
2110412 Parallel Comp Arch

CUDA: Parallel Programming on GPU

Natawut Nupairoj, Ph.D.

Department of Computer Engineering, Chulalongkorn University

Outline

 Overview

 Parallel Computing with GPU

 Introduction to CUDA

 CUDA Thread Model

 CUDA Memory Hierarchy and Memory Spaces

 CUDA Synchronization

Overview

 Modern graphics accelerators are called GPUs

(Graphics Processing Units)

 2 ways GPUs speed up graphics:

 Pipelining: similar to pipelining in CPUs.

 CPUs like Pentium 4 has 20 pipeline stages.

 GPUs typically have 600-800 stages. -- very few branches &

most of the functionality is fixed.

Source: Leigh, “Graphics Hardware Architecture & Miscellaneous Real Time Special Effects”

Rocket Engines
Alpha channel of image

100%

Transparent

100%

Opaque

Typical Parallel Graphics Architecture

Application

G R

Display

G

G

R

R

Geometry Stage

(Transforms geometry -

scale, rotate, translate..)

RasterizerStage

(Turns geometry into pixels –

fragment gen, z-buffer merging)

.

.

.

.

Geometry

Unit
Rasterizer

Unit

Transformation

 Performs a sequence of math operation on each vertex

Rasterization

Rasterization Fragment Processing

 Enumerates the pixels

covered by triangles

 Gives the individual

triangle pixels a color

Imagine this is my screen and the polygons

that will occupy my screen

How Polygons Are Processed

(Sort-Last Fragment)

FG FG FG

FM FM FM

G G G

Display

Equally divide up the

polygons

Generate fragment for

each group of polygons

Sort out where portions of

the fragments need to go

to merge to form the whole

image

• Geometry

processing is

balanced.

• Rendering is

balanced.

• Merging involves

compositing color

and z-buffer.

Overview

 Parallelizing

 Process the data in parallel within the GPU. In essence

multiple pipelines running in parallel.

 Basic model is SIMD (Single Instruction Multiple Data) – ie

same graphics algorithms but lots of polygons to process.

Source: Leigh, “Graphics Hardware Architecture & Miscellaneous Real Time Special Effects”

SIMD (revisited)

 One control unit tells processing elements to compute
(at the same time).

 Examples

 TMC/CM-1, Maspar MP-1, Modern GPU

P M
D

P M
D

P M
D

P M
D

Ctrl

I

Modern GPU is More General

Purpose – Lots of ALU’s

GPU Case: nVidia G80 Architecture

The nVidia G80 GPU

► 128 streaming floating point processors
@1.5Ghz

► 1.5 Gb Shared RAM with 86Gb/s bandwidth

► 500 Gflop on one chip (single precision)

•16 Multiprocessors Blocks

•Each MP Block Has:

•8 Streaming Processors

(IEEE 754 spfp compliant)

•16K Shared Memory

•64K Constant Cache

•8K Texture Cache

•Each processor can access all

of the memory at 86Gb/s, but

with different latencies:

•Shared – 2 cycle latency

•Device – 300 cycle latency

nVidia G80 GPU Architecture Overview

Programming Interface

 Interface to GPU via nVidia’s proprietary API – CUDA (very
C-like)

 Looks a lot like UPC (simplified CUDA below)

void AddVectors(float *r, float *a, float *a)

{

int tx = threadId.x; //~processor rank

r[tx] = a[tx] + b[tx]; //executed in parallel

}

Still A Specialized Processor

 Very Efficient For
 Fast Parallel Floating Point Processing

 Single Instruction Multiple Data Operations

 High Computation per Memory Access

 Not As Efficient For
 Double Precision (need to test performance)

 Logical Operations on Integer Data

 Branching-Intensive Operations

 Random Access, Memory-Intensive Operations

Source: Kirk, “Parallel Computing: What has changed lately?”

GPU Case: Cell Architecture

History

 Idea generated by SCEI in 1999 after release of PS2

 STI group (Sony, Toshiba, IBM) formed in 2000

 In 2001 the first design center opened in the US

 Fall 2002 US patent released

 Since then prototypes have been developed and
clocked over @4.5 GHz

 February 2005 final architecture revealed to public

 In 2005 announced that first commercial product of
the Cell will be released in 2006

Source: Lemieux, “The Cell Processor: from conception to deployment”

Cell Architecture Overview

Cell Architecture Overview

 Intended to be configurable

 Basic Configuration consists of:

 1 PowerPC Processing Element (PPE)

 8 Synergistic Processing Elements (SPE)

 Element Interconnect Bus (EIB)

 Rambus Memory Interface Controller (MIC)

 Rambus FlexIO interface

 512 KB system Level 2 cache

SPE0

LS

(256KB)

DMA

SPE1

LS

(256KB)

DMA

MIC

Memory

Interface

Controller

XIO

SPE2

LS

(256KB)

DMA

SPE3

LS

(256KB)

DMA

SPE4

LS

(256KB)

DMA

SPE5

LS

(256KB)

DMA

SPE6

LS

(256KB)

DMA

PPE

L1 (32 KB I/D)

L2

(512 KB)

Flex-

IO1

Flex-

IO0

I/O

I/O

I/O

The Cell Processor

Source: Perthuis, “Introduction to the graphics pipeline of the PS3”

Power Processing Element (PPE)
 Act as the host processor and performs scheduling for the SPE

 64-bit processor based on IBM POWER architecture

(Performance Optimization With Enhanced RISC)

 Dual threaded, in-order execution

 32 KB Level 1 cache, connected to 512 KB system level 2

cache

 Contains VMX (AltiVec) unit and IBM hypervisor technology

to allow two operating systems to run concurrently (Such as

Linux and a real-time OS for gaming)

 SIMD vector processor and

acts independently

 Handles most of the

computational workload

 Again in-order execution but

dual issue*

 Contains 256 KB local store

memory

 Contains 128 X 128 bit

registers

Synergistic Processing Unit (SPU)

Synergistic Processing Unit (SPU)

 Operate on registers which are read from or written

to local stores.

 SPE cannot act directly on main memory; they have

to move data to and from the local stores.

 DMA device in SPEs handles moving data between

the main memory and the local store.

 Local Store addresses are aliased in the PPE address

map and transfers to and from Local Store to

memory (including other Local Stores) are coherent

in the system

Sony’s PS3

PS3 Specs

 Cell processor @ 3.2 Ghz

 7 functional SPE

 Total 218 SP GFLOPS

 nVidia RSX GPU (1.8 TFLOPS)

 256 MB XDR RAM

 256MB GDDR3 VRAM

 Up to 7 Bluetooth controllers

 Backwards compatible, WiFi capabilities with PSP

Parallel Programming with CUDA

Source: CUDA Tutorial Workshop, ISC-2009

SETI@home and CUDA

 Run 5x to 10x times faster

than CPU-only version

Introduction to CUDA

 nVidia introduced CUDA in November 2006

 Utilize parallel computing engine in GPU to solve

complex computational problems

 CUDA is industry-standard C

 Subset of C with extensions

 Write a program for one thread

 Instantiate it on many parallel threads

 Familiar programming model and language

 CUDA is a scalable parallel programming model

 Program runs on any number of processors without

recompiling

CUDA Concept

 Co-Execution between Host (CPU) and Device (GPU)

 Parallel portions are executed on the device as kernels

 One kernel is executed at a time

 Many threads execute each kernel

 All threads run the same code

 Each thread has an ID that it uses to compute memory

addresses and make control decisions

 Serial program with parallel kernels, all in C

 Serial C code executes in a CPU thread

 Parallel kernel C code executes in thread blocks across

multiple processing elements

CUDA Development: nvcc

Normal C Program

void VecAdd_CPU(float* A, float* B, float* C, int N)

{

for(int i=0 ; i < N ; i++)

C[i] = A[i] + B[i];

}

void main()

{

VecAdd_CPU(A, B, C, N);

}

CUDA Program

// Kernel definition

__global__ void VecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

void main()

{

// Kernel invocation

VecAdd<<<1, N>>>(A, B, C);

}

Source: High Performance Computing with CUDA, DoD HPCMP: 2009

CUDA Thread Model

 CUDA Thread can be

 one-dimensional

 two-dimensional

 three-dimensional

 Thread Hierarchy

 Grid

 (2-D) Block

 (3-D) Thread

Calling CUDA Kernel

 Modified C function call syntax:

kernel<<<dim3 dG, dim3 dB>>>(…)

 Execution Configuration (“<<< >>>”)

 dG - dimension and size of grid in blocks

 Two-dimensional: x and y

 Blocks launched in the grid: dG.x*dG.y

 dB - dimension and size of blocks in threads:

 Three-dimensional: x, y, and z

 Threads per block: dB.x*dB.y*dB.z

 Unspecified dim3 fields initialize to 1

Example: Adding 2-D Matrix
// Kernel definition

__global__ void MatAdd(float A[M][N], float B[M][N], float C[M][N])

{

int i = threadIdx.x;

int j = threadIdx.y;

C[i][j] = A[i][j] + B[i][j];

}

void main()

{

// Kernel invocation

dim3 dimBlock(M, N);

MatAdd<<<1, dimBlock>>>(A, B, C);

}

CUDA Built-In Device Variables

 All __global__ and __device__ functions have access to

these automatically defined variables

 dim3 gridDim;

 Dimensions of the grid in blocks (at most 2D)

 dim3 blockDim;

 Dimensions of the block in threads

 dim3 blockIdx;

 Block index within the grid

 dim3 threadIdx;

 Thread index within the block

Example: Adding 2-D Matrix
// Kernel definition

__global__ void MatAdd(float A[M][N], float B[M][N], float C[M][N])

{

int i = blockIdx.x;

int j = threadIdx.x;

C[i][j] = A[i][j] + B[i][j];

}

void main()

{

// Kernel invocation

MatAdd<<<M, N>>>(A, B, C);

}

Example: Adding 2-D Matrix
// Kernel definition

__global__ void MatAdd(float A[M][N], float B[M][N], float C[M][N])

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

if (i < N && j < N)

C[i][j] = A[i][j] + B[i][j];

}

int main()

{

// Kernel invocation

dim3 dimBlock(16, 16);

dim3 dimGrid((M + dimBlock.x – 1) / dimBlock.x,

(N + dimBlock.y – 1) / dimBlock.y);

MatAdd<<<dimGrid, dimBlock>>>(A, B, C);

}

Function Qualifiers

 Kernels designated by function qualifier:

 __global__

 Function called from host and executed on device

 Must return void

 Other CUDA function qualifiers

 __device__

 Function called from device and run on device

 Cannot be called from host code

Exercise
int main()

{

...

kernel<<<3, 5>>>(d_a);

...

}

__global__ void kernel(int *a)

{

int idx = blockIdx.x*blockDim.x + threadIdx.x;

a[idx] = 7;

}

__global__ void kernel(int *a)

{

int idx = blockIdx.x*blockDim.x + threadIdx.x;

a[idx] = blockIdx.x;

}

__global__ void kernel(int *a)

{

int idx = blockIdx.x*blockDim.x + threadIdx.x;

a[idx] = threadIdx.x;

}

Exercise

Output: 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Output: 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2

Output: 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Incremental Array Example

CPU Program CUDA Program

void inc_cpu(int *a, int N)

{

int idx;

for (idx = 0; idx<N; idx++)

a[idx] = a[idx] + 1;

}

void main()

{

…

inc_cpu(a, N);

…

}

__global__ void inc_gpu(int *a_d, int N)

{

int idx = blockIdx.x * blockDim.x

+ threadIdx.x;

if (idx < N)

a_d[idx] = a_d[idx] + 1;

}

void main()

{

…

dim3 dimBlock (blocksize);

dim3 dimGrid(ceil(N/(float)blocksize));

inc_gpu<<<dimGrid, dimBlock>>>(a_d, N);

…

}

Incremental Array Example

 Increment N-element vector a by scalar b

 Let’s assume N=16, blockDim=4 -> 4 blocks

blockIdx.x=0

blockDim.x=4

threadIdx.x=0,1,2,3

idx=0,1,2,3

blockIdx.x=1

blockDim.x=4

threadIdx.x=0,1,2,3

idx=4,5,6,7

blockIdx.x=2

blockDim.x=4

threadIdx.x=0,1,2,3

idx=8,9,10,11

blockIdx.x=3

blockDim.x=4

threadIdx.x=0,1,2,3

idx=12,13,14,15

int idx = blockDim.x * blockId.x + threadIdx.x;

will map from local index threadIdx to global index

NB: blockDim should be bigger than 4 in real code, this is just an example

Note on CUDA Kernel

 Kernels are C functions with some restrictions

 Cannot access host memory

 Must have void return type

 No variable number of arguments (“varargs”)

 Not recursive

 No static variables

 Function arguments automatically copied from host

to device

CUDA Memory Hierarchy

 Each thread has private

per-thread local memory

 All threads in a block have

per-block shared memory

 All threads can access

shared global memory

Source: High Performance Computing with CUDA, DoD HPCMP: 2009

CUDA Host/Device Memory Spaces

 “Local” memory resides in device DRAM

 Use registers and shared memory to minimize local memory

use

 Host can read and write global memory but not shared

memory

Source: High Performance Computing with CUDA, DoD HPCMP: 2009

Memory Spaces

 CPU and GPU have separate memory spaces

 Data is moved across PCIe bus

 Use functions to allocate/set/copy memory on GPU

 Very similar to corresponding C functions

 Host (CPU) manages device (GPU) memory

cudaMalloc(void **pointer, size_t nbytes)

cudaMemset(void *pointer, int value, size_t count)

cudaFree(void *pointer)

int n = 1024;

int nbytes = 1024*sizeof(int);

int *a_d = 0;

cudaMalloc((void**)&a_d, nbytes);

cudaMemset(a_d, 0, nbytes);

cudaFree(a_d);

Host / Device Data Copies

cudaMemcpy(void *dst, void *src, size_t nbytes, enum

cudaMemcpyKind direction);

 direction specifies locations (host or device) of src and dst

 Blocks CPU thread: returns after the copy is complete

 Doesn’t start copying until previous CUDA calls complete

 enum cudaMemcpyKind

 cudaMemcpyHostToDevice

 cudaMemcpyDeviceToHost

 cudaMemcpyDeviceToDevice

int main(void)

{

float *a_h, *b_h; // host data

float *a_d, *b_d; // device data

int N = 14, nBytes, i ;

nBytes = N*sizeof(float);

a_h = (float *)malloc(nBytes);

b_h = (float *)malloc(nBytes);

cudaMalloc((void **) &a_d, nBytes);

cudaMalloc((void **) &b_d, nBytes);

for (i=0, i<N; i++) a_h[i] = 100.f + i;

cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice);

cudaMemcpy(b_d, a_d, nBytes, cudaMemcpyDeviceToDevice);

cudaMemcpy(b_h, b_d, nBytes, cudaMemcpyDeviceToHost);

for (i=0; i< N; i++) assert(a_h[i] == b_h[i]);

free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);

return 0;

}

Host Synchronization

 All kernel launches are asynchronous

 control returns to CPU immediately

 kernel starts executing once all previous CUDA calls
have completed

 Memcopies are synchronous

 control returns to CPU once the copy is complete

 copy starts once all previous CUDA calls have completed

 cudaThreadSynchronize()

 blocks until all previous CUDA calls complete

 Asynchronous CUDA calls provide:

 non-blocking memcopies

 ability to overlap memcopies and kernel execution

Host Synchronization Example

…

// copy data from host to device

cudaMemcpy(a_d, a_h, numBytes, cudaMemcpyHostToDevice);

// execute the kernel

inc_gpu<<<ceil(N/(float)blocksize), blocksize>>>(a_d, N);

// run independent CPU code

run_cpu_stuff();

// copy data from device back to host

cudaMemcpy(a_h, a_d, numBytes, cudaMemcpyDeviceToHost);

…

GPU Thread Synchronization

 void __syncthreads();

 Synchronizes all threads in a block

 Generates barrier synchronization instruction

 No thread can pass this barrier until all threads in the block

reach it

 Used to avoid RAW / WAR / WAW hazards when accessing

shared memory

 Allowed in conditional code only if the conditional is

uniform across the entire thread block

CUDA Shared Memory

 __device__

 Stored in global memory (large, high latency, no cache)

 Allocated with cudaMalloc (__device__ qualifier implied)

 Accessible by all threads

 Lifetime: application

 __shared__

 Stored in on-chip shared memory (very low latency)

 Specified by execution configuration or at compile time

 Accessible by all threads in the same thread block

 Lifetime: thread block

 Unqualified variables:

 Scalars and built-in vector types are stored in registers

 Arrays may be in registers or local memory

Using Shared Memory

Size known at compile time Size known at kernel launch

__global__ void kernel(…)

{

…

__shared__ float sData[256];

…

}

int main(void)

{

…

kernel<<<nBlocks,blockSize>>>(…);

…

}

__global__ void kernel(…)

{

…

extern __shared__ float sData[];

…

}

int main(void)

{

…

smBytes=blockSize*sizeof(float);

kernel<<<nBlocks, blockSize,

smBytes>>>(…);

…

}

Example: Matrix Multiplication version 1

Example: Matrix Multiplication version 2

Still A Specialized Processor

 Very Efficient For
 Fast Parallel Floating Point Processing

 Single Instruction Multiple Data Operations

 High Computation per Memory Access

 Not As Efficient For
 Double Precision (need to test performance)

 Logical Operations on Integer Data

 Branching-Intensive Operations

 Random Access, Memory-Intensive Operations

How to Build CUDA on Windows XP

 Requirements for building CUDA program

 CUDA software (available at no cost from http://www.nvidia.com/cuda)

 CUDA toolkit

 CUDA SDK

 Microsoft Visual Studio 2005 or 2008, or the corresponding versions of

Microsoft Visual C++ Express

 CUDA VS Wizard (http://sourceforge.net/projects/cudavswizard/)

 Requirements for running CUDA

 Using emulator in SDK (EmuDebug / EmuRelease)

 CUDA-enabled GPU with device driver (version 185.xx+)

 See “CUDA Getting Started” for more details

Assignment

 Writing an CUDA program for Calculating PI

 You must measure the elapsed time for calculation

 Due date: 19 February 2010 at 18:00

 How to submit: sending email to “natawut.n@chula.ac.th”

 Note: I will use timestamp on your email

