Outline

» Overview
Introduction to CUDA

v

» CUDA Thread Model
» CUDA Memory Hierarchy and Memory Spaces
» CUDA Synchronization
2110412 Parallel Comp Arch
CUDA: Parallel Programming on GPU
Natawut Nupairoj, Ph.D.
Department of Computer Engineering, Chulalongkorn University
Overview Rocket Engines

Alpha channel of image

» Modern graphics accelerators are called GPUs
(Graphics Processing Units)

100%
Opaque

» 2 ways GPUs speed up graphics:
Pipelining: similar to pipelining in CPUs.

100%
Transparent

CPUs like Pentium 4 has 20 pipeline stages.

GPU:s typically have 600-800 stages. -- very few branches &
most of the functionality is fixed.

Source: Leigh,“Graphics Hardware Architecture & Miscellaneous Real Time Special Effects”




Overview

Parallelizing

Process the data in parallel within the GPU. In essence
multiple pipelines running in parallel.

Basic model is SIMD (Single Instruction Multiple Data) — ie
same graphics algorithms but lots of polygons to process.

Source: Leigh,“Graphics Hardware Architecture & Miscellaneous Real Time Special Effects”

SIMD

» One control unit tells processing elements to compute
(at the same time).

D
| D! !
5!.‘—%'_’

» Examples |—‘ I

TMC/CM-1, Maspar MP-1, Modern GPU

Modern GPU is More General
Purpose — Lots of ALU’s

Control ALU | AU =

CPU GPU

Figure 1-2. The GPU Devotes More Transistors to Data
Processing

The nVidia G80 GPU

128 streaming floating point processors
@1.5Ghz

1.5 Gb Shared RAM with 86Gb/s bandwidth
500 Gflop on one chip (single precision)

GT1 4
G70-512
G70

® GPU Observed GFLOPS

3,46 GHz Dual Core
Pentium 4

Apr May NovMar
2004 2005 2006




nVidia G80 GPU Architecture Overview

«16 Multiprocessors Blocks

Device
Mulliprﬂcessorl; «Each MP Block Has:
M:..u.mss.,rz 8 Streaming Processors
ultprocessor (IEEE 754 spfp compliant)

I I I *16K Shared Memory
. . == L *64K Constant Cache

Processor 1 | | Processor2 | *** pro:essormﬂ
|

*8K Texture Cache

*Each processor can access all
of the memory at 86Gb/s, but
with different latencies:

*Shared - 2 cycle latency

*Device — 300 cycle latency

The Future of Computing is Parallel :I%A

® CPU clock rate growth is slowing, future speed growth will be from
parallelism
® GeForce-8 Series is a massively parallel computing platform
® 12,288 concurrent threads, hardware managed
® 128 [ Thread Processor cores at 1.35 GHz == 518 GFLOPS peak
® GPU Computing features enable C on Graphics Processing Unit

Host CPU Work Distribution

Memory Memory Memory Memory Memory Memory

© NVIDIA Corporation 2007

Supercomputing 2007

17

Source: Kirk,“Parallel Computing: What has changed lately?”

' |

nvinia

Applications in several fields

100X

Simulation in Astrophysics N-
Matiab using mex body simulation
file CUDA function

Interactive lonic placement for Transcoding HD
visualization of molecular video stream to
volumetric white dynamics H264
matter connectivity ‘simulation on GPU

47X

Highly optimized Cmatch exact
medical imaging object oriented siring matching to

molecular find similar
dynamics

Financial GLAME@lab: An Ultrasound

simulation of M-script API for
LIBOR mode! with linear Algebra for cancer
swaptions operations on diagnostics
GPU
08

Source: CUDA Tutorial Workshop, ISC-2009

SETI@home and CUDA

» Run 5x to 10x times faster
than CPU-only version

o
s=tom's SETi@home
g Reterence Work Load

hardware
Command Line LI

o E
53283
CPU arly
54774

[ 1000 2000 3000 4000 5000 6000
w3600 6T B30 ETH




Introduction to CUDA

» nVidia introduced CUDA in November 2006

» Utilize parallel computing engine in GPU to solve
complex computational problems
» CUDA is industry-standard C
Subset of C with extensions
Write a program for one thread
Instantiate it on many parallel threads
Familiar programming model and language
» CUDA is a scalable parallel programming model

Program runs on any number of processors without
recompiling

CUDA Concept

» Co-Execution between Host (CPU) and Device (GPU)

» Parallel portions are executed on the device as kernels
One kernel is executed at a time
Many threads execute each kernel
All threads run the same code
Each thread has an ID that it uses to compute memory
addresses and make control decisions

» Serial program with parallel kernels, all in C
Serial C code executes in a CPU thread

Parallel kernel C code executes in thread blocks across
multiple processing elements

CUDA Development: nvcce

Target code

Normal C Program

void VecAdd_CPU(float* A, float* B, float* C, int N)
{
for(int i=0 ;i <N ;i++)
Cli] = Ali] + BIil;

void main()

{
VecAdd_CPU(A, B, C, N);




CUDA Program Serial Code

Parallel Kernel

/I Kernel definition KernelA<<< nBIk, nTid >>>(args);

__global__ void VecAdd(float* A, float* B, float* C )

{ Serial Code
int i =threadldx.x;
Cli]=Al i]+B[ i];

Parallel Kernel
KernelB<<< nBIk, nTid >>>(args);

}
threadID n
void main()
{ ;1uat x = input[threadID]:
. . float = fune(x) ;
/l Kernel invocation e e
VecAdd<<<l, N>>>(A, B, C);
}

Source: High Performance Computing with CUDA, DoD HPCMP: 2009

CUDA Thread Model Calling CUDA Kernel

» CUDAThread can be =T » Modified C function call syntax:
one-dimensional ool Lofie oy kernel<<<dim3 dG, dim3 dB>>>(...)
two-dimensional WWW
three-dimensional i usssssiss » Execution Configuration (“<<< >>>”

» Thread Hierarchy dG - dimension and size of grid in blocks
Grid — Two-dimensional: x and y
(2-D) Block Blocks launched in the grid: dG.x*dG.y

(3-D) Thread dB - dimension and size of blocks in threads:
Three-dimensional: x, y, and z
Threads per block: dB.x*dB.y*dB.z

Unspecified dim3 fields initialize to |




Example: Adding 2-D Matrix

/I Kernel definition
__global__ void MatAdd(float A[M][N], float B[M][N] , float C[M][N])
{
int i =threadldx.x;
int j = threadldx.y;
CIillil = A0 + B
}
void main()
{
/I Kernel invocation
dim3 dimBlock(M, N);
MatAdd<<<1, dimBlock>>>(A, B, C);

CUDA Built-In Device Variables

» All __global___and __device__ functions have access to
these automatically defined variables

dim3 gridDim;

Dimensions of the grid in blocks (at most 2D)
dim3 blockDim;

Dimensions of the block in threads

dim3 blockldx;
Block index within the grid

dim3 threadldx;
Thread index within the block

Example: Adding 2-D Matrix

/I Kernel definition
__global__ void MatAdd(float A[M][N], float B[M][N] , float C[M][N])
{
int i = blockldx.x;
int j = threadldx.x;
Cillil = Al + BLI0T;
}
void main()
{
/I Kernel invocation
MatAdd<<<M, N>>>(A, B, C);

Example: Adding 2-D Matrix

/I Kernel definition
__global__ void MatAdd(float A[M][N], float B[M][N] , float C[M][N])
{

int i = blockldx.x * blockDim.x + threadldx.x;

int j = blockldx.y * blockDim.y + threadldx.y;

if i <N&&j<N)

CIil] = ALiI0] + BLD;

}
int main()
{

/I Kernel invocation

dim3 dimBlock(16, 16);

dim3 dimGrid((M + dimBlock.x — 1)/ dimBlock.x,

(N +dimBlock.y — 1)/ dimBlock.y);
MatAdd<<<dimGrid, dimBlock>>>(A, B, C);




Function Qualifiers

» Kernels designated by function qualifier:

global___
Function called from host and executed on device

Must return void

» Other CUDA function qualifiers
___device__
Function called from device and run on device
Cannot be called from host code

Note on CUDA Kernel

» Kernels are C functions with some restrictions
Cannot access host memory
Must have void return type
No variable number of arguments (‘“varargs”)
Not recursive
No static variables

» Function arguments automatically copied from host
to device

CUDA Memory Hierarchy

» Each thread has private §
per-thread local memory

Thread Block

» All threads in a block have e
per-block shared memory

Grid 0

» All threads can access
shared global memory

Block (0, 0) | Block (1,0)  Block (2, 0)

Block (0, 1) || Block (1,1)  Block (2, 1)

Grid 1
Global memory

Block (0, 0) Block (1, 0)

Block (0, 1) Block (1, 1)
—
Block (0, 2) Block (1, 2)

2
BB

B
B

Exercise

int main()

{

kernel<<<3, 5>>>(d_a );




Exercise

__global__ void kernel(int *a)

{
int idx = blockldx.x*blockDim.x + threadldx.x;
alidx] =7; Output 777777777777777

}

__global__ void kernel( int *a)

{
int idx = blockldx.x*blockDim.x + threadldx.x;
afidx] = blockldx.x;

) |

__global__ void kernel( int *a)

{
int idx = blockldx.x*blockDim.x + threadldx.x;
afidx] = threadldx.x;

}

>

nvibDla

Kernel Memory Access

® Per-thread
2. Registers [OjH1]e]
Thread

— Off-chip, uncached

® Per-block

Block bud Shared N6l FENEY
pm=q Memory REESEEN

® Per-device

er = , * Off-chip, large
Kemetd ‘@2@ @@ : » Uncached
i « Persistent across

) 2 kernel launches
Kernel 1 = i « Kernel /O

CUDA Host/Device Memory Spaces

» “Local” memory resides in device DRAM
Use registers and shared memory to minimize local memory
use
» Host can read and write global memory but not shared
memory

Multiprocessor
Multiprocessor

CPU

Multiprocessor

Chipset Registers

Shared Memory

Source: High Performance Computing with CUDA, DoD HPCMP: 2009

Memory Spaces

» CPU and GPU have separate memory spaces
Data is moved across PCle bus

Use functions to allocate/set/copy memory on GPU

Very similar to corresponding C functions

» Host (CPU) manages device (GPU) memory

cudaMalloc(void **pointer, size_t nbytes)
cudaMemset(void *pointer, int value, size_t count)
cudaFree(void *pointer)

int n=1024;

int nbytes = 1024*sizeof(int);

int *a_d =0;

cudaMalloc( (void**)&a_d, nbytes );
cudaMemset( a_d, 0, nbytes);
cudaFree(a_d);




Host / Device Data Copies

cudaMemcpy(void *dst, void *src, size_t nbytes, enum
cudaMemcpyKind direction);

direction specifies locations (host or device) of src and dst
Blocks CPU thread: returns after the copy is complete
Doesn’t start copying until previous CUDA calls complete
enum cudaMemcpyKind

cudaMemcpyHostToDevice

cudaMemcpyDeviceToHost

cudaMemcpyDeviceToDevice

int main(void)

{
float *a_h, *b_h; // host data
float *a_d, *b_d; // device data
int N = 14, nBytes, i ;

nBytes = N*sizeof(float);

a_h = (float *)malloc(nBytes);

b_h = (float *)malloc(nBytes);
cudaMalloc((void **) &a_d, nBytes);
cudaMalloc((void **) &b_d, nBytes);

for (i=0, i<N; i++) a_h[i] = 100.f + i;

cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice );
cudaMemcpy(b_d, a_d, nBytes, cudaMemcpyDeviceToDevi ce);
cudaMemcpy(b_h, b_d, nBytes, cudaMemcpyDeviceToHost );

for (i=0; i< N; i++) assert( a_h[i] == b_h[i] );
free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);
return O;

Host Synchronization

» All kernel launches are asynchronous
control returns to CPU immediately
kernel starts executing once all previous CUDA calls
have completed
» Memcopies are synchronous
control returns to CPU once the copy is complete
copy starts once all previous CUDA calls have completed
» cudaThreadSynchronize()
blocks until all previous CUDA calls complete
» Asynchronous CUDA calls provide:
non-blocking memcopies
ability to overlap memcopies and kernel execution

Host Synchronization Example

/I copy data from host to device

cudaMemcpy(a_d, a_h, numBytes, cudaMemcpyHostToDevice);

/I execute the kernel

inc_gpu <<<ceil(N/(float) blocksize ), blocksize >>>(a_d, N);
/l run independent CPU code

run_cpu_stuff();

/I copy data from device back to host

cudaMemcpy(a_h, a_d, numBytes, cudaMemcpyDeviceToHost);




GPU Thread Synchronization

» void __syncthreads();
» Synchronizes all threads in a block

Generates barrier synchronization instruction

No thread can pass this barrier until all threads in the block
reach it

Used to avoid RAW /WAR / WAW hazards when accessing
shared memory
» Allowed in conditional code only if the conditional is
uniform across the entire thread block

CUDA Shared Memory

» __ device
Stored in global memory (large, high latency, no cache)
Allocated with cudaMalloc (__device  qualifier implied)
Accessible by all threads
Lifetime: application

» _ shared
Stored in on-chip shared memory (very low latency)
Specified by execution configuration or at compile time
Accessible by all threads in the same thread block
Lifetime: thread block

» Unqualified variables:
Scalars and built-in vector types are stored in registers
Arrays may be in registers or local memory

Using Shared Memory

__global__ void kernel(...) __global__ void kernel(...)

{ {
_shared__ float sData[256]; extern __shared__ float sData[l;

} }

int main(void) int main(void)

{ {
kernel<<<nBlocks,blockSize>>>(...); smBytes=blockSize*sizeof(float);

kernel<<<nBlocks, blockSize,
} smBytes>>>(...);

Example: Matrix Multiplication version 1

=B .width-1

B.height

Aheight

A.width B.width

Aheight-1




Example: Matrix Multiplication version 2

w
>

>
BLOCK_SIZE BLOCK_SIZE
B.height

3LOCK_SIZE-1

o
g
B

B .
2 i
5 :
s |
e i
[ ;
N H
i ]
7
(et
>

BLOCK_SIZE
A.height

+—————Fr¢—— > +-——>
BLOCK_SIZE BLOCK_SIZE BLOCK_SIZE

A.width B.width

Still A Specialized Processor
» Very Efficient For

Fast Parallel Floating Point Processing
Single Instruction Multiple Data Operations
High Computation per Memory Access

» Not As Efficient For
Double Precision (need to test performance)
Logical Operations on Integer Data
Branching-Intensive Operations
Random Access, Memory-Intensive Operations

How to Build CUDA on Windows XP
» Requirements for building CUDA program

CUDA software (available at no cost from http://www.nvidia.com/cuda)
CUDA toolkit
CUDA SDK

Microsoft Visual Studio 2005 or 2008, or the corresponding versions of
Microsoft Visual C++ Express

CUDAVS Wizard (http://sourceforge.net/projects/cudavswizard/)
» Requirements for running CUDA

Using emulator in SDK (EmuDebug / EmuRelease)

CUDA-enabled GPU with device driver (version 185.xx+)

» See “CUDA Getting Started” for more details

Assignment

» Writing an CUDA program for Calculating PI

You must measure the elapsed time for calculation
» This is a team project
Each team can have 2-3 members

» Due date: |5 September 2009 at 18:00
» How to submit: sending email to “natawut.n@chula.ac.th”

» Note: | will use timestamp on your email




