2110412 Parallel Comp Arch
Parallel Programming with MPI

Natawut Nupairoj, Ph.D.
Department of Computer Engineering, Chulalongkorn University

Overview

» MPI| = Message Passing Interface

» Provide portable programming

u:. EUI
. . . EKP-W-ES
paradigm on existing development cranaian. " wasuacs
environments Pg—
Derived from several previous message- FCG‘“SG'/
passing libraries MP.-:
Versions for C/C++ and FORTRAN
Hide details of architecture (e.g. MPI (+/-)

message passing, buffering)

Provides fundamental message
management services

MPI History

» Late 1980s: vendors had unique libraries

» 1989: Parallel Virtual Machine (PVM) developed at Oak
Ridge National Lab

» 1992:Work on MPI standard begun

» 1994:Version 1.0 of MPI standard

» 1997:Version 2.0 of MPI standard

» Today: MPIl is dominant message passing library standard

MPI Programming Model

» Focus on distributed memory system

» Explicit parallelism

MPI provides standard message passing API (about | |5
functions in MPI-1)

Programmer must identify the parallelism and call MPI
functions to implement the parallel program

Program must follow MPI programming structure
» Number of tasks is static
Not dynamically spawn during run-time in MPI-|

MPI-2 supports dynamic tasks

MPI Programming Structure

MPI include file

Declarations, prototypes, efc.

Program Begins

Serial code

JNLEFECRN IS A0 | Parallel code begins

Do work and make message passing calls

Parallel code ends

Terminate WMPI Environment

Serial code

Program Ends

» Start by including the
“mpi.h” (standard header
file)

» Initialize MPI environment
with MPI_Init

» Call MPI functions to
communicate between
parallel tasks

» Terminate MPI| environment
with MPIl_Finalize

MPI Initialize and Terminate

» Statement needed in every program before any other MPI

code
MPI Init(&argc, &argv);

» Last statement of MPIl code must be
MPI Finalize();

Program will not terminate without this statement

MPI Communication Model

» When process communicates, it must

refer to communicator MPI_COMM_WORLD
» Communicator
Collection of processes © o ©
Determines scope to @ @ o ©
which messages are relative (@) @
identity of process (rank) @

is relative to communicator

scope of global communications
(broadcast, etc.)

» MPI_COMM_WORLD = all processes

Communicator

Communicator Name
Communicator

MPI_COMM_WORLD

Processes

Ranks

Process Rank and Size

» Unique, integer identifier assigned by the system to each
process

» For specifying the source and destination of messages

» Contiguous and begin at zero

» Used conditionally by the application to control program
execution (if rank=0 do this / if rank=1 do that)

MPI Comm rank (MPI COMM WORLD, &id);

MPI Comm size (MPI COMM WORLD, &p);

Replication of Automatic Variables

Example — Simple MPI program

#include "mpi.h"“
#include <stdio.h>

int main(argc,argv)
int argc;
char *argvl([];
{
int numtasks, rank;

MPI Init (&argc, &argv);
MPI Comm size (MPI COMM WORLD, &numtasks) ;

MPI Comm rank (MPI COMM WORLD, &rank) ;

printf ("Number of tasks= %d My rank= %d\n",
numtasks, rank) ;

MPI Finalize();

MPI - SPMD Computational Model

int main(int argc,char *argv][])
{
MPI Init (&argc, &argv);

MPI Comm size (MPI COMM WORLD, &numtasks) ;
MPI Comm rank (MPI COMM WORLD, &rank) ;

if (rank == 0)
/* Do some master work here */
else

/* Do some slave work here */

MPI Finalize();

MPI Communication Model

» Point-to-Point Communication
Send and receive messages between 2 processes
Exchange information one-to-one

» Collective Communication

Send and receive messages between group of processes

Synchronization and collaboration

MPI - Sending a Message with MPI_Send

MPI Send(msg, count, type, dest, tag,
MPI_COMM WORLD) ;

» message contents
» count

» message type

» destination

) tag

» commuhnicator

block of memory

number of items in message
type of each item

rank of processor to receive
integer designator for message

the communicator within
which the message is sent

MPI Datatype Options

MPI_ CHAR
MPI_DOUBLE
MPI_FLOAT

MPI_INT

MPI_ LONG

MPI_LONG DOUBLE
MPI_SHORT
MPI_UNSIGNED CHAR
MPI_UNSIGNED
MPI_UNSIGNED LONG
MPI_UNSIGNED SHORT

VvV VvV VvV VvV VvV VvV VvV VvV V9V Vv VY

MPI - Receiving a Message with MPI_Recv

vV Vv Vv Vv Vv ©9

MPI Recv(msg, MAXSIZE, type, src, tag,
MPI COMM WORLD, &status);

message contents
count

message type
source

tag
communicator

status

block of memory

size of buffer

type of each item

rank of processor sending
integer designator for message

the communicator within
which the message is received

information about message
received

Message Passing Example

#include <stdio.h>
#include <string.h>
#include "mpi.h"

#define MAXSIZE 100

int main(int argc, char*

{
int myRank; /*
int numProc; /*
int source; /*
int dest; /*
int tag = 0; /*
char msg[MAXSIZE]; /*
int count; /*

MPI Status status;

/~k

/* includes MPI library code specs

argvl[l])

rank (identity) of process
number of processors

rank of sender

rank of destination

tag to distinguish messages
message (other types possible)
number of items 1n message
status of message received

*/
*/
*/
*/
*/
*/
*/
*/

Message Passing Example

MPI Init(&argc, &argv); /* start MPI */

/* get number of processes */
MPI Comm size (MPI COMM WORLD, &numProc):;

/* get rank of this process */
MPI Comm rank (MPI COMM WORLD, &myRank);

/***/

/* code to send, receive and process messages */
/***/

MPI Finalize(); /* shut down MPI */

Message Passing Example

if (myRank != 0){/* all processes send to root */

/* create message */
sprintf (msg, "Hello from %d", myRank);
dest = 0; /* destination is root */

count = strlen(msg) + 1; /* include '\0' in message */

MPI Send(msg, count, MPI CHAR, dest, tag, MPI COMM WORLD) ;

}

else{/* root (0) process receives and prints messages */
/* from each processor in rank order */
for (source = 1; source < numProc; source++) {

MPI Recv (msg, MAXSIZE, MPI CHAR,
source, tag, MPICOMM WORLD, &status);

printf ("%$s\n", msqg);

MPI Communication Mode

» Fully Synchronized (Rendezvous)

Send and Receive complete simultaneously

whichever code reaches the Send/Receive first waits

provides synchronization point (up to network delays)

» Buffered

Receive must wait until message is received

Send completes when message is moved to buffer clearing
memory of message for reuse

MPI Communication Model

process A process B

application SEND application RECV

system buffer system buffer

Path of a message buffered at the receiving process

MPI Communication Mode

» Asynchronous

Sending process may proceed immediately
does not need to wait until message is copied to buffer
must check for completion before using message memory
Receiving process may proceed immediately

will not have message to use until it is received

must check for completion before using message

MPI Send and Receive

» MPI_Send/MPI_Recv are synchronous, but buffering
is unspecified
MPI Recv suspends until message is received
MPI Send may be fully synchronous or may be buffered

implementation dependent

» Variations allow synchronous or buffering to be specified
MPI Ssend
MPI Bsend
MPI Rsend

Asynchronous Send and Receive

» MPI Isend() / MPI Irecv() arenon-

blocking. Control returns to program after call is
made.

» Syntax is the same as for Send and Recy, except a
MPI_Request™ parameter is added to Isend and
replaces the MPI_Status™ for receive.

Detecting Completion

» MPI Wait (&request, &status)
request matches request on Isend or Irecv
status returns status equivalent to

status for Recv when complete

Blocks for send until message is buffered or sent so message
variable is free

Blocks for receive until message is received and ready

Detecting Completion

» MPI Test (&request, flag, &status)
request, status asfor MPI Wait
does not block
flag indicates whether message is sent/received

enables code which can repeatedly check for communication
completion

Collective Communication

» Point-to-Point communication
single sender and single receiver
One-to-One

» Collective communication
multiple sender and/or multiple receiver
One-to-Many
Many-to-One
Many-to-Many

Broadcasting a message

Broadcast: one sender, many receivers

Includes all processes in communicator; all processes must
make an equivalent call to MPI_Bcast

Any processor may be sender (root), as determined by
the fourth parameter

First three parameters specify message as for MPl_Send
and MPIl_Recy, fifth parameter specifies communicator

Broadcast serves as a global synchronization

MPI_Bcast() Syntax

MPI Bcast(msg, count, MPI INT, root,
MPI_COMM WORLD) ;

msg pointer to message buffer
count number of items sent

MPI INT type of item sent

root sending processor

MPI COMM WORLD communicator within which

broadcast takes place

Note: count and type should be the same on all processors

Reduce

» All Processors send to a single processor, the reverse of
broadcast

» Information must be combined at receiver

» Several combining functions available

MAX, MIN, SUM, PROD, LAND, BAND, LOR, BOR, LXOR,
BXOR, MAXLOC, MINLOC

MPI_Reduce() syntax

MPI Reduce (&dataIn, &result, count,
MPI DOUBLE, MPI SUM, root,
MPI COMM WORLD) ;

dataIn data sent from each processor

result stores result of combining operation
count number of items in each of dataln, result
MPI DOUBLE data type for datalIn, result

MPI SUM combining operation

root rank of processor receiving data

MPI COMM WORLD communicator

Example — Finding PI with MPI

» For simplicity, we will %
approximate Pl with integral P| = j 4 dx
Pl = sum of “n” intervals 1:]_—I— X2
Each interval = (1/n)*4/(1+x*x))

» To implement in parallel
Rank 0 is the master process and others are the work processes
Master broadcasts “n” to all workers

€¢_ 9

Each process adds up “x” every n'th interval

(-1/2+rank/n, - 1/2+rank/n+size/n,...).

Master sums all the results with reduction

ProsEss58s

data ——p

Hg g
Ag
broadecast |A,
> A
Ag
Ay
Ag | Ay | Az [Agf Ayl As Ag
scatter 3
h A'I
Az
; |
gather

Ag Aq|Ba|Go[Do| B | Fa
By Ag | Bo|Co [Do| By | Fo
G allgather 2| Ba|Ca|Dal B | Fa
Dy —* [4[B|G|Do]R (R
By Ag | Bo|Co [Do| By | Fo
Fy Aq|Ba|Go[Do| B | Fa
Ag | A Az | Az AglAs Aq|Ba|Go[Do| B | Fa
Bq|B,|B1|B5|Ba|Es A B, C, Dy |E |F,
Ca|C1|Ca|Ca|CalCs| Allteall TRTE G, [DH[E | F
D | Dy D5 | D3| Dy Dy > Az B4 G5 |Ds| B | F
E |E |E |E |E|Es A |Ba|Ca|Da| Es | Fs
Fo |F | B |F5 |Fa|Fs As|Bs|Cs|Ds|Es | Fs

MPI_Barrier()

MPI Barrier (MPI_COMM WORLD) ;
MPI COMM WORLD communicator within which

broadcast takes place

provides for barrier synchronization without message of
broadcast

Timing Programs

» MPI_Wtime()
returns a double giving time in seconds from a fixed time in
the past

To time a program, record MPl_Wtime() in a variable at
start, then again at finish, difference is elapsed time

startime = MPI Wtime()
/* part of program to be timesd */
stoptime = MPI Wtime ()

time = stoptime - starttime;

How to Build MPI on Windows XP

» Requirements

Microsoft Compute Cluster Pack SDK

http://www.microsoft.com/downloads/details.aspx?FamilylD=d846237
8-2f68-409d-9¢b3-023 | 2bc23bfd&displaylang=en

Your favorite editor and C compiler

If you are using Visual Studio, please see
http://www.cs.utah.edu/~delisi/vsmpi/

» Build your MPI program
» Running program

e.g. 3 tasks of test.exe

mpiexec —n 3 test

Assignment

¢ _ 9

» Writing an MPI program for Sorting “n” Number
Process rank 0O is the master, others are workers
Master accepts “n” from keyboard
Master randoms “n” integer numbers

Master coordinates with workers to sort these randomized
numbers

You must measure the elapsed time for sorting
» Due date: 8 January 2010 at 18:00
» How to submit: sending email to “natawut.n@chula.ac.th”

» Note: | will use timestamp on your email

