
2110412 Parallel Comp Arch
Parallel Programming with MPI

Natawut Nupairoj, Ph.D.

Department of Computer Engineering, Chulalongkorn University

Overview

� MPI = Message Passing Interface

� Provide portable programming
paradigm on existing development
environments

� Derived from several previous message-
passing librariespassing libraries

� Versions for C/C++ and FORTRAN

� Hide details of architecture (e.g.
message passing, buffering)

� Provides fundamental message
management services

MPI History

� Late 1980s: vendors had unique libraries

� 1989: Parallel Virtual Machine (PVM) developed at Oak
Ridge National Lab

� 1992: Work on MPI standard begun

� 1994: Version 1.0 of MPI standard

� 1997: Version 2.0 of MPI standard� 1997: Version 2.0 of MPI standard

� Today: MPI is dominant message passing library standard

MPI Programming Model

� Focus on distributed memory system

� Explicit parallelism

� MPI provides standard message passing API (about 115
functions in MPI-1)

� Programmer must identify the parallelism and call MPI
functions to implement the parallel programfunctions to implement the parallel program

� Program must follow MPI programming structure

� Number of tasks is static

� Not dynamically spawn during run-time in MPI-1

� MPI-2 supports dynamic tasks

MPI Programming Structure

� Start by including the
“mpi.h” (standard header
file)

� Initialize MPI environment
with MPI_Init

� Call MPI functions to � Call MPI functions to
communicate between
parallel tasks

� Terminate MPI environment
with MPI_Finalize

MPI Initialize and Terminate

� Statement needed in every program before any other MPI
code
MPI_Init(&argc, &argv);

� Last statement of MPI code must be
MPI_Finalize();

� Program will not terminate without this statement

MPI Communication Model

� When process communicates, it must
refer to communicator

� Communicator

� Collection of processes

� Determines scope to
which messages are relativewhich messages are relative

� identity of process (rank)
is relative to communicator

� scope of global communications
(broadcast, etc.)

� MPI_COMM_WORLD = all processes

Process Rank and Size

� Unique, integer identifier assigned by the system to each
process

� For specifying the source and destination of messages

� Contiguous and begin at zero

� Used conditionally by the application to control program � Used conditionally by the application to control program
execution (if rank=0 do this / if rank=1 do that)

MPI_Comm_rank (MPI_COMM_WORLD, &id);

MPI_Comm_size (MPI_COMM_WORLD, &p);

Example – Simple MPI program
#include "mpi.h“

#include <stdio.h>

int main(argc,argv)

int argc;

char *argv[];

{{

int numtasks, rank;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numtasks);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

printf ("Number of tasks= %d My rank= %d\n",
numtasks,rank);

MPI_Finalize();

}

MPI - Sending a Message with MPI_Send

MPI_Send(msg, count, type, dest, tag,
MPI_COMM_WORLD);

� message contents block of memory

� count number of items in message� count number of items in message

� message type type of each item

� destination rank of processor to receive

� tag integer designator for message

� communicator the communicator within
which the message is sent

MPI_Datatype Options

� MPI_CHAR

� MPI_DOUBLE

� MPI_FLOAT

� MPI_INT

� MPI_LONG

� MPI_LONG_DOUBLE� MPI_LONG_DOUBLE

� MPI_SHORT

� MPI_UNSIGNED_CHAR

� MPI_UNSIGNED

� MPI_UNSIGNED_LONG

� MPI_UNSIGNED_SHORT

MPI - Receiving a Message with MPI_Recv

MPI_Recv(msg, MAXSIZE, type, src, tag,
MPI_COMM_WORLD, &status);

� message contents block of memory

� count size of buffer

� message type type of each item� message type type of each item

� source rank of processor sending

� tag integer designator for message

� communicator the communicator within
which the message is received

� status information about message

received

Message Passing Example

#include <stdio.h>
#include <string.h>
#include "mpi.h" /* includes MPI library code specs */

#define MAXSIZE 100

int main(int argc, char* argv[])
{

int myRank; /* rank (identity) of process */int myRank; /* rank (identity) of process */
int numProc; /* number of processors */
int source; /* rank of sender */
int dest; /* rank of destination */
int tag = 0; /* tag to distinguish messages */
char msg[MAXSIZE]; /* message (other types possible) */
int count; /* number of items in message */
MPI_Status status; /* status of message received */

Message Passing Example

MPI_Init(&argc, &argv); /* start MPI */

/* get number of processes */
MPI_Comm_size(MPI_COMM_WORLD, &numProc);

/* get rank of this process */
MPI_Comm_rank(MPI_COMM_WORLD, &myRank);

/***/
/* code to send, receive and process messages */
/***/

MPI_Finalize(); /* shut down MPI */
}

Message Passing Example
if (myRank != 0){/* all processes send to root */

/* create message */
sprintf(msg, "Hello from %d", myRank);
dest = 0; /* destination is root */
count = strlen(msg) + 1; /* include '\0' in message */

MPI_Send(msg, count, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
}}
else{/* root (0) process receives and prints messages */

/* from each processor in rank order */
for(source = 1; source < numProc; source++){

MPI_Recv(msg, MAXSIZE, MPI_CHAR,
source, tag, MPICOMM_WORLD, &status);

printf("%s\n", msg);
}

}

� Fully Synchronized (Rendezvous)

� Send and Receive complete simultaneously

� whichever code reaches the Send/Receive first waits

� provides synchronization point (up to network delays)

� Buffered

MPI Communication Mode

� Buffered

� Receive must wait until message is received

� Send completes when message is moved to buffer clearing
memory of message for reuse

MPI Communication Model

� Asynchronous

� Sending process may proceed immediately

� does not need to wait until message is copied to buffer

� must check for completion before using message memory

� Receiving process may proceed immediately

will not have message to use until it is received

MPI Communication Mode

� will not have message to use until it is received

� must check for completion before using message

� MPI_Send/MPI_Recv are synchronous, but buffering
is unspecified

� MPI_Recv suspends until message is received

� MPI_Send may be fully synchronous or may be buffered

� implementation dependent

� Variations allow synchronous or buffering to be specified

MPI Send and Receive

� Variations allow synchronous or buffering to be specified
� MPI_Ssend

� MPI_Bsend

� MPI_Rsend

Asynchronous Send and Receive

� MPI_Isend() / MPI_Irecv() are non-
blocking. Control returns to program after call is
made.

� Syntax is the same as for Send and Recv, except a
MPI_Request* parameter is added to Isend and MPI_Request* parameter is added to Isend and
replaces the MPI_Status* for receive.

Detecting Completion

� MPI_Wait(&request, &status)
� request matches request on Isend or Irecv

� status returns status equivalent to

status for Recv when complete

� Blocks for send until message is buffered or sent so message � Blocks for send until message is buffered or sent so message
variable is free

� Blocks for receive until message is received and ready

Detecting Completion

� MPI_Test(&request, flag, &status)
� request, status as for MPI_Wait

� does not block

� flag indicates whether message is sent/received

� enables code which can repeatedly check for communication
completion

Collective Communication

� Point-to-Point communication

� single sender and single receiver

� One-to-One

� Collective communication

� multiple sender and/or multiple receiver

� One-to-Many

� Many-to-One

� Many-to-Many

Broadcasting a message

� Broadcast: one sender, many receivers

� Includes all processes in communicator, all processes must
make an equivalent call to MPI_Bcast

� Any processor may be sender (root), as determined by
the fourth parameter

� First three parameters specify message as for MPI_Send
and MPI_Recv, fifth parameter specifies communicator

� Broadcast serves as a global synchronization

MPI_Bcast() Syntax

MPI_Bcast(msg, count, MPI_INT, root,
MPI_COMM_WORLD);

msg pointer to message buffer

count number of items sent

MPI_INT type of item sent

root sending processor

MPI_COMM_WORLD communicator within which

broadcast takes place

Note: count and type should be the same on all processors

Reduce

� All Processors send to a single processor, the reverse of
broadcast

� Information must be combined at receiver

� Several combining functions available

� MAX, MIN, SUM, PROD, LAND, BAND, LOR, BOR, LXOR,
BXOR, MAXLOC, MINLOC
MAX, MIN, SUM, PROD, LAND, BAND, LOR, BOR, LXOR,
BXOR, MAXLOC, MINLOC

MPI_Reduce() syntax

MPI_Reduce(&dataIn, &result, count,

MPI_DOUBLE, MPI_SUM, root,

MPI_COMM_WORLD);

dataIn data sent from each processordataIn data sent from each processor

result stores result of combining operation

count number of items in each of dataIn, result

MPI_DOUBLE data type for dataIn, result

MPI_SUM combining operation

root rank of processor receiving data

MPI_COMM_WORLD communicator

Example – Finding PI with MPI

� For simplicity, we will
approximate PI with integral

� PI = sum of “n” intervals

� Each interval = (1/n)*4/(1+x*x)

∫
−

+
=

2

1

2

1
21

4
dx

x
PI

� To implement in parallel

� Rank 0 is the master process and others are the work processes

� Master broadcasts “n” to all workers

� Each process adds up “x” every n'th interval

� (-1/2+rank/n, -1/2+rank/n+size/n,...).

� Master sums all the results with reduction

MPI_Barrier()

MPI_Barrier(MPI_COMM_WORLD);

MPI_COMM_WORLD communicator within which

broadcast takes place

provides for barrier synchronization without message of
broadcast

Timing Programs

� MPI_Wtime()

� returns a double giving time in seconds from a fixed time in
the past

� To time a program, record MPI_Wtime() in a variable at
start, then again at finish, difference is elapsed timestart, then again at finish, difference is elapsed time

startime = MPI_Wtime();

/* part of program to be timesd */

stoptime = MPI_Wtime();

time = stoptime - starttime;

How to Build MPI on Windows XP

� Requirements

� Microsoft Compute Cluster Pack SDK

� http://www.microsoft.com/downloads/details.aspx?FamilyID=d846237
8-2f68-409d-9cb3-02312bc23bfd&displaylang=en

� Your favorite editor and C compiler

� If you are using Visual Studio, please see � If you are using Visual Studio, please see
http://www.cs.utah.edu/~delisi/vsmpi/

� Build your MPI program

� Running program

� e.g. 3 tasks of test.exe

mpiexec –n 3 test

Assignment

� Writing an MPI program for Sorting “n” Number

� Process rank 0 is the master, others are workers

� Master accepts “n” from keyboard

� Master randoms “n” integer numbers

� Master coordinates with workers to sort these randomized
numbersnumbers

� You must measure the elapsed time for sorting

� Due date: 1 September 2009 at 18:00

� How to submit: sending email to “natawut.n@chula.ac.th”

� Note: I will use timestamp on your email

