, call, and jump instructions) before 
they are completely executed. Implicitly, a signature 
represents some metadata associated with the address. 
Necessarily, the signature must not be passed across domains. 
If the signature could be passed across domains, a valid 
address could be used for attacking a system. If we assume 
that a signature only exists locally, the last condition is 
enforced when a buffer is passed across a network/hardware 
device where the signature cannot be passed. 

If local data can be differentiated from data passed from 
another domain, we can detect buffer-overflow attacks on 
control data. Thus we may reverse the signature by signing 
data that passed across domains and leave the local data 
unsigned. This scheme provides better backward-
compatibility, since no modification is required for legacy 
processes. 

With these definitions, Theorem 1, and its corollary are 
introduced.  The corollary is the key to the entire framework 
presented in this paper since it defines a sufficient condition 
for buffer-overflow attacks. 

 
Theorem 1: 
Modifying an address by replacing (“overflowing”) it using 

a buffer passed from another domain is a necessary condition 
for a buffer-overflow attack on control data. 

 
Restatement: If there is to be a buffer-overflow attack on 

control data, an address must be modified using a buffer 
passed from another domain. 

 
Proof: 
Theorem 1 follows directly from Definitions 1 and 2.  

QED 
Corollary 1.1: 
Preserving the integrity of an address is a sufficient 

condition for preventing a buffer-overflow attack. 
 
Restatement: If the integrity of an address is preserved, that 

is a sufficient condition for preventing a buffer-overflow 
attack. 

 
Proof: 
From Theorem 1, “If there is to be a buffer-overflow attack, 

an address must be modified by manipulating a buffer from 
another domain.” The contrapositive of that statement is “If an 
address cannot be modified (or such modification can be 
detected), then a buffer-overflow attack is not possible.” We 
know that the contrapositive of a true statement is true.  

QED 
Intuitively, from Definition 2, the attack is the ability to 

redirect the program flow to execute malicious or unexpected 
code. To achieve this goal, the address must be modified. If 
the address cannot be modified, the buffer-overflow attack 

fails.  If modification of the address can be recognized, the 
buffer-overflow attack can be recognized and stopped. On the 
other hand, if the address can be validated, execution can 
proceed safely. 

 

IV. SECURE SYSTEM 
To claim that this framework can enforce the integrity of 

the addresses and result in a secure system, a validation will 
be discussed. Assuming that a computer system can be 
represented as a finite-state automation with a set of transition 
functions, we can define a secure system (with Definitions 4 
and 5). 

 
Definition 4: 
A security policy is a statement that partitions the states of 

the system into a set of authorized, or secure, states and a set 
of unauthorized, or insecure, states [1]. 

 
In the case of buffer-overflow attacks, the security policy is 

simply the statement:  
 
Protocol 1: 
Overflowing a buffer cannot create a valid address  
(e.g. a return address or a function pointer) 
 
which follows from Corollary 1.1. Before going further, we 

first define a secure system. 
 
Definition 5: 
A secure system is a system that starts in an authorized 

state and cannot enter an unauthorized state. [1]. 
 
Theorem 2:  
A system which preserves the integrity of an address (e.g. a 

return addresses or a function pointer) is a secure system with 
respect to buffer-overflow attacks. 

 
Restatement: A system that does not use input as a control 

data is a secure system with respect to buffer-overflow attacks 
on control data. 

 
Proof: 
Assume that a system is partitioned into two states: normal 

operation and buffer-overflow attack. By the definition of 
buffer-overflow attacks (Definition 2), only overwriting the 
address (e.g. a return address or a function pointer) with an 
address passed as a buffer (input) to vulnerable programs will 
result in the state of buffer-overflow attack. By the definition 
of preservation of the address (Definition 3), if such 
overflowing can be recognized and prevented, the system will 
not result in the state of buffer-overflow attacks. With respect 
to Definition 5, our system cannot enter an unauthorized state 
and is considered to be a secure system.  

QED 



 

 
Figure 4 State diagram of buffer-overflow attacks. 
 
Hitherto, we will show that the enforcement of Protocol 1 

(stated early) results in a secure system with respect to buffer-
overflow attacks.  

 
Theorem 3: 
A system that enforces Protocol 1 can preserve the integrity 

of an address, and result in a secure system with respect to 
buffer-overflow attacks. 

 
Proof: 
By enforcing Protocol 1, we can detect that an address (e.g. 

a return address or a function pointer) is overflowed by a 
buffer passed from another domain (including input). If we 
can detect that an address is modified by a buffer from another 
domain, we can preserve the integrity of the address. This 
follows directly from Definition 3. Thus a system that can 
enforce Protocol 1 preserves the integrity of the address and is 
a secure system with respect to buffer-overflow attacks. This 
follows directly from Theorem 2 

QED 
 

V. IMPLEMENTATIONS 
It was suggested that metadata is a key to preventing buffer-

overflow attacks in a 2003 article [8]. There exist at least four 
methods that follow our proposed framework by using 
metadata for tracking input. These methods are Minos [6] [7], 
Tainted Pointer [3], Dynamic Flow Tracking [16] and Secure 
Bit [14]. These methods share the same assumption that input 
should not be used as control data. 

All methods required an additional bit augmented to each 
memory word (or byte). This bit is used for tracking input. 
Whenever input is passed to a process, the bit is marked. Upon 
execution, Jump, Call or Return instructions validate that 
control data is not derived from input. If input is about to be 
used as an address, an exception is raised. 

However, the implementations differ. Minos views data 
across segments as input. Tainted Pointer considers data 
passed from the operating system as input. Dynamic Flow 
Tracking relies on operating systems for marking input. 
Secure Bit treats data passing between processes through the 
kernel as input. More details of buffer-overflow attacks and 
protection schemes can be found in [12] and [15] respectively. 

 

VI. SUMMARY 
Buffer-overflow attacks on control data require overflowing 

addresses (return addresses and function pointers) with a 
buffer passed from another domain (machine, and process). In 
this paper we developed a formal argument that “a necessary 
condition for preventing buffer-overflow attacks is the 
preservation of the integrity of addresses across domains”.  
We then show how a protocol based on that statement 
supports a variety of successful hardware-based methods to 
prevent buffer overflow attacks. Our formalism lends credence 
to their claims of success. 

. 
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