
2110412 Parallel Comp Arch
Parallel Programming Paradigm

Natawut Nupairoj, Ph.D.

Department of Computer Engineering, Chulalongkorn University

Outline

� Overview

� Parallel Architecture Revisited

� Parallelism

� Parallel Programming Model

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

What are the factors for parallel 
programming paradigm?

� System Architecture

� Parallelism – Nature of Applications

� Development Paradigms

� Automatic

� Semi-Auto (Directives / Hints)

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

Semi-Auto (Directives / Hints)

� Manual

Generic Parallel Architecture

P

M

P

M

P

M

P

M

� Where is the memory physically located ?

Interconnection Network

Memory

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch



Flynn’s Taxonomy

� Very influential paper in 1966

� Two most important characteristics

� Number of instruction streams.

� Number of data elements.

� SISD (Single Instruction, Single Data).

SIMD (Single Instruction, Multiple Data).� SIMD (Single Instruction, Multiple Data).

� MISD (Single Instruction, Single Data).

� MIMD (Multiple Instruction, Multiple Data).

SISD

� One instruction stream and one data stream - from 
memory to processor.

P M
I, D

� von Neumann’s architecture.

� Example

� PC.

SIMD

� One control unit tells processing elements to compute 
(at the same time).

P M
D

P M
D

P M
D

Ctrl

I

� Examples

� TMC/CM-1, Maspar MP-1, Modern GPU

P M
D

P M
D

MISD

� No one agrees if there is such a MISD.

� Some say systolic array and pipeline processor are.

P
D

P
D

P
DD

I I I



MIMD

� Multiprocessor, each 
executes its own 
instruction/data stream.

� May communicate with 
one another once in a 
while.

P M
I, D

P M
I, DN

E
while.

� Examples

� IBM SP, SGI Origin, HP 
Convex, Cray ...

� Cluster

� Multi-Core CPU

P M

P M
I, D

P M
I, D

E
T
W
O
R
K

Parallelism

� To understand parallel system, we need to understand 
how can we utilize parallelism

� There are 3 types of parallelism

� Data parallelism

� Functional parallelism

� Pipelining

� Can be described with data dependence graph

Data Dependence Graph

� A directed graph representing the 
dependency of data and order of 
execution

� Each vertex is a task

A

Each vertex is a task

� Edge from A to B

� Task A must be completed before task B

� Task B is dependent on task A

� Tasks that are independent from one 
another can be perform concurrently

B

Parallelism Structure

AAA

C

B

Pipelining

B

E

C D

Functional Parallelism

B

C

B B

Data Parallelism



Example

� Weekly Landscape Maintenance

� Mow lawn, edge lawn, weed garden, check sprinklers

� Cannot check sprinkler until all other 3 tasks are done

� Must turn off security system first

� And turn it back on before leaving

Example: Dependency Graph

Turn-off
security

Mow
lawn

Edge
lawn

Weed
garden
Weed
garden

� What can you do with a team of 8 people?

Check sprinklers

Turn-on
security

Functional Parallelism

� Apply different operations 
to different (or same) data 
elements

� Very straight forward for 

Turn-off
security

Mow
lawn

Edge
lawn

WeedWeed
garden

Very straight forward for 
this problem

� However, we have 8 
people?

Check sprinklers

Turn-on
security

lawn lawn gardengarden

Data Parallelism

� Apply the same operation 
to different data elements

� Can be processor array 
and vector processing

Turn-off
security

Everyone mows lawn

Everyone edges lawnand vector processing

� Complier can help!!!

Check sprinklers

Turn-on
security

Everyone edges lawn

Everyone weeds garden



Sample Algorithm
for i := 0 to 99 do

a[i] := b[i] + c[i]

endfor

for i := 1 to 99 do

a[i] := a[i-1] + c[i]

endforendfor

for i := 1 to 99 do

for j := 0 to 99 do

a[i,j] := a[i-1,j] + c[i,j]

endfor

endfor

Pipelining

� Improve the execution speed

� Divide long tasks into small steps or “stages”

� Each stage executes independently and concurrently

� Move data toward workers (or stages)

� Pipelining is natural !!!� Pipelining is natural !!!
(from David Patterson’s lecture note)



Pipelining Lessons

� Pipelining doesn’t help 
latency of single task.

� It helps throughput of 
entire workload.entire workload.

� Multiple tasks operating 
simultaneously using 
different resources.

� Potential speedup = 
number pipe stages

Example

� Pipelining does not work for single data element !!!

� Pipelining is best for

� Limited functional units

� Each data unit cannot be partitioned

� For single house, pipelining is uselessFor single house, pipelining is useless

� For multiple houses, still not good

Pipelining in Modern Processor

� The current trend is “super-pipelined”.

� The more stage, the better performance.

� Not always true !!!

� Instruction cycle is divided into five stages:� Instruction cycle is divided into five stages:

Fetch Decode Operand
Fetch

Execute Store



Pipelining Execution

Time 1   2   3   4   5   6   7

Inst 1 F   D   O   E   S 

Inst 2 F   D   O   E   S

Inst 3 F   D   O   E   S

Performance of Pipeline

� What do we gain ?

� Suppose we execute 1000 instructions on non-pipelined 
and pipelined CPUs

� Clock speed = 500 MHz (1 clock = 2 ns.)

� non-pipelined CPU:� non-pipelined CPU:

� total time = 2ns/cycle x 5 cycles/inst x 1000 instr.
= 10 ms.

� Perfect pipelined CPU:

� total time = 2ns/cycle x (1 cycle/inst x 1000 instr. + 4 
cycles drain)

= 2.008 ms.

Nothing is perfect !!!

� Problem with branch.

� Don’t know what to fetch next until decoded.

Time 1   2   3   4   5   6   7   8

Inst 1 F   D   O   E   S 

Inst 2 : JMP X F   D   O   E   S

Inst X F   D   O   E   S

Branch target address is not 

available until here !!!

Stalled Pipe

� When pipelining is not smooth, we called it is “stalled”

� Branch and others ?
� Subroutine calling

� Memory accessing

� Multi-cycle execution� Multi-cycle execution

� Interrupt

� Context switching

� These are common, thus, pipeline should not be too deep



Vector Processing

� Data parallelism technique

� Perform the same function on multiple data elements (aka. 
“vector”)

� Example: SAXPY (DAXPY) problem

for i := 0 to 63 dofor i := 0 to 63 do

Y[i] := a*X[i] + Y[i]

endfor

Vector Processing
LV V1,R1 ; R1 contains based address for “X[*]”

LV V2,R2 ; R2 contains based address for “Y[*]”

ADDSV V3,R3,V1 ; a*X -- R3 contains the value of “a”

ADDV V1,V3,V2 ; a*X + Y

SV R2,V1 ; write back to “Y[*]”

No stall, reduce Flynn bottleneck problem.� No stall, reduce Flynn bottleneck problem.

Level of Parallelism

� Levels of parallelism are classified by grain size (or 
granularity)

� Very-fine-grain (instruction-level or ILP)

� Fine-grain (data-level)

� Medium-grain (control-level)

Coarse-grain (task-level)� Coarse-grain (task-level)

� Usually mean the number of instructions performed 
between each synchronization

Level of Parallelism

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch



Parallel Programming Models

� Architecture
� SISD - no parallelism

� SIMD - instructional-level parallelism

� MIMD - functional/program-level parallelism

� SPMD - Combination of MIMD and SIMD

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

Parallel Programming Models

� Data

� Private or shared ?

� How to access data (shared vs. message passing)

� Operations

� How can we handle atomic operations ?

Cost� Cost

� How much does it cost (for accessing data, synchronization, 
etc.)

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

Example

� Global summation

� Decomposition

∑
−

=

1

0

])[(
n

k

kAf

∑
−+ 1

])[(
mj

kAf

� Assign n/p numbers to each of p procs

� Each process computes f(A[k]) and performs partial sum

� One process collects the partial sums and computes global 
sum

∑
=

])[(
jk

kAf

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

i i
XY

Model 1: Message Passing

send P0,Xrecv Pn,Y

PPP

i
res
s

. . .

i
res
s

XY

n0

• No shared data
• Explicit data transfer (both sender and receiver must call 

the send/recv functions)

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch



Global Sum in Message Passing

partial_sum = 0;

for each data A[k]

partial_sum += f(A[k]);

end for

if my_id == 0 thenif my_id == 0 then

for each proc j (excluding 0)

recv(j, psum);

global_sum += psum

end for

else

send(proc, partial_sum);

end if

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

Model 2: Shared Memory

i
res
s

i
res
s

. . .

x = ...
y = ..x ...

Address:

Shared

� Private & shared variables

� Communicate & synchronize via shared variables 
(semaphore, locks)

� Similar to multi-thread programming

PPP
. . .

Private

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

Global Sum in Shared Memory

Thread 1

[s = 0 initially]
local_s1= 0
for i = 0, n/2-1

local_s1 = local_s1 + f(A[i])

Thread 2

[s = 0 initially]
local_s2 = 0
for i = n/2, n-1

local_s2= local_s2 + f(A[i])local_s1 = local_s1 + f(A[i])
s = s + local_s1

local_s2= local_s2 + f(A[i])
s = s +local_s2

What could go wrong?

RACE CONDITION!

Solution? Mutual exclusion with locks

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

Model 3: Data Parallel

� SIMD style

� Single instruction for all data

� Shift data around

� Pro: easy to understand

� Con: inapplicable with irregular problem� Con: inapplicable with irregular problem

A:

fA:
f

sum

A = array of all data
fA = f(A)
s = sum(fA)

s:

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch



Message Passing vs. Shared Memory

� Message passing
� Data distribution among local address spaces needed

� No explicit shared structures

� Communication is explicit

� Synchronization implicit in communication

� Shared Memory� Shared Memory

� Private and shared data

� Synchronization done by using shared variables

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch


