2110412 Parallel Comp Arch
Parallel Programming Paradigm

Natawut Nupairoj, Ph.D.
Department of Computer Engineering, Chulalongkorn University

Outline

» Overview

» Parallel Architecture Revisited
» Parallelism

» Parallel Algorithm Design

» Parallel Programming Model

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

What are the factors for parallel
programming paradigm?
» System Architecture

» Parallelism — Nature of Applications

» Development Paradigms

Automatic (by Compiler or by Library) : OpenMP
Semi-Auto (Directives / Hints) : CUDA
Manual : MPI, Multi-Thread Programming

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Generic Parallel Architecture

Interconnection Network

» Where is the memory physically located ?

> 2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Flynn’s Taxonomy

» Very influential paper in 1966

» Two most important characteristics
Number of instruction streams.
Number of data elements.
(Single Instruction, Single Data).
(Single Instruction, Multiple Data).
(Multiple Instruction, Single Data).
(Multiple Instruction, Multiple Data).

SISD

» One instruction stream and one data stream - from
memory to processor.

|, D
—

» von Neumann’s architecture.

» Example
PC.

SIMD

» One control unit tells processing elements to compute
(at the same time).

D
| —p

D

N —
D

D

M

» Examples
TMC/CM-1, Maspar MP-1, Modern GPU

MISD

» No one agrees if there is such a MISD.

» Some say systolic array and pipeline processor are.

MIMD

» Multiprocessor, each
executes its own

instruction/data stream.

» May communicate with

one another once in a
while.

» Examples

IBM SP, SGI Origin, HP
Convex, Cray ...

Cluster
Multi-Core CPU

|, D

|, D

|, D

|, D

Parallelism

» To understand parallel system, we need to understand
how can we utilize parallelism
» There are 3 types of parallelism
Data parallelism
Functional parallelism
Pipelining
» Can be described with data dependency graph

Data Dependency Graph

» A directed graph representing the
dependency of data and order of
execution

» Each vertex is a task
» Edge fromA to B

Task A must be completed before task B ﬁ
Task B is dependent on task A

» Tasks that are independent from one
another can be perform concurrently

Parallelism Structure

Data Parallelism Functional Parallelism

Example

» Weekly Landscape Maintenance
Mow lawn, edge lawn, weed garden, check sprinklers
Cannot check sprinkler until all other 3 tasks are done
Must turn off security system first
And turn it back on before leaving

Example: Dependency Graph

-
N

_Check sprinklers

Y

» What can you do with a team of 8 people!?

Functional Parallelism

» Apply different operations
to different (or same) data
elements

a
» However, we have 8 \‘ l
people!?

» Very straight forward for
this problem

N\
/

Data Parallelism

» Apply the same operation
to different data elements

» Can be processor array
and vector processing

» Complier can help!!!

1

Everyone mows lawn

v

_Check sprinklers

Sample Algorithm

for 1 := 0 to 99 do
ali] := bl[i] + c[1i]
endfor
for 1 := 1 to 99 do
ali] := a[i-1] + c[1i]
endfor
for 1 := 1 to 99 do
for 7 := 0 to 99 do
ali,J] := ali-1,3] + cl[i,7]
endfor

endfor

Pipelining

<
<
<
<
<
<

Improve the execution speed

Divide long tasks into small steps or “stages”

Each stage executes independently and concurrently
Move data toward workers (or stages)

Pipelining does not work for single data element !!!

Pipelining is best for
Limited functional units

Each data unit cannot be partitioned

Example: Pipelining and Landscape
Maintenance

Does not work for a single house

‘/Qﬁ\ - Multiple houses are not good either!

| O =

_Check sprinklers ‘—‘— L _‘_

_/. _/l N _// _/I"

Vector Processing

» Data parallelism technique
Perform the same function on multiple data elements (aka.“vector”)

Many scientific applications are matrix-oriented

SCALAR VECTOR
(1 operation) (N operations)

!‘F

add r3, rl, r2 add.vv v3, v1l, v2

Example: SAXPY (DAXPY) problem

for 1 := 0 to 63 do
Y[1i] := a*X[1i] + Y[1i]
endfor

Y(0:063) = a*X(0:63) + Y(0:63)

Lv V1,R1 ; R1 contains based address for “X[*]”
LV V2,R2 ; R2 contains based address for “Y[*]”
MULSV V3,R3,V1 ; a*X —-- R3 contains the wvalue of “a”

ADDV V1,V3,V2 ; a*X + Y

SV R2,V1 ; write back to “Y[*]”

No stall, reduce Flynn bottleneck problem
Vector Processors may also be pipelined

Vector Processing

» Problems that can be efficiently formulated in terms of vectors
» Long-range weather forecasting
» Petroleum explorations

» Medical diagnosis

Instruction Decode

» Aerodynamics and space flight simulations
» Artificial intelligence and expert systems
» Mapping the human genome

» Image processing
» Very famous in the past e.g. Cray Y-MP
» Not obsolete yet!

» IBM Cell Processor
» Intel Larrabee GPU

> 2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Level of Parallelism

» Levels of parallelism are classified by grain size (or
granularity)
Very-fine-grain (instruction-level or ILP)
Fine-grain (data-level)
Medium-grain (control-level)

Coarse-grain (task-level)

» Usually mean the number of instructions performed
between each synchronization

Level of Parallelism

Messages Messages

< Task 1-1 > <Taski > """ (Task i+l> E_.Ta:ggl:i:rll)

func1() func2() func3()
{ { {
Medium grain
(comtrol level)
h ¥ ¥
Fine grain
(data level)
Very fine gramn
(multiple 1ssue)

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Parallel Programming Models

» Architecture
SISD - no parallelism

SIMD - instructional-level parallelism

MIMD - functional/program-level parallelism
SPMD - Combination of MIMD and SIMD

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Parallel Algorithm Design

» Parallel computation = set of tasks
» Task - A program unit with its local memory and a
collection of I/O ports
local memory contains program instructions and data
send local data values to other tasks via output ports
receive data values from other tasks via input ports

Tasks interact by sending messages through channels

» Channel: - A message queue that connects one task’s
output port with another task’s input port

sender is never blocked
receiver is blocked if the data value is not yet sent

Task/Channel Model

(a) (b)

Task
Channel

Foster’s Methodology

Problem

O O
Partitioning O O
— >0 O
O O
O O

Mapping

O
O

O
O

O O O O O

O

_
)
)
CJ

L L]

Communication
—~ O—0O—0—0
O—0O—C0O——0
O—CO—0O0—-0
O—0O——C0O0——0
O—(O—C0O-—0

Agglomeration

Partitioning

» To discover as much parallelism as possible

» Dividing computation and data into pieces

» Domain decomposition (Data-Centric Approach)
Divide data into pieces

Determine how to associate computations with the
data

» Functional decomposition (Computational-Centric)
Divide computation into pieces

Determine how to associate data with the
computations

Most of the time = Pipelining

Example Domain Decompositions

Primitive Tasks

Data Structure

B Rk
g f

8

Example Functional Decomposition

Acquire Patient]
Images

Track Position of
Instruments

Register
Images

!

Determine Image
Locations

Y

Display Image

Partitioning Checklist
» At least 10x more primitive tasks than processors in
target computer

» Minimize redundant computations and redundant data
storage

» Primitive tasks roughly the same size

» Number of tasks an increasing function of problem size

Communication

» Local communication

Task needs values from a small number of other tasks

» Global communication

Significant number of tasks contribute data to perform a
computation

Communication Checklist

» Communication operations balanced among tasks

» Each task communicates with only small group of
neighbors

» Tasks can perform communications concurrently
» Task can perform computations concurrently

Agglomeration

» After 2 steps, our design still cannot execute efficiently on
a real parallel computer
» Grouping tasks into larger tasks to reduce overheads
» Goals
Improve performance
Maintain scalability of program
Simplify programming
» In MPI programming, goal often to create one
agglomerated task per processor

Agglomeration Can Improve Performance

» Eliminate communication between primitive tasks
agglomerated into consolidated task

» Combine groups of sending and receiving tasks

O—O :>©

5o = U

Agglomeration Checklist

» Locality of parallel algorithm has increased

» Replicated computations take less time than
communications they replace

» Data replication doesn’t affect scalability

» Agglomerated tasks have similar computational and
communications costs

» Number of tasks increases with problem size
» Number of tasks suitable for likely target systems

» Tradeoff between agglomeration and code
modifications costs is reasonable

Mapping

» Process of assigning tasks to processors

» Centralized multiprocessor: mapping done by operating
system

» Distributed memory system: mapping done by user

» Conflicting goals of mapping
Maximize processor utilization
Minimize interprocessor communication

Mapping Example

(a) (b)

Optimal Mapping

» Finding optimal mapping is NP-hard
» Must rely on heuristics

Static number of tasks Dynamic nurmber of tasks
Structured Unstructured
communication communication
pattern pattern
Roughly constant Compuatation Frequent Many short-lived
computation time time per task commuanications tasks. No intertask
per task varics by region. between tasks communications.
} | : Y .
Agglomerate tasks to Cyclically map tasks to Use a static Use a dynamic Use a run-time
minimize communication. processors to balance load balancing load balancing task-scheduling

Create one task per processor. compulational load. algorithm, algorithm, algorithm,

Mapping Decision Tree

» Static number of tasks
Structured communication
Constant computation time per task
Agglomerate tasks to minimize comm
Create one task per processor
Variable computation time per task
Cyclically map tasks to processors
Unstructured communication
Use a static load balancing algorithm

» Dynamic number of tasks

Mapping Strategy

» Static number of tasks

» Dynamic number of tasks
Frequent communications between tasks
Use a dynamic load balancing algorithm

Many short-lived tasks
Use a run-time task-scheduling algorithm

Mapping Checklist

» Considered designs based on one task per processor and
multiple tasks per processor

» Evaluated static and dynamic task allocation

» If dynamic task allocation chosen, task allocator is not a
bottleneck to performance

» If static task allocation chosen, ratio of tasks to
processors is at least 10:|

Case Studies

» Boundary value problem

» The n-body problem

Boundary Value Problem

B\/\/\,

lce water Rod Insulation

Rod Cools as Time Progresses

t=10
100
a0 /
o B0
: ///
U
@
[vh]
g 40 // 1= 3
[an}
20
0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Finite Difference Approximation

L
]7 ‘:: ;:g Z%%
I'm . > A

u.)
i-1 i i+1,

N
N
N
A T Ty

k???Z%???Zf?????Z???%Z%%%%??Z%????%???Z???Z%%?%?/????Z%???Z%????%???Z%%Z%??Z%????Z%???Z??????Z%?% 1

u= 100sin(7z)

Space

Partitioning

» One data item per grid point
» Associate one primitive task with each grid point

» Two-dimensional domain decomposition

Communication

» ldentify communication pattern between primitive tasks

» Each interior primitive task has three incoming and three
outgoing channels

Agglomeration and Mapping

-
O
k=]
4]
S
v
&
ke
09
<

)

(b

(c)

Sequential execution time

» ¥ — time to update element
» h — number of elements
» m — number of iterations

» Sequential execution time:m (n-1) y

Parallel Execution Time

» p — number of processors
» A — message latency
» Parallel execution time m(xr(n-l)/p—|+2k)

The n-body Problem

The n-body Problem

Partitioning

» Domain partitioning
» Assume one task per particle
» Task has particle’s position, velocity vector

» Iteration
Get positions of all other particles

Compute new position, velocity

Parallel Programming Models

» Data
Private or shared ?

How to access data (shared vs. message passing)

» Operations

How can we handle atomic operations !
» Cost

How much does it cost (for accessing data, synchronization,
etc.)

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Example
» Global summation

> (KD secdpesdpecdpeee

@) @) @) @)

» Decomposition

j+m -1

>f (AK)

» Assign n/p numbers to each of p procs

Each process computes f(A[k]) and performs partial sum

One process collects the partial sums and computes global
sum

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Model 1: Message Passing

recv Pn,Y send PO, X

I\IIII | I I I I
Ny

P P

e No shared data

 Explicit data transfer (both sender and receiver must call
the send/recv functions)

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Global Sum in Message Passing

partial sum = o
for each data Alk]
partial sum += £ (A[K]);

end for

if my id == othen
for each proc j (excluding o)
recv(j, psum);
global sum += psum
end for
else
send (proc, partial sum);

end 1if

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Model 2: Shared Memory

Address: C I 1 [T T T T T T T T T 1T T 11

O == X= ..

(=
@ @ B P Private

» Private & shared variables

» Communicate & synchronize via shared variables
(semaphore, locks)

» Similar to multi-thread programming

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Global Sum in Shared Memory

Thread 1 Thread 2
[s = 0 initially] [s =0 initially]
local s1=0 local s2=0
fori=0,n/2-1 fori=n/2,n-1
local sl =local sl + f(A[i]) local_s2=local_s2 + f(A[i])
s=s+ local sl s =s +local_s2

RACE CONDITION!

What could go wrong?

Solution? Mutual exclusion with locks

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Model 3: Data Parallel

» SIMD style
Single instruction for all data
Shift data around
Pro: easy to understand

Con: inapplicable with irregular problem

A:IIIIIIIIIIIIIIIIIIII
A = array of all data p
fA:f(A) fA:IIIIIIII||||||||||||
s = sum(fA) y SUM

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

Message Passing vs. Shared Memory

» Message passing
Data distribution among local address spaces needed

No explicit shared structures

Communication is explicit

Synchronization implicit in communication
» Shared Memory

Private and shared data

Synchronization done by using shared variables

2110412 Parallel Comp Arch Natawut Nupairoj, Ph.D.

