
2110412 Parallel Comp Arch

Parallel Programming Paradigm

Natawut Nupairoj, Ph.D.

Department of Computer Engineering, Chulalongkorn University



Outline

 Overview

 Parallel Architecture Revisited

 Parallelism

 Parallel Algorithm Design

 Parallel Programming Model

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch



What are the factors for parallel 

programming paradigm?

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

 System Architecture

 Parallelism – Nature of Applications

 Development Paradigms

 Automatic (by Compiler or by Library) : OpenMP

 Semi-Auto (Directives / Hints) : CUDA

 Manual : MPI, Multi-Thread Programming



Generic Parallel Architecture

 Where is the memory physically located ?

Interconnection Network

Memory

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

P

M

P

M

P

M

P

M



Flynn’s Taxonomy

 Very influential paper in 1966
 Two most important characteristics

 Number of instruction streams.

 Number of data elements.

 SISD (Single Instruction, Single Data).

 SIMD (Single Instruction, Multiple Data).

 MISD (Multiple Instruction, Single Data).

 MIMD (Multiple Instruction, Multiple Data).



SISD

 One instruction stream and one data stream - from 
memory to processor.

 von Neumann’s architecture.

 Example

 PC.

P M
I, D



SIMD

 One control unit tells processing elements to compute 
(at the same time).

 Examples

 TMC/CM-1, Maspar MP-1, Modern GPU

P M
D

P M
D

P M
D

P M
D

Ctrl

I



MISD

 No one agrees if there is such a MISD.

 Some say systolic array and pipeline processor are.

P
D

P
D

P
DD

I I I



MIMD

 Multiprocessor, each 

executes its own 
instruction/data stream.

 May communicate with 

one another once in a 
while.

 Examples

 IBM SP, SGI Origin, HP 
Convex, Cray ...

 Cluster

 Multi-Core CPU

P M
I, D

P M
I, D

P M
I, D

P M
I, D

N

E

T

W

O

R

K



Parallelism

 To understand parallel system, we need to understand 

how can we utilize parallelism

 There are 3 types of parallelism

 Data parallelism

 Functional parallelism

 Pipelining

 Can be described with data dependency graph



Data Dependency Graph

 A directed graph representing the 

dependency of data and order of 

execution

 Each vertex is a task

 Edge from A to B

 Task A must be completed before task B

 Task B is dependent on task A

 Tasks that are independent from one 

another can be perform concurrently

A

B



Parallelism Structure

A

C

B

Pipelining

A

B

E

C D

Functional Parallelism

A

B

C

B B

Data Parallelism



Example

 Weekly Landscape Maintenance

 Mow lawn, edge lawn, weed garden, check sprinklers

 Cannot check sprinkler until all other 3 tasks are done

 Must turn off security system first

 And turn it back on before leaving



Example: Dependency Graph

 What can you do with a team of 8 people?

Turn-off

security

Check sprinklers

Turn-on

security

Mow

lawn

Edge

lawn

Weed

garden



Functional Parallelism

 Apply different operations 

to different (or same) data 

elements

 Very straight forward for 

this problem

 However, we have 8 

people?

Turn-off

security

Check sprinklers

Turn-on

security

Mow

lawn

Edge

lawn

Weed

garden



Data Parallelism

 Apply the same operation 

to different data elements

 Can be processor array 

and vector processing

 Complier can help!!!

Turn-off

security

Check sprinklers

Turn-on

security

Everyone mows lawn

Everyone edges lawn

Everyone weeds garden



Sample Algorithm
for i := 0 to 99 do

a[i] := b[i] + c[i]

endfor

for i := 1 to 99 do

a[i] := a[i-1] + c[i]

endfor

for i := 1 to 99 do

for j := 0 to 99 do

a[i,j] := a[i-1,j] + c[i,j]

endfor

endfor



Pipelining

 Improve the execution speed

 Divide long tasks into small steps or “stages”

 Each stage executes independently and concurrently

 Move data toward workers (or stages)

 Pipelining does not work for single data element !!!

 Pipelining is best for

 Limited functional units

 Each data unit cannot be partitioned



Example: Pipelining and Landscape 

Maintenance 

• Does not work for a single house

• Multiple houses are not good either!

Turn-off

security

Check sprinklers

Turn-on

security

Mow

lawn

Edge

lawn

Weed

garden



Vector Processing

 Data parallelism technique

 Perform the same function on multiple data elements (aka. “vector”)

 Many scientific applications are matrix-oriented



Example: SAXPY (DAXPY) problem
for i := 0 to 63 do

Y[i] := a*X[i] + Y[i]

endfor

Y(0:63) = a*X(0:63) + Y(0:63)

LV V1,R1 ; R1 contains based address for “X[*]”

LV V2,R2 ; R2 contains based address for “Y[*]”

MULSV V3,R3,V1 ; a*X -- R3 contains the value of “a”

ADDV V1,V3,V2 ; a*X + Y

SV R2,V1 ; write back to “Y[*]”

 No stall, reduce Flynn bottleneck problem

 Vector Processors may also be pipelined



Vector Processing

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

 Problems that can be efficiently formulated in terms of vectors

 Long-range weather forecasting

 Petroleum explorations

 Medical diagnosis

 Aerodynamics and space flight simulations

 Artificial intelligence and expert systems

 Mapping the human genome

 Image processing

 Very famous in the past e.g. Cray Y-MP

 Not obsolete yet!

 IBM Cell Processor

 Intel Larrabee GPU



Level of Parallelism

 Levels of parallelism are classified by grain size (or 

granularity)

 Very-fine-grain (instruction-level or ILP)

 Fine-grain (data-level)

 Medium-grain (control-level)

 Coarse-grain (task-level)

 Usually mean the number of instructions performed 

between each synchronization



Level of Parallelism

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch



Parallel Programming Models

 Architecture

 SISD - no parallelism

 SIMD - instructional-level parallelism

 MIMD - functional/program-level parallelism

 SPMD - Combination of MIMD and SIMD

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch



Parallel Algorithm Design

 Parallel computation = set of tasks

 Task - A program unit with its local memory and a 

collection of I/O ports

 local memory contains program instructions and data

 send local data values to other tasks via output ports

 receive data values from other tasks via input ports

 Tasks interact by sending messages through channels

 Channel: - A message queue that connects one task’s 

output port with another task’s input port

 sender is never blocked

 receiver is blocked if the data value is not yet sent



Task/Channel Model

Task

Channel



Foster’s Methodology

Problem
Partitioning

Communication

AgglomerationMapping



Partitioning

 To discover as much parallelism as possible

 Dividing computation and data into pieces

 Domain decomposition (Data-Centric Approach)

 Divide data into pieces

 Determine how to associate computations with the 
data

 Functional decomposition (Computational-Centric)

 Divide computation into pieces

 Determine how to associate data with the 
computations

 Most of the time = Pipelining



Example Domain Decompositions



Example Functional Decomposition



Partitioning Checklist

 At least 10x more primitive tasks than processors in 

target computer

 Minimize redundant computations and redundant data 

storage

 Primitive tasks roughly the same size

 Number of tasks an increasing function of problem size



Communication

 Local communication

 Task needs values from a small number of other tasks

 Global communication

 Significant number of tasks contribute data to perform a 

computation



Communication Checklist

 Communication operations balanced among tasks

 Each task communicates with only small group of 
neighbors

 Tasks can perform communications concurrently

 Task can perform computations concurrently



Agglomeration

 After 2 steps, our design still cannot execute efficiently on 

a real parallel computer

 Grouping tasks into larger tasks to reduce overheads

 Goals

 Improve performance

 Maintain scalability of program

 Simplify programming

 In MPI programming, goal often to create one 

agglomerated task per processor



Agglomeration Can Improve Performance

 Eliminate communication between primitive tasks 

agglomerated into consolidated task

 Combine groups of sending and receiving tasks



Agglomeration Checklist

 Locality of parallel algorithm has increased

 Replicated computations take less time than 
communications they replace

 Data replication doesn’t affect scalability

 Agglomerated tasks have similar computational and 
communications costs

 Number of tasks increases with problem size

 Number of tasks suitable for likely target systems

 Tradeoff between agglomeration and code 
modifications costs is reasonable



Mapping

 Process of assigning tasks to processors

 Centralized multiprocessor: mapping done by operating 
system

 Distributed memory system: mapping done by user

 Conflicting goals of mapping

 Maximize processor utilization

 Minimize interprocessor communication



Mapping Example



Optimal Mapping

 Finding optimal mapping is NP-hard

 Must rely on heuristics



Mapping Decision Tree

 Static number of tasks

 Structured communication

 Constant computation time per task

Agglomerate tasks to minimize comm

Create one task per processor

 Variable computation time per task

Cyclically map tasks to processors

 Unstructured communication

Use a static load balancing algorithm

 Dynamic number of tasks



Mapping Strategy

 Static number of tasks

 Dynamic number of tasks

 Frequent communications between tasks

 Use a dynamic load balancing algorithm

 Many short-lived tasks

 Use a run-time task-scheduling algorithm



Mapping Checklist

 Considered designs based on one task per processor and 

multiple tasks per processor

 Evaluated static and dynamic task allocation

 If dynamic task allocation chosen, task allocator is not a 

bottleneck to performance

 If static task allocation chosen, ratio of tasks to 

processors is at least 10:1



Case Studies

 Boundary value problem

 The n-body problem



Boundary Value Problem

Ice water Rod Insulation



Rod Cools as Time Progresses



Finite Difference Approximation



Partitioning

 One data item per grid point

 Associate one primitive task with each grid point

 Two-dimensional domain decomposition



Communication

 Identify communication pattern between primitive tasks

 Each interior primitive task has three incoming and three 

outgoing channels



Agglomeration and Mapping

Agglomeration



Sequential execution time

  – time to update element

 n – number of elements

 m – number of iterations

 Sequential execution time: m (n-1) 



Parallel Execution Time

 p – number of processors

  – message latency

 Parallel execution time m((n-1)/p+2)



The n-body Problem



The n-body Problem



Partitioning

 Domain partitioning

 Assume one task per particle

 Task has particle’s position, velocity vector

 Iteration

 Get positions of all other particles

 Compute new position, velocity



Parallel Programming Models

 Data

 Private or shared ?

 How to access data (shared vs. message passing)

 Operations

 How can we handle atomic operations ?

 Cost

 How much does it cost (for accessing data, synchronization, 
etc.)

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch



Example

 Global summation

 Decomposition

 Assign n/p numbers to each of p procs

 Each process computes f(A[k]) and performs partial sum

 One process collects the partial sums and computes global 
sum






1

0

])[(
n

k

kAf






1

])[(
mj

jk

kAf

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch



PPP

i
res
s

. . .

i
res
s

XY

n0

Model 1: Message Passing

send P0,Xrecv Pn,Y

• No shared data

• Explicit data transfer (both sender and receiver must call 
the send/recv functions)

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch



Global Sum in Message Passing

partial_sum = 0;
for each data A[k]

partial_sum += f(A[k]);

end for

if my_id == 0 then
for each proc j (excluding 0)

recv(j, psum);

global_sum += psum

end for

else

send(proc, partial_sum);

end if

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch



Model 2: Shared Memory

 Private & shared variables

 Communicate & synchronize via shared variables 
(semaphore, locks)

 Similar to multi-thread programming

i
res
s

PPP

i
res
s

. . .

x = ...
y = ..x ...

Address:

Shared

Private

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch



Global Sum in Shared Memory

Thread 1

[s = 0 initially]

local_s1= 0

for i = 0, n/2-1

local_s1 = local_s1 + f(A[i])

s = s + local_s1

Thread 2

[s = 0 initially]

local_s2 = 0

for i = n/2, n-1

local_s2= local_s2 + f(A[i])

s = s +local_s2

What could go wrong?

RACE CONDITION!

Solution? Mutual exclusion with locks

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch



Model 3: Data Parallel

 SIMD style

 Single instruction for all data

 Shift data around

 Pro: easy to understand

 Con: inapplicable with irregular problem

A:

fA:
f

sum

A = array of all data

fA = f(A)

s = sum(fA)
s:

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch



Message Passing vs. Shared Memory

 Message passing

 Data distribution among local address spaces needed

 No explicit shared structures

 Communication is explicit

 Synchronization implicit in communication

 Shared Memory

 Private and shared data

 Synchronization done by using shared variables

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch


