
2110412 Parallel Comp Arch

Parallel Programming with MPI

Natawut Nupairoj, Ph.D.

Department of Computer Engineering, Chulalongkorn University

Overview

 MPI = Message Passing Interface

 Provide portable programming

paradigm on existing development

environments

 Derived from several previous message-

passing libraries

 Versions for C/C++ and FORTRAN

 Hide details of architecture (e.g.

message passing, buffering)

 Provides fundamental message

management services

MPI History

 Late 1980s: vendors had unique libraries

 1989: Parallel Virtual Machine (PVM) developed at Oak
Ridge National Lab

 1992: Work on MPI standard begun

 1994: Version 1.0 of MPI standard

 1997: Version 2.0 of MPI standard

 Today: MPI is dominant message passing library standard

MPI Programming Model

 Focus on distributed memory system

 Explicit parallelism

 MPI provides standard message passing API (about 115

functions in MPI-1)

 Programmer must identify the parallelism and call MPI

functions to implement the parallel program

 Program must follow MPI programming structure

 Number of tasks is static

 Not dynamically spawn during run-time in MPI-1

 MPI-2 supports dynamic tasks

MPI Programming Structure

 Start by including the

“mpi.h” (standard header

file)

 Initialize MPI environment

with MPI_Init

 Call MPI functions to

communicate between

parallel tasks

 Terminate MPI environment

with MPI_Finalize

MPI Initialize and Terminate

 Statement needed in every program before any other MPI

code

MPI_Init(&argc, &argv);

 Last statement of MPI code must be

MPI_Finalize();

 Program will not terminate without this statement

MPI Communication Model

 When process communicates, it must

refer to communicator

 Communicator

 Collection of processes

 Determines scope to

which messages are relative

 identity of process (rank)

is relative to communicator

 scope of global communications

(broadcast, etc.)

 MPI_COMM_WORLD = all processes

Communicator

MPI_COMM_WORLD

Communicator

0

2

1

3

4

5

Processes

Ranks

Communicator Name

Process Rank and Size

 Unique, integer identifier assigned by the system to each

process

 For specifying the source and destination of messages

 Contiguous and begin at zero

 Used conditionally by the application to control program

execution (if rank=0 do this / if rank=1 do that)

MPI_Comm_rank (MPI_COMM_WORLD, &id);

MPI_Comm_size (MPI_COMM_WORLD, &p);

Replication of Automatic Variables

0id

6p

4id

6p

2id

6p

1id

6p
5id

6p

3id

6p

Example – Simple MPI program
#include "mpi.h“

#include <stdio.h>

int main(argc,argv)

int argc;

char *argv[];

{

int numtasks, rank;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numtasks);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

printf ("Number of tasks= %d My rank= %d\n",

numtasks,rank);

MPI_Finalize();

}

MPI - SPMD Computational Model
int main(int argc,char *argv[])

{

MPI_Init(&argc,&argv);

...

MPI_Comm_size(MPI_COMM_WORLD,&numtasks);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

...

if (rank == 0)

/* Do some master work here */

else

/* Do some slave work here */

...

MPI_Finalize();

}

MPI Communication Model

 Point-to-Point Communication

 Send and receive messages between 2 processes

 Exchange information one-to-one

 Collective Communication

 Send and receive messages between group of processes

 Synchronization and collaboration

MPI - Sending a Message with MPI_Send

MPI_Send(msg, count, type, dest, tag,

MPI_COMM_WORLD);

 message contents block of memory

 count number of items in message

 message type type of each item

 destination rank of processor to receive

 tag integer designator for message

 communicator the communicator within

which the message is sent

MPI_Datatype Options

 MPI_CHAR

 MPI_DOUBLE

 MPI_FLOAT

 MPI_INT

 MPI_LONG

 MPI_LONG_DOUBLE

 MPI_SHORT

 MPI_UNSIGNED_CHAR

 MPI_UNSIGNED

 MPI_UNSIGNED_LONG

 MPI_UNSIGNED_SHORT

MPI - Receiving a Message with MPI_Recv

MPI_Recv(msg, MAXSIZE, type, src, tag,

MPI_COMM_WORLD, &status);

 message contents block of memory

 count size of buffer

 message type type of each item

 source rank of processor sending

 tag integer designator for message

 communicator the communicator within
which the message is received

 status information about message

received

Message Passing Example

#include <stdio.h>

#include <string.h>

#include "mpi.h" /* includes MPI library code specs */

#define MAXSIZE 100

int main(int argc, char* argv[])

{

int myRank; /* rank (identity) of process */

int numProc; /* number of processors */

int source; /* rank of sender */

int dest; /* rank of destination */

int tag = 0; /* tag to distinguish messages */

char msg[MAXSIZE]; /* message (other types possible) */

int count; /* number of items in message */

MPI_Status status; /* status of message received */

Message Passing Example

MPI_Init(&argc, &argv); /* start MPI */

/* get number of processes */

MPI_Comm_size(MPI_COMM_WORLD, &numProc);

/* get rank of this process */

MPI_Comm_rank(MPI_COMM_WORLD, &myRank);

/***/

/* code to send, receive and process messages */

/***/

MPI_Finalize(); /* shut down MPI */

}

Message Passing Example
if (myRank != 0){/* all processes send to root */

/* create message */

sprintf(msg, "Hello from %d", myRank);

dest = 0; /* destination is root */

count = strlen(msg) + 1; /* include '\0' in message */

MPI_Send(msg, count, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

}

else{/* root (0) process receives and prints messages */

/* from each processor in rank order */

for(source = 1; source < numProc; source++){

MPI_Recv(msg, MAXSIZE, MPI_CHAR,

source, tag, MPICOMM_WORLD, &status);

printf("%s\n", msg);

}

}

 Fully Synchronized (Rendezvous)

 Send and Receive complete simultaneously

 whichever code reaches the Send/Receive first waits

 provides synchronization point (up to network delays)

 Buffered

 Receive must wait until message is received

 Send completes when message is moved to buffer clearing

memory of message for reuse

MPI Communication Mode

MPI Communication Model

 Asynchronous

 Sending process may proceed immediately

 does not need to wait until message is copied to buffer

 must check for completion before using message memory

 Receiving process may proceed immediately

 will not have message to use until it is received

 must check for completion before using message

MPI Communication Mode

 MPI_Send/MPI_Recv are synchronous, but buffering

is unspecified

 MPI_Recv suspends until message is received

 MPI_Send may be fully synchronous or may be buffered

 implementation dependent

 Variations allow synchronous or buffering to be specified

 MPI_Ssend

 MPI_Bsend

 MPI_Rsend

MPI Send and Receive

Asynchronous Send and Receive

 MPI_Isend() / MPI_Irecv() are non-

blocking. Control returns to program after call is

made.

 Syntax is the same as for Send and Recv, except a

MPI_Request* parameter is added to Isend and

replaces the MPI_Status* for receive.

Detecting Completion

 MPI_Wait(&request, &status)

 request matches request on Isend or Irecv

 status returns status equivalent to

status for Recv when complete

 Blocks for send until message is buffered or sent so message

variable is free

 Blocks for receive until message is received and ready

Detecting Completion

 MPI_Test(&request, flag, &status)

 request, status as for MPI_Wait

 does not block

 flag indicates whether message is sent/received

 enables code which can repeatedly check for communication

completion

Collective Communication

 Point-to-Point communication

 single sender and single receiver

 One-to-One

 Collective communication

 multiple sender and/or multiple receiver

 One-to-Many

 Many-to-One

 Many-to-Many

Broadcasting a message

 Broadcast: one sender, many receivers

 Includes all processes in communicator, all processes must

make an equivalent call to MPI_Bcast

 Any processor may be sender (root), as determined by

the fourth parameter

 First three parameters specify message as for MPI_Send

and MPI_Recv, fifth parameter specifies communicator

 Broadcast serves as a global synchronization

MPI_Bcast() Syntax

MPI_Bcast(msg, count, MPI_INT, root,

MPI_COMM_WORLD);

msg pointer to message buffer

count number of items sent

MPI_INT type of item sent

root sending processor

MPI_COMM_WORLD communicator within which

broadcast takes place

Note: count and type should be the same on all processors

Reduce

 All Processors send to a single processor, the reverse of

broadcast

 Information must be combined at receiver

 Several combining functions available

 MAX, MIN, SUM, PROD, LAND, BAND, LOR, BOR, LXOR,

BXOR, MAXLOC, MINLOC

MPI_Reduce() syntax

MPI_Reduce(&dataIn, &result, count,

MPI_DOUBLE, MPI_SUM, root,

MPI_COMM_WORLD);

dataIn data sent from each processor

result stores result of combining operation

count number of items in each of dataIn, result

MPI_DOUBLE data type for dataIn, result

MPI_SUM combining operation

root rank of processor receiving data

MPI_COMM_WORLD communicator

Example – Finding PI with MPI

 To implement in parallel

 Rank 0 is the master process and others are the work processes

 Master broadcasts “n” to all workers

 Each process adds up “x” every n'th interval

 (-1/2+rank/n, -1/2+rank/n+size/n,...).

 Master sums all the results with reduction

 For simplicity, we will

approximate PI with integral

 PI = sum of “n” intervals

 Each interval = (1/n)*4/(1+x*x)

2

1

2

1

21

4
dx

x
PI

MPI_Barrier()

MPI_Barrier(MPI_COMM_WORLD);

MPI_COMM_WORLD communicator within which

broadcast takes place

provides for barrier synchronization without message of

broadcast

Timing Programs

 MPI_Wtime()

 returns a double giving time in seconds from a fixed time in

the past

 To time a program, record MPI_Wtime() in a variable at

start, then again at finish, difference is elapsed time

startime = MPI_Wtime();

/* part of program to be timesd */

stoptime = MPI_Wtime();

time = stoptime - starttime;

How to Build MPI on Windows XP

 Requirements

 Microsoft Compute Cluster Pack SDK

 http://www.microsoft.com/downloads/details.aspx?FamilyID=d846237

8-2f68-409d-9cb3-02312bc23bfd&displaylang=en

 Your favorite editor and C compiler

 If you are using Visual Studio, please see

http://www.cs.utah.edu/~delisi/vsmpi/

 Build your MPI program

 Running program

 e.g. 3 tasks of test.exe

mpiexec –n 3 test

Assignment

 Writing an MPI program for Sorting “n” Number

 Process rank 0 is the master, others are workers

 Master accepts “n” from keyboard

 Master randoms “n” integer numbers

 Master coordinates with workers to sort these randomized

numbers

 You must measure the elapsed time for sorting

 Due date: 8 January 2010 at 18:00

 How to submit: sending email to “natawut.n@chula.ac.th”

 Note: I will use timestamp on your email

