2110412 Parallel Comp Arch Performance and Benchmarking

Natawut Nupairoj, Ph.D. Department of Computer Engineering, Chulalongkorn University

Performance Questions

- How to characterize the performance of applications and systems?
- User's requirements in performance and cost?
- How about performance measurement?
- How will system perform when having more resources or more workload?

Important Keywords

Peak Performance

- Theoretical performance.
- Typically, peak of single CPU * n

Sustained Performance

• The maximal achievable performance by running a benchmark.

Performance Metrics

- Indicators of how good the systems are.
- To evaluate correctly, we must consider:
 - What is the metric (or metrics) ?
 - What is its definition ?
 - How to measure it ? Benchmark algorithm ?
 - What is the evaluating environment ?
 - Configuration.
 - Workload.

Popular Metrics

- Time Execution Time
- Rate Throughput and Processing Speed
- Resource Utilization
- Ratio Cost Effectiveness
- Reliability Error Rate
- Availability Mean Time To Failure (MTTF)

Execution Time

- Aka.Wall clock time, elapsed time, delay.
- CPU time + I/O + user + ...
- The lower, the better.
- Factors
 - Algorithm.
 - Data structure.
 - Input.
 - Hardware/Software/OS.
 - Language.

Definition of Time

Analysis of Time

Let's try "time" command for Unix

90.7u 12.9s 2:39 65%

- User time = 90.7 secs
- System time = 12.9 secs
- Elapsed time = 2 mins 39 secs = 159 secs
- ▶ (90.7 + 12.9) / 159 = 65%
- Meaning?

Processing Speed

- How fast can the system execute ?
- MIPS, MFLOPS.
- The more, the better.
- Can be very misleading !!!

$$\begin{array}{c} k = m + n; \\ \ldots \end{array} \right| \begin{array}{c} \text{for } j=0 \ \text{to } x \\ k = m + n; \\ k = m + n; \\ \ldots \end{array} \right| \begin{array}{c} \text{for } j=0 \ \text{to } x/4 \\ k = m + n; \end{array} \right|$$

Moore's Law (1965)

Kurzweil: The Law of Accelerating Returns

D

Throughput

- Number of jobs that can be processed in a unit time.
- Aka. Bandwidth (in communication).
- The more, the better.
- High throughput does not necessary mean low execution time.
 - Pipeline.
 - Multiple execution units.

Utilization

- The percentage of resources being used
- Ratio of
 - busy time vs. total time
 - sustained speed vs. peak speed
- The more the better?
 - True for manager
 - But may be not for user/customer
- Resource with highest utilization is the "bottleneck"

Typical Utilization when Running Program

- sustained speed vs. peak speed
- Sequential: 5-40%
 - Stalled Pipe.
 - I/O.
- Parallel: 1-35%
 - Low degree of parallelism.
 - Overheads: communication, I/O, OS, etc.

Cost Effectiveness

- Peak performance/cost ratio
- Price/performance ratio
- PCs are much better in this category than Supercomputer

Price/Performance Ratio

From Tom's Hardware Guide: CPU Chart 2009

Performance of Parallel Systems

Factors

- Components and architecture.
- Degree of Parallelism.
- Overheads.

Architecture

- CPU speed.
- Memory size and speed.
- Memory hierarchy.

Parallelism and Overheads

Execution time

T = Tpar + Tseq + Tcomm

Tpar – Time spent in Parallel

- All nodes execute at the same time
- Computation Time (mostly)
- Depends on Algorithm
- Load-imbalance (Degree of Parallelism)

Parallelism and Overheads

Tseq – Time spent in Sequential

- Only one node (usually master) do the job
- Load / save data from disk
- Critical sections
- Usually, occurs during start and end of program

Tcomm - Communication overhead

- Communication between nodes
- Data movement
- Synchronization: barrier, lock, and critical region
- Aggregation: reduction.

Speedup Analysis

How good the parallel system is, when compared to the sequential system

- Predict the scalability
- Speedup metrics
 - Amdahl's Law
 - Gustafson's Law

Execution Time Components

• Given program with Workload W:

- \blacktriangleright Let α be the percentage of SEQUENTIAL portion in this program
- Parallel portion = $I \alpha$

$W = \alpha W + (1 - \alpha) W$

Execution Time Components

- Suppose this program requires T time units on SINGLE processor:
 - T = Tpar + Tseq + Tcomm
 - Final Terms Terms
 - Tseq = αT
 - For simplicity ignore Tcomm

$T = \alpha T + (1 - \alpha)T$

Speedup Formula

$Speedup = \frac{Sequential execution time}{Parallel execution time}$

Amdahl's Law

Aka. Fixed-Load (Problem) Speedup

Given workload W, how good it is if we have n processors (ignore communication) ?

$$S_{n} = \frac{\text{Time to execute W on 1 processor}}{\text{Time to execute W on n processor}}$$
$$T = \alpha T + (1 - \alpha)T$$
$$S_{n} = \frac{T}{\alpha T + (1 - \alpha)T / n} = \frac{n}{1 + (n - 1)\alpha} \rightarrow \frac{1}{\alpha} \text{ as } n \rightarrow \infty$$

Amdahl's Law (2)

D

Number of processors

Very popular (and also pessimistic).

Example 1

95% of a program's execution time occurs inside a loop that can be executed in parallel. What is the maximum speedup we should expect from a parallel version of the program executing on 8 CPUs?

Example 2

20% of a program's execution time is spent within inherently sequential code. What is the limit to the speedup achievable by a parallel version of the program?

Amdahl's Law (in Book)

$$\begin{split} \psi(n,p) &\leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n) / p + \kappa(n,p)} \\ &\leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n) / p} \\ \text{Let } f &= \sigma(n) / (\sigma(n) + \varphi(n)) \\ \psi &\leq \frac{1}{f + (1 - f) / p} \end{split}$$

Limitations of Amdahl's Law

Ignores Tcomm

Overestimates speedup achievable

Very pessimistic

- When people have bigger machines, they always run bigger programs
- Thus, when people have more processors, they usually run bigger workloads
- More workloads = more parallel portion
- Workload may not be fixed, but SCALE

Problem Size and Amdahl's Law

Þ

Gustafson's Law

Aka. Fixed-Time Speedup (or Scaled-Load Speedup).

- Given a workload W, suppose it takes time T to execute W on I processor.
- With the same T, how much (workload) we can run on n processors ? Let's call it W'.
- Assume the sequential work remains constant.

$$W = \alpha W + (1 - \alpha)W \qquad \qquad W' = \alpha W + (1 - \alpha)nW$$

Gustafson's Law (2)

Fixed-Time Speedup

D

$$S'_{n} = \frac{\text{Workload size that can be executed in time T with n processors}}{\text{Workload size that can be executed in time T with 1 processors}}$$

$$S'_{n} = \frac{W'}{W} = \frac{\alpha W + (1 - \alpha)nW}{W} = \alpha + (1 - \alpha)n$$

Gustafson's Law (3)

Example 1

An application running on 10 processors spends 3% of its time in serial code. What is the scaled speedup of the application?

Example 2

What is the maximum fraction of a program's parallel execution time that can be spent in serial code if it is to achieve a scaled speedup of 7 on 8 processors?

Performance Benchmarking

Benchmark

- Measure and predict the performance of a system
- Reveal the strengths and weaknesses

Benchmark Suite

 A set of benchmark programs and testing conditions and procedures

Benchmark Family

A set of benchmark suites

Benchmarks Classification

By instructions

- Full application
- Kernel -- a set of frequently-used functions

By workloads

- Real programs
- Synthetic programs

Popular Benchmark Suites

- SPEC
- ► TPC
- LINPACK

SPEC

- By Standard Performance Evaluation Corporation
- Using real applications
- http://www.spec.org
- SPEC CPU2006
 - Measure CPU performance
 - Raw speed of completing a single task
 - Rates of processing many tasks
 - CINT2006 Integer performance
 - CFP2006 Floating-point performance

CINT2006

400.perlbench	С	PERL Programming Language
<u>401.bzip2</u>	С	Compression
<u>403.gcc</u>	С	C Compiler
<u>429.mcf</u>	С	Combinatorial Optimization
445.gobmk	С	Artificial Intelligence: go
456.hmmer	С	Search Gene Sequence
458.sjeng	С	Artificial Intelligence: chess
462.libquantum	С	Physics: Quantum Computing
<u>464.h264ref</u>	С	Video Compression
471.omnetpp	C++	Discrete Event Simulation
<u>473.astar</u>	C++	Path-finding Algorithms
483.xalancbmk	C++	XML Processing

CFP2006

<u>410.bwaves</u>	Fortran	Fluid Dynamics
416.gamess	Fortran	Quantum Chemistry
<u>433.milc</u>	С	Physics: Quantum Chromodynamics
434.zeusmp	Fortran	Physics / CFD
435.gromacs	C/Fortran	Biochemistry/Molecular Dynamics
436.cactusADM	C/Fortran	Physics / General Relativity
437.leslie3d	Fortran	Fluid Dynamics
<u>444.namd</u>	C++	Biology / Molecular Dynamics
<u>447.dealll</u>	C++	Finite Element Analysis
450.soplex	C++	Linear Programming, Optimization
453.povray	C++	Image Ray-tracing
454.calculix	C/Fortran	Structural Mechanics
459.GemsFDTD	Fortran	Computational Electromagnetics
<u>465.tonto</u>	Fortran	Quantum Chemistry
<u>470.lbm</u>	С	Fluid Dynamics
<u>481.wrf</u>	C/Fortran	Weather Prediction
482.sphinx3	С	Speech recognition

Top 10 CINT2006 Speed (as of 1 Aug 2008)

System	Result	# Cores	# Chips	Cores/Chip	Processor
HP ProLiant DL160 G5 (3.4 GHz, Intel Xeon X5272)	28.4	4	2	2	Intel Xeon X5272
SGI Altix XE 250 (Intel Xeon X5272 3.4GHz)	28.4	4	2	2	Intel Xeon X5272
HP ProLiant DL380 G5 (3.16 GHz, Intel Xeon X5460)	27.7	8	2	4	Intel Xeon X5460
IBM System x 3550 (Intel Xeon X5460)	27.7	8	2	4	Intel Xeon X5460
Sun Fire X4150	27.7	8	2	4	Intel Xeon X5460
Fujitsu CELSIUS R550, Intel Xeon X5460 processor	27.6	8	2	4	Intel Xeon X5460
HP ProLiant BL480c (3.16 GHz, Intel Xeon X5460)	27.6	8	2	4	Intel Xeon X5460
HP ProLiant DL360 G5 (3.16 GHz, Intel Xeon processor X5460)	27.6	8	2	4	Intel Xeon X5460
HP ProLiant ML370 G5 (3.33 GHz, Intel Xeon processor X5260)	27.6	4	2	2	Intel Xeon X5260
IBM BladeCenter HS21 (Intel Xeon X5460)	27.6	8	2	4	Intel Xeon X5460

Top 10 CINT2006 Speed (as of 29 July 2009)

System	Result	# Cores	# Chips	Cores/Chip	Processor
Sun Blade X6275 (Intel Xeon X5570 2.93GHz)	37.4	8	2	4	Intel Xeon X5570
ASUS TS700-E6 (Z8PE-D12X) server system (Intel Xeon W5580)	37.3	8	2	4	Intel Xeon W5580
CELSIUS R670. Intel Xeon W5580	37.2	8	2	4	Intel Xeon W5580
Sun Blade X6270 (Intel Xeon X5570 2.93GHz)	36.9	8	2	4	Intel Xeon X5570
Sun Liltra 27 (Intel Xeon W/3570 3 2GHz)	36.8	4	-	А	Intel Xeon W/3570
Sun Eiro X/170 (Intol Xoon XEE70 2 02CHz)	26.9	0	2	4	Intel Yeen YEE70
	30.0	0	2	4	
Sun Blade X6270 (Intel Xeon X5570 2.93GHZ)	36.8	8	2	4	Intel Xeon X5570
Sun Blade X6275 (Intel Xeon X5570 2.93GHz)	36.7	8	2	4	Intel Xeon X5570
Dell Precision T7500 (Intel Xeon W5580, 3.20 GHz)	36.7	8	2	4	Intel Xeon W5580
CELSIUS M470, Intel Xeon W5580	36.6	4	1	4	Intel Xeon W5580

Other Interesting SPECs

SPEC MPI2007

 Benchmark based on MPI to measure floating-point computational intensive applications on clusters and SMP

SPEC jAppServer2004

Measure the performance of J2EE 1.3 application servers

SPEC Web2009

 Emulates users sending browser requests over broadband Internet connections to a web server

SPECpower_ssj2008

 Evaluates the power and performance characteristics of volume server class computers

TPC

- Transaction Processing Performance Council
- http://www.tpc.org
- TPC-C: performance of Online Transaction Processing (OLTP) system
 - tpmC: transactions per minute.
 - \$/tpmC: price/performance.
- Simulate the wholesale company environment
 - N warehouses, 10 sales districts each.
 - Each district serves 3,000 customers with one terminal in each district.

TPC Transactions

An operator can perform one of the five transactions

- Create a new order.
- Make a payment.
- Check the order's status.
- Deliver an order.
- Examine the current stock level.
- Measure from the throughput of New-Order.
- Top IO (Performance, Price/Performance).

Top 10 TPC-C Performance (as of 1 Aug 2008)

Rank	Company	System	tpmC	Price/tpmC	System Availability	Database	Operating System	TP Monitor	Date Submitted	Cluster
1	IBM	IBM Power 595 Server Model 9119-FHA	6,085,166	2.81 US \$	12/10/08	IBM DB2 9.5	IBM AIX 5L V5.3	Microsoft COM+	06/10/08	N
***	Bul	Bull Escala PL6460R	6,085,166	2.81 US \$	12/15/08	IBM DB2 9.5	IBM AIX 5L V5.3	Microsoft COM+	06/15/08	N
2		HP Integrity Superdome- Itanium2/1.6GHz/24MB iL3	4,092,799	2.93 US \$	08/06/07	Oracle Database 10g R2 Enterprise Edt w/Partitioning	HP-UX 11i v3	BEA Tu×edo 8.0	02/27/07	N
з	IBM	IBM System p5 595	4,033,378	2.97 US \$	01/22/07	IBM DB2 9	IBM AIX 5L V5.3	Microsoft COM+	01/22/07	N
4	IBM	IBM eServer p5 595	3,210,540	5.07 US \$	05/14/05	IBM DB2 UDB 8.2	IBM AIX 5L V5.3	Microsoft COM+	11/18/04	N
5	FUĴĨTSU	PRIMEQUEST 580 32p/64c	2,196,268	4.70 US \$	04/30/08	Oracle 10g Enterprise Ed R2 w/ Partitioning	Red Hat Enterprise Linux 4 AS	BEA Tuxedo 8.1	10/30/07	N
6	IBM	IBM System p 570	1,616,162	3.54 US \$	11/21/07	IBM DB2 Enterprise 9	IBM AIX 5L V5.3	Microsoft COM+	05/21/07	N
***	Bul	Bull Escala PL1660R	1,616,162	3.54 US \$	12/16/07	IBM DB2 9.1	IBM AIX 5L V5.3	Microsoft COM+	12/17/07	N
7	IBM	IBM eServer p5 595	1,601,784	5.05 US \$	04/20/05	Oracle Database 10g Enterprise Edition	IBM AIX 5L V5.3	Microsoft COM+	04/20/05	N
8	NEC	NEC Express5800/1320Xf (16p/32c)	1,245,516	4.57 US \$	04/30/08	Oracle Database 10g R2 Enterprise Edt w/Partitioning	Red Hat Enterprise Linux 4 AS	BEA Tuxedo 8.1	01/21/08	N
9	FUĴĨTSU	PRIMEQUEST 540 16p/32c	1,238,579	3.94 US \$	12/15/06	Oracle Database 10g Enterprise Edition	Red Hat Enterprise Linux AS 4.0	BEA Tuxedo 8.1	11/30/06	N
10		HP Integrity Superdome – Itanium2/1.6 GHz-64p/64c	1,231,433	4.82 US \$	06/05/06	Microsoft SQL Server 2005 Enterprise Edt SP1	Microsoft Windows Server 2003 Datacenter Ed.(64- bit)SP1	Microsoft COM+	11/28/05	N

Top 10 TPC-C Performance (as of 29 July 2009)

Rank	Company	System	tpmC	Price/tpmC	System Availability	Database	Operating System	TP Monitor	Date Submitted	Cluster
1	IBM	IBM Power 595 Server Model 9119-FHA	6,085,166	2.81 USD	12/10/08	IBM DB2 9.5	IBM AIX 5L V5.3	Microsoft COM+	06/10/08	N
***	Bull	Bull Escala PL6460R	6,085,166	2.81 USD	12/15/08	IBM DB2 9.5	IBM AIX 5L V5.3	Microsoft COM+	06/15/08	N
2		HP Integrity Superdome- Itanium2/1.6GHz/24MB iL3	4,092,799	2.93 USD	08/06/07	Oracle Database 10g R2 Enterprise Edt w/Partitioning	HP-UX 11i v3	BEA Tu×edo 8.0	02/27/07	N
3	IBM	IBM System p5 595	4,033,378	2.97 USD	01/22/07	IBM DB2 9	IBM AIX 5L V5.3	Microsoft COM+	01/22/07	N
4	IBM	IBM eServer p5 595	3,210,540	5.07 USD	05/14/05	IBM DB2 UDB 8.2	IBM AIX 5L V5.3	Microsoft COM+	11/18/04	N
5	FUĴÎTSU	PRIMEQUEST 580A 32p/64c	2,382,032	3.76 USD	12/04/08	Oracle Database 10g R2 Enterprise Edt w/Partitioning	Red Hat Enterprise Linux 4 AS	BEA Tuxedo 8.1	12/04/08	N
6	FUĴĨTSU	PRIMEQUEST 580 32p/64c	2,196,268	4.70 USD	04/30/08	Oracle 10g Enterprise Ed R2 w/ Partitioning	Red Hat Enterprise Linux 4 AS	BEA Tuxedo 8.1	10/30/07	N
7	IBM	IBM System p 570	1,616,162	3.54 USD	11/21/07	IBM DB2 Enterprise 9	IBM AIX 5L V5.3	Microsoft COM+	05/21/07	N
***	Bul	Bull Escala PL1660R	1,616,162	3.54 USD	12/16/07	IBM DB2 9.1	IBM AIX 5L V5.3	Microsoft COM+	12/17/07	N
8	IBM	IBM eServer p5 595	1,601,784	5.05 USD	04/20/05	Oracle Database 10g Enterprise Edition	IBM AIX 5L V5.3	Microsoft COM+	04/20/05	N
9	FUĴÎTSU	PRIMEQUEST 540A 16p/32c	1,354,086	3.25 USD	11/22/08	Oracle Database 10g release2 Enterprise Edt	Red Hat Enterprise Linux 4 AS	BEA Tuxedo 8.1	11/22/08	N
10	NEC	NEC Express5800/1320Xf (16p/32c)	1,245,516	4.57 USD	04/30/08	Oracle Database 10g R2 Enterprise Edt w/Partitioning	Red Hat Enterprise Linux 4 AS	BEA Tuxedo 8.1	01/21/08	N

Top 10 TPC-C Price/Performance (as of 1 Aug 2008)

Rank	Company	System	tpmC	Price/tpmC	System Availability	Database	Operating System	TP Monitor	Date Submitted	Cluster
1	DØLL	Dell PowerEdge 2900	97,083	.68 US \$	06/16/08	Oracle Database 11g Standard Edition One	Microsoft Windows Server 2003 Standard Ed. ×64	Microsoft COM+	06/16/08	N
2		HP ProLiant ML350G5	102,454	.73 US \$	12/31/07	Oracle Database 11g Standard Edition One	Microsoft Windows Standard x64 Etd. SP1 R2	Microsoft COM+	09/12/07	N
3		HP ProLiant ML350G5	100,926	.74 US \$	06/08/07	Oracle Database 10g Standard Edition One Oracle Enterprise Linux		Microsoft COM+	06/08/07	N
4		HP ProLiant ML350G5	82,774	.84 US \$	03/27/07	Microsoft SQL Server 2005 ×64 Enterprise Edt. SP1	crosoft SQL Server 2005 ×64 Microsoft Windows 2003 ×64 Enterprise Edt. SP1 Server Std. Ed.		03/27/07	N
5	SYBASE Anywhere.	Dell PowerEdge 2950 III	20,705	.85 US \$	08/05/08	Sybase SQL Anywhere 11	/base SQL Anywhere 11 Microsoft Windows 2003 x64 Standard R2 SP2		07/29/08	N
6	DØLL	PowerEdge 2900/1 /2.33GHz/2x4M	69,564	.91 US \$	03/09/07	Microsoft SQL Server 2005 Standard Ed.	Microsoft Windows 2003 Server Std Edt SP1	Microsoft COM+	03/09/07	N
7	DØLL	PowerEdge 2900/3.0GHz/4M	65,833	.98 US \$	06/26/06	Microsoft SQL Server 2005 Standard Ed.	Microsoft Windows 2003 Server Std Edt SP1	Microsoft COM+	06/30/06	N
8	DØLL	PowerEdge	38,622	.99 US \$	11/08/05	Microsoft SQL Server 2005 ×64 Std. Ed.	Microsoft Windows 2003 ×64 Server Std. Ed.	Microsoft COM+	09/26/05	N
9		HP ProLiant DL585G5/2.5GHz	471,883	1.17 US \$	07/14/08	Microsoft SQL Server 2005 ×64 Enterprise Edt SP2	Microsoft Windows Server 2003 Enterprise x64 Ent. R2	Microsoft COM+	07/14/08	N
10		HP ProLiant DL585G5/2.3GHz	402,234	1.26 US \$	03/31/08	Microsoft SQL Server 2005 ×64 Enterprise Edt SP2	Microsoft Windows Server 2003 Enterprise ×64 Ent. R2	Microsoft COM+	03/31/08	N

Top 10 TPC-C Price/Performance (as of 29 July 2009)

Rank	Company	System	եթոուն	Price/tpmC	System Availability	Database	Operating System	TP Monitor	Date Submitted	Cluster
1		HP ProLiant ML350 G6	232,002	.54 USD	05/21/09	Oracle Database 11g Standard Edition One	Oracle Enterprise Linux	Microsoft COM+	05/21/09	N
2	DØLL	Dell PowerEdge 2900	104,492	.60 USD	02/20/09	Oracle Database 11g Standard Edition One	Microsoft Windows Server 2003 Standard Ed. ×64	Microsoft COM+	02/20/09	N
з	DØLL	Dell PowerEdge 2900	97,083	.68 USD	06/16/08	Oracle Database 11g Standard Edition One	Microsoft Windows Server 2003 Standard Ed. ×64	Microsoft COM+	06/16/08	N
4		HP ProLiant ML350G5	102,454	.73 USD	12/31/07	Oracle Database 11g Standard Edition One	Microsoft Windows Standard x64 Etd. SP1 R2	Microsoft COM+	09/12/07	N
5		HP ProLiant ML350G5	100,926	.74 USD	06/08/07	Oracle Database 10g Standard Edition One	Oracle Enterprise Linux	Microsoft COM+	06/08/07	N
6		HP ProLiant ML350G5	82,774	.84 USD	03/27/07	Microsoft SQL Server 2005 x64 Enterprise Edt. SP1	Microsoft Windows 2003 x64 Server Std. Ed.	Microsoft COM+	03/27/07	N
7	SYBASE iAnywhere	Dell PowerEdge 2950 III	20,705	.85 USD	08/05/08	Sybase SQL Anywhere 11.0	Microsoft Windows 2003 x64 Standard R2 SP2	Microsoft COM+	07/29/08	N
8	DØLL	PowerEdge 2900/1/2.33GHz/2x4M	69,564	.91 USD	03/09/07	Microsoft SQL Server 2005 Standard Ed.	Microsoft Windows 2003 Server Std Edt SP1	Microsoft COM+	03/09/07	N
9		HP ProLiant DL585G5/2.7GHz	579,814	.96 USD	11/17/08	Microsoft SQL Server 2005 x64 Enterprise Edt SP2	Microsoft Windows Server 2003 Enterprise x64 Ent. R2	Microsoft COM+	11/17/08	N
10		HP ProLiant DL580G5	639,253	.97 USD	01/26/09	Oracle Database 11g Standard Edition	Oracle Enterprise Linux TP	Microsoft COM+	01/16/09	N

LINPACK

- Linear Algebra Package
- By Jack Dongarra at University of Tennessee
- http://www.top500.org
- Collection of FORTRAN subroutines
 - Solve linear equations
 - Numerical, Micro, Kernel, Synthetic
 - Used in Top-500 list

LINPACK

Metrics and parameters

- R(max) sustained maximal speed achieved.
- N(max) problem size when R(max) is achieved.
- N(1/2) problem size when half of R(max).
- R(peak) theoretical peak speed of the system measured.

Top-500 list

See results.

LINPACK - Results Interpretation

Top 10 of Top 500 Performance (as of June 2008)

Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}	Power
1	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz , Voltaire Infiniband / 2008 IBM	122400	1026.00	1375.78	2345.50
2	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution / 2007 IBM	212992	478.20	596.38	2329.60
3	Argonne National Laboratory United States	Blue Gene/P Solution / 2007 IBM	163840	450.30	557.06	1260.00
4	Texas Advanced Computing Center/Univ. of Texas United States	Ranger - SunBlade x6420, Opteron Quad 2Ghz, Infiniband / 2008 Sun Microsystems	62976	326.00	503.81	2000.00
5	DOE/Oak Ridge National Laboratory United States	Jaguar - Cray XT4 QuadCore 2.1 GHz / 2008 Cray Inc.	30976	205.00	260.20	1580.71
6	Forschungszentrum Juelich (FZJ) Germany	JUGENE - Blue Gene/P Solution / 2007 IBM	65536	180.00	222.82	504.00
7	New Mexico Computing Applications Center (NMCAC) United States	Encanto - SGI Altix ICE 8200, Xeon quad core 3.0 GHz / 2007 SGI	14336	133.20	172.03	861.63
8	Computational Research Laboratories, TATA SONS India	EKA - Cluster Platform 3000 BL460c, Xeon 53xx 3GHz, Infiniband / 2008 Hewlett-Packard	14384	132.80	172.61	786.00
9	IDRIS France	Blue Gene/P Solution / 2008 IBM	40960	112.50	139.26	315.00
10	Total Exploration Production France	SGI Altix ICE 8200EX, Xeon quad core 3.0 GHz / 2008 SGI	10240	106.10	122.88	442.00

Top 10 of Top 500 Performance (as of June 2009)

Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}	Power
1	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband / 2008 IBM	129600	1105.00	1456.70	2483.47
2	Oak Ridge National Laboratory United States	Jaguar - Cray XT5 QC 2.3 GHz / 2008 Cray Inc.	150152	1059.00	1381.40	6950.60
3	Forschungszentrum Juelich (FZJ) Germany	JUGENE - Blue Gene/P Solution / 2009 IBM	294912	825.50	1002.70	2268.00
4	NASA/Ames Research Center/NAS United States	Pleiades - SGI Altix ICE 8200EX, Xeon QC 3.0/2.66 GHz / 2008 SGI	51200	487.01	608.83	2090.00
5	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution / 2007 IBM	212992	478.20	596.38	2329.60
6	National Institute for Computational Sciences/University of Tennessee United States	Kraken XT5 - Cray XT5 QC 2.3 GHz / 2008 Cray Inc.	66000	463.30	607.20	
7	Argonne National Laboratory United States	Blue Gene/P Solution / 2007 IBM	163840	458.61	557.06	1260.00
8	Texas Advanced Computing Center/Univ. of Texas United States	Ranger - SunBlade x6420, Opteron QC 2.3 Ghz, Infiniband / 2008 Sun Microsystems	62976	433.20	579.38	2000.00
9	DOE/NNSA/LLNL United States	Dawn - Blue Gene/P Solution / 2009 IBM	147456	415.70	501.35	1134.00
10	Forschungszentrum Juelich (FZJ) Germany	JUROPA - Sun Constellation, NovaScale R422-E2, Intel Xeon X5570, 2.93 GHz, Sun M9/Mellanox QDR Infiniband/Partec Parastation / 2009 Bull SA	26304	274.80	308.28	1549.00

Top 500 – Projected Performance (as of June 2009)

Top 500 – Architecture Distribution (as of June 2009)

