
2110412 Parallel Comp Arch

Performance and Benchmarking

Natawut Nupairoj, Ph.D.

Department of Computer Engineering, Chulalongkorn University

Performance Questions

 How to characterize the performance of applications and

systems?

 User’s requirements in performance and cost?

 How about performance measurement?

 How will system perform when having more resources or

more workload?

Important Keywords

 Peak Performance

 Theoretical performance.

 Typically, peak of single CPU * n

 Sustained Performance

 The maximal achievable performance by running a

benchmark.

Performance Metrics

 Indicators of how good the systems are.

 To evaluate correctly, we must consider:

 What is the metric (or metrics) ?

 What is its definition ?

 How to measure it ? Benchmark algorithm ?

 What is the evaluating environment ?

 Configuration.

 Workload.

Popular Metrics

 Time - Execution Time

 Rate - Throughput and Processing Speed

 Resource – Utilization

 Ratio - Cost Effectiveness

 Reliability – Error Rate

 Availability – Mean Time To Failure (MTTF)

Execution Time

 Aka. Wall clock time, elapsed time, delay.

 CPU time + I/O + user + …

 The lower, the better.

 Factors

 Algorithm.

 Data structure.

 Input.

 Hardware/Software/OS.

 Language.

Definition of Time

Analysis of Time

 Let’s try “time” command for Unix

90.7u 12.9s 2:39 65%

 User time = 90.7 secs

 System time = 12.9 secs

 Elapsed time = 2 mins 39 secs = 159 secs

 (90.7 + 12.9) / 159 = 65%

 Meaning?

Processing Speed

 How fast can the system execute ?

 MIPS, MFLOPS.

 The more, the better.

 Can be very misleading !!!

k = m + n;

k = m + n;

k = m + n;

k = m + n;

...

for j=0 to x

k = m + n;

for j=0 to x/4

k = m + n;

k = m + n;

k = m + n;

k = m + n;

Moore’s Law (1965)

Kurzweil: The Law of Accelerating Returns

Throughput

 Number of jobs that can be processed in a unit time.

 Aka. Bandwidth (in communication).

 The more, the better.

 High throughput does not necessary mean low execution

time.

 Pipeline.

 Multiple execution units.

Utilization

 The percentage of resources

being used

 Ratio of

 busy time vs. total time

 sustained speed vs. peak speed

 The more the better?

 True for manager

 But may be not for

user/customer

 Resource with highest

utilization is the “bottleneck”

Typical Utilization when Running Program

 sustained speed vs. peak speed

 Sequential: 5-40%

 Stalled Pipe.

 I/O.

 Parallel: 1-35%

 Low degree of parallelism.

 Overheads: communication, I/O, OS, etc.

Cost Effectiveness

 Peak performance/cost ratio

 Price/performance ratio

 PCs are much better in this category than Supercomputer

Price/Performance Ratio

From Tom’s Hardware Guide: CPU Chart 2009

Performance of Parallel Systems

 Factors

 Components and architecture.

 Degree of Parallelism.

 Overheads.

 Architecture

 CPU speed.

 Memory size and speed.

 Memory hierarchy.

Parallelism and Overheads

 Execution time

T = Tpar + Tseq + Tcomm

 Tpar – Time spent in Parallel

 All nodes execute at the same time

 Computation Time (mostly)

 Depends on Algorithm

 Load-imbalance (Degree of Parallelism)

Parallelism and Overheads

 Tseq – Time spent in Sequential

 Only one node (usually master) do the job

 Load / save data from disk

 Critical sections

 Usually, occurs during start and end of program

 Tcomm - Communication overhead

 Communication between nodes

 Data movement

 Synchronization: barrier, lock, and critical region

 Aggregation: reduction.

Speedup Analysis

 How good the parallel system is, when compared to the

sequential system

 Predict the scalability

 Speedup metrics

 Amdahl’s Law

 Gustafson’s Law

Execution Time Components

 Given program with Workload W:

 Let  be the percentage of SEQUENTIAL portion in this

program

 Parallel portion = 1 - 

WWW)1( 

Execution Time Components

 Suppose this program requires T time units on SINGLE

processor:

 T = Tpar + Tseq + Tcomm

 Tpar = (1 - )T

 Tseq = T

 For simplicity ignore Tcomm

TTT)1( 

Speedup Formula

timeexecution Parallel

timeexecution Sequential
 Speedup

Amdahl’s Law

 Aka. Fixed-Load (Problem) Speedup

 Given workload W, how good it is if we have n processors

(ignore communication) ?







 n
n

n

nTT

T
S n as

1

)1(1/)1(

TTT)1( 

processor n on W execute to Time

processor 1 on W execute to Time
nS

Amdahl’s Law (2)

 Very popular (and also pessimistic).

T

(1)T

Number of processors

Time

Example 1

 95% of a program’s execution time occurs inside a loop

that can be executed in parallel. What is the maximum

speedup we should expect from a parallel version of the

program executing on 8 CPUs?

Example 2

 20% of a program’s execution time is spent within

inherently sequential code. What is the limit to the

speedup achievable by a parallel version of the program?

Amdahl’s Law (in Book)

pnn

nn

pnpnn

nn
pn

/)()(

)()(

),(/)()(

)()(
),(




















Let f = (n)/((n) + (n))

pff /)1(

1




Limitations of Amdahl’s Law

 Ignores Tcomm

 Overestimates speedup achievable

 Very pessimistic

 When people have bigger machines, they always run bigger

programs

 Thus, when people have more processors, they usually run

bigger workloads

 More workloads = more parallel portion

 Workload may not be fixed, but SCALE

Problem Size and Amdahl’s Law

n = 100

n = 1,000

n = 10,000
Speedup

Processors

Gustafson’s Law

 Aka. Fixed-Time Speedup (or Scaled-Load Speedup).

 Given a workload W, suppose it takes time T to execute W

on 1 processor.

 With the same T, how much (workload) we can run on n

processors ? Let’s call it W’.

 Assume the sequential work remains constant.

WWW)1(  nWWW)1('  

Gustafson’s Law (2)

 Fixed-Time Speedup

n
W

nWW

W

W
S n)1(

)1(











processors 1 with T time in executed be canthat size Workload

processors n with T time in executed be canthat size Workload
nS

Gustafson’s Law (3)

Number of processors

Time

X 2 X 3 X 4 X 5X 1

W

(1)nW

Example 1

 An application running on 10 processors spends 3% of its

time in serial code. What is the scaled speedup of the

application?

Example 2

 What is the maximum fraction of a program’s parallel

execution time that can be spent in serial code if it is to

achieve a scaled speedup of 7 on 8 processors?

Performance Benchmarking

 Benchmark

 Measure and predict the performance of a system

 Reveal the strengths and weaknesses

 Benchmark Suite

 A set of benchmark programs and testing conditions and

procedures

 Benchmark Family

 A set of benchmark suites

Benchmarks Classification

 By instructions

 Full application

 Kernel -- a set of frequently-used functions

 By workloads

 Real programs

 Synthetic programs

Popular Benchmark Suites

 SPEC

 TPC

 LINPACK

SPEC

 By Standard Performance Evaluation Corporation

 Using real applications

 http://www.spec.org

 SPEC CPU2006

 Measure CPU performance

 Raw speed of completing a single task

 Rates of processing many tasks

 CINT2006 - Integer performance

 CFP2006 - Floating-point performance

CINT2006

400.perlbench C PERL Programming Language

401.bzip2 C Compression

403.gcc C C Compiler

429.mcf C Combinatorial Optimization

445.gobmk C Artificial Intelligence: go

456.hmmer C Search Gene Sequence

458.sjeng C Artificial Intelligence: chess

462.libquantum C Physics: Quantum Computing

464.h264ref C Video Compression

471.omnetpp C++ Discrete Event Simulation

473.astar C++ Path-finding Algorithms

483.xalancbmk C++ XML Processing

http://www.spec.org/auto/cpu2006/Docs/400.perlbench.html
http://www.spec.org/auto/cpu2006/Docs/400.perlbench.html
http://www.spec.org/auto/cpu2006/Docs/401.bzip2.html
http://www.spec.org/auto/cpu2006/Docs/403.gcc.html
http://www.spec.org/auto/cpu2006/Docs/429.mcf.html
http://www.spec.org/auto/cpu2006/Docs/445.gobmk.html
http://www.spec.org/auto/cpu2006/Docs/456.hmmer.html
http://www.spec.org/auto/cpu2006/Docs/458.sjeng.html
http://www.spec.org/auto/cpu2006/Docs/462.libquantum.html
http://www.spec.org/auto/cpu2006/Docs/464.h264ref.html
http://www.spec.org/auto/cpu2006/Docs/471.omnetpp.html
http://www.spec.org/auto/cpu2006/Docs/473.astar.html
http://www.spec.org/auto/cpu2006/Docs/483.xalancbmk.html

CFP2006
410.bwaves Fortran Fluid Dynamics

416.gamess Fortran Quantum Chemistry

433.milc C Physics: Quantum Chromodynamics

434.zeusmp Fortran Physics / CFD

435.gromacs C/Fortran Biochemistry/Molecular Dynamics

436.cactusADM C/Fortran Physics / General Relativity

437.leslie3d Fortran Fluid Dynamics

444.namd C++ Biology / Molecular Dynamics

447.dealII C++ Finite Element Analysis

450.soplex C++ Linear Programming, Optimization

453.povray C++ Image Ray-tracing

454.calculix C/Fortran Structural Mechanics

459.GemsFDTD Fortran Computational Electromagnetics

465.tonto Fortran Quantum Chemistry

470.lbm C Fluid Dynamics

481.wrf C/Fortran Weather Prediction

482.sphinx3 C Speech recognition

http://www.spec.org/auto/cpu2006/Docs/410.bwaves.html
http://www.spec.org/auto/cpu2006/Docs/410.bwaves.html
http://www.spec.org/auto/cpu2006/Docs/416.gamess.html
http://www.spec.org/auto/cpu2006/Docs/433.milc.html
http://www.spec.org/auto/cpu2006/Docs/434.zeusmp.html
http://www.spec.org/auto/cpu2006/Docs/435.gromacs.html
http://www.spec.org/auto/cpu2006/Docs/436.cactusADM.html
http://www.spec.org/auto/cpu2006/Docs/437.leslie3d.html
http://www.spec.org/auto/cpu2006/Docs/444.namd.html
http://www.spec.org/auto/cpu2006/Docs/447.dealII.html
http://www.spec.org/auto/cpu2006/Docs/450.soplex.html
http://www.spec.org/auto/cpu2006/Docs/453.povray.html
http://www.spec.org/auto/cpu2006/Docs/454.calculix.html
http://www.spec.org/auto/cpu2006/Docs/459.GemsFDTD.html
http://www.spec.org/auto/cpu2006/Docs/465.tonto.html
http://www.spec.org/auto/cpu2006/Docs/470.lbm.html
http://www.spec.org/auto/cpu2006/Docs/481.wrf.html
http://www.spec.org/auto/cpu2006/Docs/482.sphinx3.html

Top 10 CINT2006 Speed (as of 1 Aug 2008)

System Result # Cores # Chips Cores/Chip Processor

HP ProLiant DL160 G5 (3.4 GHz, Intel Xeon X5272) 28.4 4 2 2 Intel Xeon X5272

SGI Altix XE 250 (Intel Xeon X5272 3.4GHz) 28.4 4 2 2 Intel Xeon X5272

HP ProLiant DL380 G5 (3.16 GHz, Intel Xeon X5460) 27.7 8 2 4 Intel Xeon X5460

IBM System x 3550 (Intel Xeon X5460) 27.7 8 2 4 Intel Xeon X5460

Sun Fire X4150 27.7 8 2 4 Intel Xeon X5460

Fujitsu CELSIUS R550, Intel Xeon X5460 processor 27.6 8 2 4 Intel Xeon X5460

HP ProLiant BL480c (3.16 GHz, Intel Xeon X5460) 27.6 8 2 4 Intel Xeon X5460

HP ProLiant DL360 G5 (3.16 GHz, Intel Xeon processor X5460) 27.6 8 2 4 Intel Xeon X5460

HP ProLiant ML370 G5 (3.33 GHz, Intel Xeon processor X5260) 27.6 4 2 2 Intel Xeon X5260

IBM BladeCenter HS21 (Intel Xeon X5460) 27.6 8 2 4 Intel Xeon X5460

Top 10 CINT2006 Speed

(as of 29 July 2009)

System Result # Cores # Chips Cores/Chip Processor

Sun Blade X6275 (Intel Xeon X5570 2.93GHz) 37.4 8 2 4 Intel Xeon X5570

ASUS TS700-E6 (Z8PE-D12X) server system (Intel Xeon W5580) 37.3 8 2 4 Intel Xeon W5580

CELSIUS R670, Intel Xeon W5580 37.2 8 2 4 Intel Xeon W5580

Sun Blade X6270 (Intel Xeon X5570 2.93GHz) 36.9 8 2 4 Intel Xeon X5570

Sun Ultra 27 (Intel Xeon W3570 3.2GHz) 36.8 4 1 4 Intel Xeon W3570

Sun Fire X4170 (Intel Xeon X5570 2.93GHz) 36.8 8 2 4 Intel Xeon X5570

Sun Blade X6270 (Intel Xeon X5570 2.93GHz) 36.8 8 2 4 Intel Xeon X5570

Sun Blade X6275 (Intel Xeon X5570 2.93GHz) 36.7 8 2 4 Intel Xeon X5570

Dell Precision T7500 (Intel Xeon W5580, 3.20 GHz) 36.7 8 2 4 Intel Xeon W5580

CELSIUS M470, Intel Xeon W5580 36.6 4 1 4 Intel Xeon W5580

Other Interesting SPECs

 SPEC MPI2007

 Benchmark based on MPI to measure floating-point

computational intensive applications on clusters and SMP

 SPEC jAppServer2004

 Measure the performance of J2EE 1.3 application servers

 SPEC Web2009

 Emulates users sending browser requests over broadband

Internet connections to a web server

 SPECpower_ssj2008

 Evaluates the power and performance characteristics of volume

server class computers

TPC

 Transaction Processing Performance Council

 http://www.tpc.org

 TPC-C: performance of Online Transaction Processing

(OLTP) system

 tpmC: transactions per minute.

 $/tpmC: price/performance.

 Simulate the wholesale company environment

 N warehouses, 10 sales districts each.

 Each district serves 3,000 customers with one terminal in each

district.

TPC Transactions

 An operator can perform one of the five transactions

 Create a new order.

 Make a payment.

 Check the order’s status.

 Deliver an order.

 Examine the current stock level.

 Measure from the throughput of New-Order.

 Top 10 (Performance, Price/Performance).

Top 10 TPC-C Performance

(as of 1 Aug 2008)

Top 10 TPC-C Performance

(as of 29 July 2009)

Top 10 TPC-C Price/Performance

(as of 1 Aug 2008)

Top 10 TPC-C Price/Performance

(as of 29 July 2009)

LINPACK

 Linear Algebra Package

 By Jack Dongarra at University of Tennessee

 http://www.top500.org

 Collection of FORTRAN subroutines

 Solve linear equations

 Numerical, Micro, Kernel, Synthetic

 Used in Top-500 list

LINPACK

 Metrics and parameters

 R(max) - sustained maximal speed achieved.

 N(max) - problem size when R(max) is achieved.

 N(1/2) - problem size when half of R(max).

 R(peak) - theoretical peak speed of the system measured.

 Top-500 list

 See results.

LINPACK - Results Interpretation

Problem Size

Performance

N(1/2)

R(Max)

N(Max)

R(Peak)

Top 10 of Top 500 Performance

(as of June 2008)

Top 10 of Top 500 Performance

(as of June 2009)

Top 500 – Projected Performance

(as of June 2009)

Top 500 – Architecture Distribution

(as of June 2009)

