
2110412 Parallel Comp Arch

Parallel Programming Paradigm

Natawut Nupairoj, Ph.D.

Department of Computer Engineering, Chulalongkorn University

Outline

 Overview

 Parallel Architecture Revisited

 Parallelism

 Parallel Algorithm Design

 Parallel Programming Model

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

What are the factors for parallel

programming paradigm?

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

 System Architecture

 Parallelism – Nature of Applications

 Development Paradigms

 Automatic (by Compiler or by Library) : OpenMP

 Semi-Auto (Directives / Hints) : CUDA

 Manual : MPI, Multi-Thread Programming

Generic Parallel Architecture

 Where is the memory physically located ?

Interconnection Network

Memory

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

P

M

P

M

P

M

P

M

Flynn’s Taxonomy

 Very influential paper in 1966
 Two most important characteristics

 Number of instruction streams.

 Number of data elements.

 SISD (Single Instruction, Single Data).

 SIMD (Single Instruction, Multiple Data).

 MISD (Multiple Instruction, Single Data).

 MIMD (Multiple Instruction, Multiple Data).

SISD

 One instruction stream and one data stream - from
memory to processor.

 von Neumann’s architecture.

 Example

 PC.

P M
I, D

SIMD

 One control unit tells processing elements to compute
(at the same time).

 Examples

 TMC/CM-1, Maspar MP-1, Modern GPU

P M
D

P M
D

P M
D

P M
D

Ctrl

I

MISD

 No one agrees if there is such a MISD.

 Some say systolic array and pipeline processor are.

P
D

P
D

P
DD

I I I

MIMD

 Multiprocessor, each

executes its own
instruction/data stream.

 May communicate with

one another once in a
while.

 Examples

 IBM SP, SGI Origin, HP
Convex, Cray ...

 Cluster

 Multi-Core CPU

P M
I, D

P M
I, D

P M
I, D

P M
I, D

N

E

T

W

O

R

K

Parallelism

 To understand parallel system, we need to understand

how can we utilize parallelism

 There are 3 types of parallelism

 Data parallelism

 Functional parallelism

 Pipelining

 Can be described with data dependency graph

Data Dependency Graph

 A directed graph representing the

dependency of data and order of

execution

 Each vertex is a task

 Edge from A to B

 Task A must be completed before task B

 Task B is dependent on task A

 Tasks that are independent from one

another can be perform concurrently

A

B

Parallelism Structure

A

C

B

Pipelining

A

B

E

C D

Functional Parallelism

A

B

C

B B

Data Parallelism

Example

 Weekly Landscape Maintenance

 Mow lawn, edge lawn, weed garden, check sprinklers

 Cannot check sprinkler until all other 3 tasks are done

 Must turn off security system first

 And turn it back on before leaving

Example: Dependency Graph

 What can you do with a team of 8 people?

Turn-off

security

Check sprinklers

Turn-on

security

Mow

lawn

Edge

lawn

Weed

garden

Functional Parallelism

 Apply different operations

to different (or same) data

elements

 Very straight forward for

this problem

 However, we have 8

people?

Turn-off

security

Check sprinklers

Turn-on

security

Mow

lawn

Edge

lawn

Weed

garden

Data Parallelism

 Apply the same operation

to different data elements

 Can be processor array

and vector processing

 Complier can help!!!

Turn-off

security

Check sprinklers

Turn-on

security

Everyone mows lawn

Everyone edges lawn

Everyone weeds garden

Sample Algorithm
for i := 0 to 99 do

a[i] := b[i] + c[i]

endfor

for i := 1 to 99 do

a[i] := a[i-1] + c[i]

endfor

for i := 1 to 99 do

for j := 0 to 99 do

a[i,j] := a[i-1,j] + c[i,j]

endfor

endfor

Pipelining

 Improve the execution speed

 Divide long tasks into small steps or “stages”

 Each stage executes independently and concurrently

 Move data toward workers (or stages)

 Pipelining does not work for single data element !!!

 Pipelining is best for

 Limited functional units

 Each data unit cannot be partitioned

Example: Pipelining and Landscape

Maintenance

• Does not work for a single house

• Multiple houses are not good either!

Turn-off

security

Check sprinklers

Turn-on

security

Mow

lawn

Edge

lawn

Weed

garden

Vector Processing

 Data parallelism technique

 Perform the same function on multiple data elements (aka. “vector”)

 Many scientific applications are matrix-oriented

Example: SAXPY (DAXPY) problem
for i := 0 to 63 do

Y[i] := a*X[i] + Y[i]

endfor

Y(0:63) = a*X(0:63) + Y(0:63)

LV V1,R1 ; R1 contains based address for “X[*]”

LV V2,R2 ; R2 contains based address for “Y[*]”

MULSV V3,R3,V1 ; a*X -- R3 contains the value of “a”

ADDV V1,V3,V2 ; a*X + Y

SV R2,V1 ; write back to “Y[*]”

 No stall, reduce Flynn bottleneck problem

 Vector Processors may also be pipelined

Vector Processing

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

 Problems that can be efficiently formulated in terms of vectors

 Long-range weather forecasting

 Petroleum explorations

 Medical diagnosis

 Aerodynamics and space flight simulations

 Artificial intelligence and expert systems

 Mapping the human genome

 Image processing

 Very famous in the past e.g. Cray Y-MP

 Not obsolete yet!

 IBM Cell Processor

 Intel Larrabee GPU

Level of Parallelism

 Levels of parallelism are classified by grain size (or

granularity)

 Very-fine-grain (instruction-level or ILP)

 Fine-grain (data-level)

 Medium-grain (control-level)

 Coarse-grain (task-level)

 Usually mean the number of instructions performed

between each synchronization

Level of Parallelism

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

Parallel Programming Models

 Architecture

 SISD - no parallelism

 SIMD - instructional-level parallelism

 MIMD - functional/program-level parallelism

 SPMD - Combination of MIMD and SIMD

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

Parallel Algorithm Design

 Parallel computation = set of tasks

 Task - A program unit with its local memory and a

collection of I/O ports

 local memory contains program instructions and data

 send local data values to other tasks via output ports

 receive data values from other tasks via input ports

 Tasks interact by sending messages through channels

 Channel: - A message queue that connects one task’s

output port with another task’s input port

 sender is never blocked

 receiver is blocked if the data value is not yet sent

Task/Channel Model

Task

Channel

Foster’s Methodology

Problem
Partitioning

Communication

AgglomerationMapping

Partitioning

 To discover as much parallelism as possible

 Dividing computation and data into pieces

 Domain decomposition (Data-Centric Approach)

 Divide data into pieces

 Determine how to associate computations with the
data

 Functional decomposition (Computational-Centric)

 Divide computation into pieces

 Determine how to associate data with the
computations

 Most of the time = Pipelining

Example Domain Decompositions

Example Functional Decomposition

Partitioning Checklist

 At least 10x more primitive tasks than processors in

target computer

 Minimize redundant computations and redundant data

storage

 Primitive tasks roughly the same size

 Number of tasks an increasing function of problem size

Communication

 Local communication

 Task needs values from a small number of other tasks

 Global communication

 Significant number of tasks contribute data to perform a

computation

Communication Checklist

 Communication operations balanced among tasks

 Each task communicates with only small group of
neighbors

 Tasks can perform communications concurrently

 Task can perform computations concurrently

Agglomeration

 After 2 steps, our design still cannot execute efficiently on

a real parallel computer

 Grouping tasks into larger tasks to reduce overheads

 Goals

 Improve performance

 Maintain scalability of program

 Simplify programming

 In MPI programming, goal often to create one

agglomerated task per processor

Agglomeration Can Improve Performance

 Eliminate communication between primitive tasks

agglomerated into consolidated task

 Combine groups of sending and receiving tasks

Agglomeration Checklist

 Locality of parallel algorithm has increased

 Replicated computations take less time than
communications they replace

 Data replication doesn’t affect scalability

 Agglomerated tasks have similar computational and
communications costs

 Number of tasks increases with problem size

 Number of tasks suitable for likely target systems

 Tradeoff between agglomeration and code
modifications costs is reasonable

Mapping

 Process of assigning tasks to processors

 Centralized multiprocessor: mapping done by operating
system

 Distributed memory system: mapping done by user

 Conflicting goals of mapping

 Maximize processor utilization

 Minimize interprocessor communication

Mapping Example

Optimal Mapping

 Finding optimal mapping is NP-hard

 Must rely on heuristics

Mapping Decision Tree

 Static number of tasks

 Structured communication

 Constant computation time per task

Agglomerate tasks to minimize comm

Create one task per processor

 Variable computation time per task

Cyclically map tasks to processors

 Unstructured communication

Use a static load balancing algorithm

 Dynamic number of tasks

Mapping Strategy

 Static number of tasks

 Dynamic number of tasks

 Frequent communications between tasks

 Use a dynamic load balancing algorithm

 Many short-lived tasks

 Use a run-time task-scheduling algorithm

Mapping Checklist

 Considered designs based on one task per processor and

multiple tasks per processor

 Evaluated static and dynamic task allocation

 If dynamic task allocation chosen, task allocator is not a

bottleneck to performance

 If static task allocation chosen, ratio of tasks to

processors is at least 10:1

Case Studies

 Boundary value problem

 The n-body problem

Boundary Value Problem

Ice water Rod Insulation

Rod Cools as Time Progresses

Finite Difference Approximation

Partitioning

 One data item per grid point

 Associate one primitive task with each grid point

 Two-dimensional domain decomposition

Communication

 Identify communication pattern between primitive tasks

 Each interior primitive task has three incoming and three

outgoing channels

Agglomeration and Mapping

Agglomeration

Sequential execution time

 – time to update element

 n – number of elements

 m – number of iterations

 Sequential execution time: m (n-1)

Parallel Execution Time

 p – number of processors

 – message latency

 Parallel execution time m((n-1)/p+2)

The n-body Problem

The n-body Problem

Partitioning

 Domain partitioning

 Assume one task per particle

 Task has particle’s position, velocity vector

 Iteration

 Get positions of all other particles

 Compute new position, velocity

Parallel Programming Models

 Data

 Private or shared ?

 How to access data (shared vs. message passing)

 Operations

 How can we handle atomic operations ?

 Cost

 How much does it cost (for accessing data, synchronization,
etc.)

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

Example

 Global summation

 Decomposition

 Assign n/p numbers to each of p procs

 Each process computes f(A[k]) and performs partial sum

 One process collects the partial sums and computes global
sum

1

0

])[(
n

k

kAf

1

])[(
mj

jk

kAf

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

PPP

i
res
s

. . .

i
res
s

XY

n0

Model 1: Message Passing

send P0,Xrecv Pn,Y

• No shared data

• Explicit data transfer (both sender and receiver must call
the send/recv functions)

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

Global Sum in Message Passing

partial_sum = 0;
for each data A[k]

partial_sum += f(A[k]);

end for

if my_id == 0 then
for each proc j (excluding 0)

recv(j, psum);

global_sum += psum

end for

else

send(proc, partial_sum);

end if

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

Model 2: Shared Memory

 Private & shared variables

 Communicate & synchronize via shared variables
(semaphore, locks)

 Similar to multi-thread programming

i
res
s

PPP

i
res
s

. . .

x = ...
y = ..x ...

Address:

Shared

Private

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

Global Sum in Shared Memory

Thread 1

[s = 0 initially]

local_s1= 0

for i = 0, n/2-1

local_s1 = local_s1 + f(A[i])

s = s + local_s1

Thread 2

[s = 0 initially]

local_s2 = 0

for i = n/2, n-1

local_s2= local_s2 + f(A[i])

s = s +local_s2

What could go wrong?

RACE CONDITION!

Solution? Mutual exclusion with locks

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

Model 3: Data Parallel

 SIMD style

 Single instruction for all data

 Shift data around

 Pro: easy to understand

 Con: inapplicable with irregular problem

A:

fA:
f

sum

A = array of all data

fA = f(A)

s = sum(fA)
s:

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

Message Passing vs. Shared Memory

 Message passing

 Data distribution among local address spaces needed

 No explicit shared structures

 Communication is explicit

 Synchronization implicit in communication

 Shared Memory

 Private and shared data

 Synchronization done by using shared variables

Natawut Nupairoj, Ph.D.2110412 Parallel Comp Arch

