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Overview Rocket Engines

Alpha channel of image

» Modern graphics accelerators are called GPUs
(Graphics Processing Units)

100%
Opaque

» 2 ways GPUs speed up graphics:
Pipelining: similar to pipelining in CPUs.

100%
Transparent

CPUs like Pentium 4 has 20 pipeline stages.

GPU:s typically have 600-800 stages. -- very few branches &
most of the functionality is fixed.

Source: Leigh,“Graphics Hardware Architecture & Miscellaneous Real Time Special Effects”




Overview

Parallelizing

Process the data in parallel within the GPU. In essence
multiple pipelines running in parallel.

Basic model is SIMD (Single Instruction Multiple Data) — ie
same graphics algorithms but lots of polygons to process.

Source: Leigh,“Graphics Hardware Architecture & Miscellaneous Real Time Special Effects”

SIMD

» One control unit tells processing elements to compute
(at the same time).

D
| D! !
5!.‘—%'_’

» Examples |—‘ I

TMC/CM-1, Maspar MP-1, Modern GPU

Modern GPU is More General
Purpose — Lots of ALU’s
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Figure 1-2. The GPU Devotes More Transistors to Data
Processing

The nVidia G80 GPU

128 streaming floating point processors
@1.5Ghz

1.5 Gb Shared RAM with 86Gb/s bandwidth
500 Gflop on one chip (single precision)
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nVidia G80 GPU Architecture Overview

«16 Multiprocessors Blocks

Device
Mulliprﬂcessorl; «Each MP Block Has:
M:..u.mss.,rz 8 Streaming Processors
ultprocessor (IEEE 754 spfp compliant)

I I I *16K Shared Memory
. . == L *64K Constant Cache

Processor 1 | | Processor2 | *** pro:essormﬂ
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*8K Texture Cache

*Each processor can access all
of the memory at 86Gb/s, but
with different latencies:

*Shared - 2 cycle latency

*Device — 300 cycle latency

The Future of Computing is Parallel :I%A

® CPU clock rate growth is slowing, future speed growth will be from
parallelism
® GeForce-8 Series is a massively parallel computing platform
® 12,288 concurrent threads, hardware managed
® 128 [ Thread Processor cores at 1.35 GHz == 518 GFLOPS peak
® GPU Computing features enable C on Graphics Processing Unit

Host CPU Work Distribution

Memory Memory Memory Memory Memory Memory
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Source: Kirk,“Parallel Computing: What has changed lately?”
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Applications in several fields

100X

Simulation in Astrophysics N-
Matiab using mex body simulation
file CUDA function

Interactive lonic placement for Transcoding HD
visualization of molecular video stream to
volumetric white dynamics H264
matter connectivity ‘simulation on GPU
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Source: CUDA Tutorial Workshop, ISC-2009

SETI@home and CUDA

» Run 5x to 10x times faster
than CPU-only version
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Introduction to CUDA

» nVidia introduced CUDA in November 2006

» Utilize parallel computing engine in GPU to solve
complex computational problems
» CUDA is industry-standard C
Subset of C with extensions
Write a program for one thread
Instantiate it on many parallel threads
Familiar programming model and language
» CUDA is a scalable parallel programming model

Program runs on any number of processors without
recompiling

CUDA Concept

» Co-Execution between Host (CPU) and Device (GPU)

» Parallel portions are executed on the device as kernels
One kernel is executed at a time
Many threads execute each kernel
All threads run the same code
Each thread has an ID that it uses to compute memory
addresses and make control decisions

» Serial program with parallel kernels, all in C
Serial C code executes in a CPU thread

Parallel kernel C code executes in thread blocks across
multiple processing elements

CUDA Development: nvcce

Target code

Normal C Program

void VecAdd_CPU(float* A, float* B, float* C, int N)
{
for(int i=0 ;i <N ;i++)
Cli] = Ali] + BIil;

void main()

{
VecAdd_CPU(A, B, C, N);




CUDA Program Serial Code

Parallel Kernel

/I Kernel definition KernelA<<< nBIk, nTid >>>(args);

__global__ void VecAdd(float* A, float* B, float* C )

{ Serial Code
int i =threadldx.x;
Cli]=Al i]+B[ i];

Parallel Kernel
KernelB<<< nBIk, nTid >>>(args);

}
threadID n
void main()
{ ;1uat x = input[threadID]:
. . float = fune(x) ;
/l Kernel invocation e e
VecAdd<<<l, N>>>(A, B, C);
}

Source: High Performance Computing with CUDA, DoD HPCMP: 2009

CUDA Thread Model Calling CUDA Kernel

» CUDAThread can be =T » Modified C function call syntax:
one-dimensional ool Lofie oy kernel<<<dim3 dG, dim3 dB>>>(...)
two-dimensional WWW
three-dimensional i usssssiss » Execution Configuration (“<<< >>>”

» Thread Hierarchy dG - dimension and size of grid in blocks
Grid — Two-dimensional: x and y
(2-D) Block Blocks launched in the grid: dG.x*dG.y

(3-D) Thread dB - dimension and size of blocks in threads:
Three-dimensional: x, y, and z
Threads per block: dB.x*dB.y*dB.z

Unspecified dim3 fields initialize to |




Example: Adding 2-D Matrix

/I Kernel definition
__global__ void MatAdd(float A[M][N], float B[M][N] , float C[M][N])
{
int i =threadldx.x;
int j = threadldx.y;
CIillil = A0 + B
}
void main()
{
/I Kernel invocation
dim3 dimBlock(M, N);
MatAdd<<<1, dimBlock>>>(A, B, C);

CUDA Built-In Device Variables

» All __global___and __device__ functions have access to
these automatically defined variables

dim3 gridDim;

Dimensions of the grid in blocks (at most 2D)
dim3 blockDim;

Dimensions of the block in threads

dim3 blockldx;
Block index within the grid

dim3 threadldx;
Thread index within the block

Example: Adding 2-D Matrix

/I Kernel definition
__global__ void MatAdd(float A[M][N], float B[M][N] , float C[M][N])
{
int i = blockldx.x;
int j = threadldx.x;
Cillil = Al + BLI0T;
}
void main()
{
/I Kernel invocation
MatAdd<<<M, N>>>(A, B, C);

Example: Adding 2-D Matrix

/I Kernel definition
__global__ void MatAdd(float A[M][N], float B[M][N] , float C[M][N])
{

int i = blockldx.x * blockDim.x + threadldx.x;

int j = blockldx.y * blockDim.y + threadldx.y;

if i <N&&j<N)

CIil] = ALiI0] + BLD;

}
int main()
{

/I Kernel invocation

dim3 dimBlock(16, 16);

dim3 dimGrid((M + dimBlock.x — 1)/ dimBlock.x,

(N +dimBlock.y — 1)/ dimBlock.y);
MatAdd<<<dimGrid, dimBlock>>>(A, B, C);




Function Qualifiers

» Kernels designated by function qualifier:

global___
Function called from host and executed on device

Must return void

» Other CUDA function qualifiers
___device__
Function called from device and run on device
Cannot be called from host code

Note on CUDA Kernel

» Kernels are C functions with some restrictions
Cannot access host memory
Must have void return type
No variable number of arguments (‘“varargs”)
Not recursive
No static variables

» Function arguments automatically copied from host
to device

CUDA Memory Hierarchy

» Each thread has private §
per-thread local memory

Thread Block

» All threads in a block have e
per-block shared memory

Grid 0

» All threads can access
shared global memory
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Exercise

int main()

{

kernel<<<3, 5>>>(d_a );




Exercise

__global__ void kernel(int *a)

{
int idx = blockldx.x*blockDim.x + threadldx.x;
alidx] =7; Output 777777777777777

}

__global__ void kernel( int *a)

{
int idx = blockldx.x*blockDim.x + threadldx.x;
afidx] = blockldx.x;

) |

__global__ void kernel( int *a)

{
int idx = blockldx.x*blockDim.x + threadldx.x;
afidx] = threadldx.x;

}

>

nvibDla

Kernel Memory Access

® Per-thread
2. Registers [OjH1]e]
Thread

— Off-chip, uncached

® Per-block

Block bud Shared N6l FENEY
pm=q Memory REESEEN

® Per-device

er = , * Off-chip, large
Kemetd ‘@2@ @@ : » Uncached
i « Persistent across

) 2 kernel launches
Kernel 1 = i « Kernel /O

CUDA Host/Device Memory Spaces

» “Local” memory resides in device DRAM
Use registers and shared memory to minimize local memory
use
» Host can read and write global memory but not shared
memory

Multiprocessor
Multiprocessor

CPU

Multiprocessor

Chipset Registers

Shared Memory

Source: High Performance Computing with CUDA, DoD HPCMP: 2009

Memory Spaces

» CPU and GPU have separate memory spaces
Data is moved across PCle bus

Use functions to allocate/set/copy memory on GPU

Very similar to corresponding C functions

» Host (CPU) manages device (GPU) memory

cudaMalloc(void **pointer, size_t nbytes)
cudaMemset(void *pointer, int value, size_t count)
cudaFree(void *pointer)

int n=1024;

int nbytes = 1024*sizeof(int);

int *a_d =0;

cudaMalloc( (void**)&a_d, nbytes );
cudaMemset( a_d, 0, nbytes);
cudaFree(a_d);




Host / Device Data Copies

cudaMemcpy(void *dst, void *src, size_t nbytes, enum
cudaMemcpyKind direction);

direction specifies locations (host or device) of src and dst
Blocks CPU thread: returns after the copy is complete
Doesn’t start copying until previous CUDA calls complete
enum cudaMemcpyKind

cudaMemcpyHostToDevice

cudaMemcpyDeviceToHost

cudaMemcpyDeviceToDevice

int main(void)

{
float *a_h, *b_h; // host data
float *a_d, *b_d; // device data
int N = 14, nBytes, i ;

nBytes = N*sizeof(float);

a_h = (float *)malloc(nBytes);

b_h = (float *)malloc(nBytes);
cudaMalloc((void **) &a_d, nBytes);
cudaMalloc((void **) &b_d, nBytes);

for (i=0, i<N; i++) a_h[i] = 100.f + i;

cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice );
cudaMemcpy(b_d, a_d, nBytes, cudaMemcpyDeviceToDevi ce);
cudaMemcpy(b_h, b_d, nBytes, cudaMemcpyDeviceToHost );

for (i=0; i< N; i++) assert( a_h[i] == b_h[i] );
free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);
return O;

Host Synchronization

» All kernel launches are asynchronous
control returns to CPU immediately
kernel starts executing once all previous CUDA calls
have completed
» Memcopies are synchronous
control returns to CPU once the copy is complete
copy starts once all previous CUDA calls have completed
» cudaThreadSynchronize()
blocks until all previous CUDA calls complete
» Asynchronous CUDA calls provide:
non-blocking memcopies
ability to overlap memcopies and kernel execution

Host Synchronization Example

/I copy data from host to device

cudaMemcpy(a_d, a_h, numBytes, cudaMemcpyHostToDevice);

/I execute the kernel

inc_gpu <<<ceil(N/(float) blocksize ), blocksize >>>(a_d, N);
/l run independent CPU code

run_cpu_stuff();

/I copy data from device back to host

cudaMemcpy(a_h, a_d, numBytes, cudaMemcpyDeviceToHost);




GPU Thread Synchronization

» void __syncthreads();
» Synchronizes all threads in a block

Generates barrier synchronization instruction

No thread can pass this barrier until all threads in the block
reach it

Used to avoid RAW /WAR / WAW hazards when accessing
shared memory
» Allowed in conditional code only if the conditional is
uniform across the entire thread block

CUDA Shared Memory

» __ device
Stored in global memory (large, high latency, no cache)
Allocated with cudaMalloc (__device  qualifier implied)
Accessible by all threads
Lifetime: application

» _ shared
Stored in on-chip shared memory (very low latency)
Specified by execution configuration or at compile time
Accessible by all threads in the same thread block
Lifetime: thread block

» Unqualified variables:
Scalars and built-in vector types are stored in registers
Arrays may be in registers or local memory

Using Shared Memory

__global__ void kernel(...) __global__ void kernel(...)

{ {
_shared__ float sData[256]; extern __shared__ float sData[l;

} }

int main(void) int main(void)

{ {
kernel<<<nBlocks,blockSize>>>(...); smBytes=blockSize*sizeof(float);

kernel<<<nBlocks, blockSize,
} smBytes>>>(...);

Example: Matrix Multiplication version 1
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Example: Matrix Multiplication version 2
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Still A Specialized Processor
» Very Efficient For

Fast Parallel Floating Point Processing
Single Instruction Multiple Data Operations
High Computation per Memory Access

» Not As Efficient For
Double Precision (need to test performance)
Logical Operations on Integer Data
Branching-Intensive Operations
Random Access, Memory-Intensive Operations

How to Build CUDA on Windows XP
» Requirements for building CUDA program

CUDA software (available at no cost from http://www.nvidia.com/cuda)
CUDA toolkit
CUDA SDK

Microsoft Visual Studio 2005 or 2008, or the corresponding versions of
Microsoft Visual C++ Express

CUDAVS Wizard (http://sourceforge.net/projects/cudavswizard/)
» Requirements for running CUDA

Using emulator in SDK (EmuDebug / EmuRelease)

CUDA-enabled GPU with device driver (version 185.xx+)

» See “CUDA Getting Started” for more details

Assignment

» Writing an CUDA program for Calculating PI

You must measure the elapsed time for calculation
» This is a team project
Each team can have 2-3 members

» Due date: |5 September 2009 at 18:00
» How to submit: sending email to “natawut.n@chula.ac.th”

» Note: | will use timestamp on your email




