2110412 Parallel Comp Arch
Parallel Programming Paradigm

Natawut Nupairoj, Ph.D.
Department of Computer Engineering, Chulalongkorn University

Outline

» Overview
» Parallel Architecture Revisited
» Parallelism

» Parallel Programming Model

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

What are the factors for parallel
programming paradigm?
» System Architecture
» Parallelism — Nature of Applications
» Development Paradigms
Automatic

Semi-Auto (Directives / Hints)
Manual

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Generic Parallel Architecture

B B B B

Interconnection Network

» Where is the memory physically located ?

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Flynn’s Taxonomy

» Very influential paper in 1966

» Two most important characteristics
Number of instruction streams.
Number of data elements.
(Single Instruction, Single Data).
(Single Instruction, Multiple Data).
(Single Instruction, Single Data).
(Multiple Instruction, Multiple Data).

SISD

» One instruction stream and one data stream - from
memory to processor.

| I, D

» von Neumann’s architecture.

» Example
PC.

SIMD

» One control unit tells processing elements to compute
(at the same time).

» Examples

TMC/CM-1, Maspar MP-1, Modern GPU

MISD

» No one agrees if there is such a MISD.

» Some say systolic array and pipeline processor are.

Tt

__.‘

MIMD

» Multiprocessor, each

executes its own | |, D
instruction/data stream. < >
» May communicate with E—
one another once in a I | l, D
while. ' | ¢ >
» Examples l D
IBM SP, SGI Origin, HP —
Convex, Cray ...
Cluster | D
Multi-Core CPU J_ —

Parallelism

» To understand parallel system, we need to understand
how can we utilize parallelism
» There are 3 types of parallelism
Data parallelism
Functional parallelism
Pipelining
» Can be described with data dependence graph

Data Dependence Graph

» A directed graph representing the
dependency of data and order of
execution

» Each vertex is a task

» Edge fromA to B

Task A must be completed before task B
Task B is dependent on task A

» Tasks that are independent from one

another can be perform concurrently

°°

Parallelism Structure

o © 0
SN TN |
000 O o
N1 \é/ |

Data Parallelism Functional Parallelism Pipelining

Example

» Weekly Landscape Maintenance
Mow lawn, edge lawn, weed garden, check sprinklers
Cannot check sprinkler until all other 3 tasks are done
Must turn off security system first

And turn it back on before leaving

Example: Dependency Graph

=D
RN

NS

Check sprinklers

l

» What can you do with a team of 8 people?

Functional Parallelism

» Apply different operations
to different (or same) data

g
elements / l \.

» Very straight forward for
this problem $\ l /

» However, we have 8

Check sprinklers
people?

l

Data Parallelism

» Apply the same operation l

to different data elements

» Can be processor array
and vector processing

» Complier can help!!! l

Sample Algorithm

fori:=0to 99 do
a[i] := b[i] + cf[i]
endfor

fori:=1to 99 do
a[i] := a[i-1] + c[i]
endfor

fori:=1to99 do
forj:=0to 99 do
afi,j] = ali-1,j] + cfi,j]
endfor
endfor

Pipelining

v v v

Improve the execution speed
Divide long tasks into small steps or “stages”

Each stage executes independently and concurrently

Move data toward workers (or stages)
Pipelining is natural !!!
(from David Patterson’s lecture note)

Pipelining is Natural!

° Laundry Example

HHOO

® Ann, Brian, Cathy, Dave
each have one load of clothes

to wash, dry, and fold
® Washer takes 30 minutes '
° Dryer takes 30 minutes é-_‘

° “Folder” takes 30 minutes

¢ “Stasher” takes 30 minutes
to put clothes into drawers

Sequential Laundry

6|PM 7 8 9 10 11 12

1

2 AM

T
30'30'30'30' 30'30'30'30"30'3030"30' 30 30'30’%‘

laﬁnﬁ Time
| & l@‘ik'@.A
02 854

¢ Sequential laundry takes 8 hours for 4 loads

Pipelined Laundry: Start work ASAP

6|PM 7 8 9 10 11 12 1 2AM

|
T 3030 3030303030 Time

Pipelining Lessons

6|PM 7 8 9

» Pipelining doesn’t help

latency of single task.

: S @ : & T 3030 ?O EE %6%‘@' » It helps throughput of

« | B a| D = R entire workload.

0 & \ A i B » Multiple tasks operating

&) B =(ﬁ simultaneously using

Z O“ & = k different resources.

: ; » Potential speedup =

o number pipe stages

Example Pipelining in Modern Processor

» Pipelining does not work for single data element !!!

» Pipelining is best for
Limited functional units
Each data unit cannot be partitioned

» For single house, pipelining is useless
» For multiple houses, still not good

» The current trend is “super-pipelined”.

The more stage, the better performance.

Not always true !!!

» Instruction cycle is divided into five stages:

‘ Fetch ‘—'(Decode }—'

Operand
Fetch

—’(Execute H Store ‘

Pipelining Execution

Time 1 23 4567
Inst | FDOES

Inst 2 F D O|E 9
Inst 3 F D O|E

Performance of Pipeline

» What do we gain ?

» Suppose we execute 1000 instructions on non-pipelined
and pipelined CPUs

» Clock speed = 500 MHz (| clock = 2 ns.)
» non-pipelined CPU:

total time = 2ns/cycle x 5 cycles/inst x 1000 instr.
=10 ms.

» Perfect pipelined CPU:

total time = 2ns/cycle x (I cycle/inst x 1000 instr. + 4
cycles drain)
= 2.008 ms.

Nothing is perfect !!!

» Problem with branch.

» Don’t know what to fetch next until decoded.

Time 123456 78
Inst | FDOTES
Inst2:)MPX |[F D O E S

Inst X F D OIE

Branch target address isnot | __—*1

available until here !!!

Stalled Pipe

» When pipelining is not smooth, we called it is “stalled”
» Branch and others ?

Subroutine calling

Memory accessing

Multi-cycle execution

Interrupt

Context switching

» These are common, thus, pipeline should not be too deep

Vector Processing

» Data parallelism technique

Perform the same function on multiple data elements (aka.

“vector”
Example: SAXPY (DAXPY) problem

for i = 0 to 63 do
Y[i] := a*X[i] + Y[i]
endfor

Vector Processing

LV V1,R1 ; R1 contains based address for “X[*]”
LV V2,R2 ; R2 contains based address for “Y[*]”
ADDSV V3,R3,V1 ;a*X -- R3 contains the value of “a”
ADDV V1,V3,vV2 yarxX +yY

SV R2,V1 ; write back to “Y[*]”

» No stall, reduce Flynn bottleneck problem.

Level of Parallelism

» Levels of parallelism are classified by grain size (or
granularity)
Very-fine-grain (instruction-level or ILP)
Fine-grain (data-level)
Medium-grain (control-level)
Coarse-grain (task-level)
» Usually mean the number of instructions performed
between each synchronization

Level of Parallelism

TN TN Large grnin
N Ti{ A ‘\13“5"‘/;/ § <_777T“5“_‘“/> (Task level)

fancl() fanc20) fanc3()
{ { {
- Medium grain
- (control level)
i i i
_— — \\\\\\\

((| Fine grain
a[0]=. alll= D= (data level)
b0 b1l b=

—
) O TN v
() () (/) (multiple issue)
_/ _/ N/

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Parallel Programming Models

» Architecture
SISD - no parallelism
SIMD - instructional-level parallelism
MIMD - functional/program-level parallelism
SPMD - Combination of MIMD and SIMD

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Parallel Programming Models

» Data

Private or shared ?

How to access data (shared vs. message passing)
» Operations

How can we handle atomic operations ?

» Cost

How much does it cost (for accessing data, synchronization,
etc)

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Example
» Global summation

IjZ;:,ljf(A[k]) XXX I XXX xxxxxxx

» Decomposition
j+m-1

21 (AKD)

» Assign n/p numbers to each of p procs
Each process computes f(A[k]) and performs partial sum

One process collects the partial sums and computes global
sum

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Model 1: Message Passing

recv Pn,Y send PO,X
CE T T 11 o o o | o o o
Ny : X
res res

> ® @

* No shared data

 Explicit data transfer (both sender and receiver must call
the send/recv functions

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Global Sum in Message Passing

partial_sum = 0
for each data A[k]
partial_sum += f(A[K]);

end for
if my_id == othen
for each proc j (excluding 0)

recv(j, psum);
global_sum += psum
end for
else
send(proc, partial_sum);
end if

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Model 2: Shared Memory

Address: CLC T T T T T T T T T T T T T T T T 11

y=.X...

i .
res |
res
S S

Private

» Private & shared variables

» Communicate & synchronize via shared variables
(semaphore, locks)

» Similar to multi-thread programming

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Global Sum in Shared Memory

Thread 1 Thread 2
[s=0initially] [s=0initially]
local_s1=0 local_ s2=0
fori=0,n/2-1 fori=n/2,n-1
local s1=local sl+ f(A[i]) local_s2=local_s2 + f(A[i])
| s=s+local_sl s=s+local_s2

RACE CONDITION!

What could go wrong?

Solution? Mutual exclusion with locks

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Model 3: Data Parallel

» SIMD style
Single instruction for all data
Shift data around
Pro: easy to understand
Con:inapplicable with irregular problem

A:IIIIIIIIIIIIIIIIIIII
A =array of all data f
fA:f(A) 72N N
s=sum(fA) *sum

S. m|

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Message Passing vs. Shared Memory

» Message passing
Data distribution among local address spaces needed
No explicit shared structures
Communication is explicit
Synchronization implicit in communication
» Shared Memory
Private and shared data

Synchronization done by using shared variables

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

