
2110412 Parallel Comp Arch

CUDA: Parallel Programming on GPU

Natawut Nupairoj, Ph.D.

Department of Computer Engineering, Chulalongkorn University

Outline

 Overview

 Parallel Computing with GPU

 Introduction to CUDA

 CUDA Thread Model

 CUDA Memory Hierarchy and Memory Spaces

 CUDA Synchronization

Overview

 Modern graphics accelerators are called GPUs

(Graphics Processing Units)

 2 ways GPUs speed up graphics:

 Pipelining: similar to pipelining in CPUs.

 CPUs like Pentium 4 has 20 pipeline stages.

 GPUs typically have 600-800 stages. -- very few branches &

most of the functionality is fixed.

Source: Leigh, “Graphics Hardware Architecture & Miscellaneous Real Time Special Effects”

Rocket Engines
Alpha channel of image

100%

Transparent

100%

Opaque

Typical Parallel Graphics Architecture

Application

G R

Display

G

G

R

R

Geometry Stage

(Transforms geometry -

scale, rotate, translate..)

RasterizerStage

(Turns geometry into pixels –

fragment gen, z-buffer merging)

.

.

.

.

Geometry

Unit
Rasterizer

Unit

Transformation

 Performs a sequence of math operation on each vertex

Rasterization

Rasterization Fragment Processing

 Enumerates the pixels

covered by triangles

 Gives the individual

triangle pixels a color

Imagine this is my screen and the polygons

that will occupy my screen

How Polygons Are Processed

(Sort-Last Fragment)

FG FG FG

FM FM FM

G G G

Display

Equally divide up the

polygons

Generate fragment for

each group of polygons

Sort out where portions of

the fragments need to go

to merge to form the whole

image

• Geometry

processing is

balanced.

• Rendering is

balanced.

• Merging involves

compositing color

and z-buffer.

Overview

 Parallelizing

 Process the data in parallel within the GPU. In essence

multiple pipelines running in parallel.

 Basic model is SIMD (Single Instruction Multiple Data) – ie

same graphics algorithms but lots of polygons to process.

Source: Leigh, “Graphics Hardware Architecture & Miscellaneous Real Time Special Effects”

SIMD (revisited)

 One control unit tells processing elements to compute
(at the same time).

 Examples

 TMC/CM-1, Maspar MP-1, Modern GPU

P M
D

P M
D

P M
D

P M
D

Ctrl

I

Modern GPU is More General

Purpose – Lots of ALU’s

GPU Case: nVidia G80 Architecture

The nVidia G80 GPU

► 128 streaming floating point processors
@1.5Ghz

► 1.5 Gb Shared RAM with 86Gb/s bandwidth

► 500 Gflop on one chip (single precision)

•16 Multiprocessors Blocks

•Each MP Block Has:

•8 Streaming Processors

(IEEE 754 spfp compliant)

•16K Shared Memory

•64K Constant Cache

•8K Texture Cache

•Each processor can access all

of the memory at 86Gb/s, but

with different latencies:

•Shared – 2 cycle latency

•Device – 300 cycle latency

nVidia G80 GPU Architecture Overview

Programming Interface

 Interface to GPU via nVidia’s proprietary API – CUDA (very
C-like)

 Looks a lot like UPC (simplified CUDA below)

void AddVectors(float *r, float *a, float *a)

{

int tx = threadId.x; //~processor rank

r[tx] = a[tx] + b[tx]; //executed in parallel

}

Still A Specialized Processor

 Very Efficient For
 Fast Parallel Floating Point Processing

 Single Instruction Multiple Data Operations

 High Computation per Memory Access

 Not As Efficient For
 Double Precision (need to test performance)

 Logical Operations on Integer Data

 Branching-Intensive Operations

 Random Access, Memory-Intensive Operations

Source: Kirk, “Parallel Computing: What has changed lately?”

GPU Case: Cell Architecture

History

 Idea generated by SCEI in 1999 after release of PS2

 STI group (Sony, Toshiba, IBM) formed in 2000

 In 2001 the first design center opened in the US

 Fall 2002 US patent released

 Since then prototypes have been developed and
clocked over @4.5 GHz

 February 2005 final architecture revealed to public

 In 2005 announced that first commercial product of
the Cell will be released in 2006

Source: Lemieux, “The Cell Processor: from conception to deployment”

Cell Architecture Overview

Cell Architecture Overview

 Intended to be configurable

 Basic Configuration consists of:

 1 PowerPC Processing Element (PPE)

 8 Synergistic Processing Elements (SPE)

 Element Interconnect Bus (EIB)

 Rambus Memory Interface Controller (MIC)

 Rambus FlexIO interface

 512 KB system Level 2 cache

SPE0

LS

(256KB)

DMA

SPE1

LS

(256KB)

DMA

MIC

Memory

Interface

Controller

XIO

SPE2

LS

(256KB)

DMA

SPE3

LS

(256KB)

DMA

SPE4

LS

(256KB)

DMA

SPE5

LS

(256KB)

DMA

SPE6

LS

(256KB)

DMA

PPE

L1 (32 KB I/D)

L2

(512 KB)

Flex-

IO1

Flex-

IO0

I/O

I/O

I/O

The Cell Processor

Source: Perthuis, “Introduction to the graphics pipeline of the PS3”

Power Processing Element (PPE)
 Act as the host processor and performs scheduling for the SPE

 64-bit processor based on IBM POWER architecture

(Performance Optimization With Enhanced RISC)

 Dual threaded, in-order execution

 32 KB Level 1 cache, connected to 512 KB system level 2

cache

 Contains VMX (AltiVec) unit and IBM hypervisor technology

to allow two operating systems to run concurrently (Such as

Linux and a real-time OS for gaming)

 SIMD vector processor and

acts independently

 Handles most of the

computational workload

 Again in-order execution but

dual issue*

 Contains 256 KB local store

memory

 Contains 128 X 128 bit

registers

Synergistic Processing Unit (SPU)

Synergistic Processing Unit (SPU)

 Operate on registers which are read from or written

to local stores.

 SPE cannot act directly on main memory; they have

to move data to and from the local stores.

 DMA device in SPEs handles moving data between

the main memory and the local store.

 Local Store addresses are aliased in the PPE address

map and transfers to and from Local Store to

memory (including other Local Stores) are coherent

in the system

Sony’s PS3

PS3 Specs

 Cell processor @ 3.2 Ghz

 7 functional SPE

 Total 218 SP GFLOPS

 nVidia RSX GPU (1.8 TFLOPS)

 256 MB XDR RAM

 256MB GDDR3 VRAM

 Up to 7 Bluetooth controllers

 Backwards compatible, WiFi capabilities with PSP

Parallel Programming with CUDA

Source: CUDA Tutorial Workshop, ISC-2009

SETI@home and CUDA

 Run 5x to 10x times faster

than CPU-only version

Introduction to CUDA

 nVidia introduced CUDA in November 2006

 Utilize parallel computing engine in GPU to solve

complex computational problems

 CUDA is industry-standard C

 Subset of C with extensions

 Write a program for one thread

 Instantiate it on many parallel threads

 Familiar programming model and language

 CUDA is a scalable parallel programming model

 Program runs on any number of processors without

recompiling

CUDA Concept

 Co-Execution between Host (CPU) and Device (GPU)

 Parallel portions are executed on the device as kernels

 One kernel is executed at a time

 Many threads execute each kernel

 All threads run the same code

 Each thread has an ID that it uses to compute memory

addresses and make control decisions

 Serial program with parallel kernels, all in C

 Serial C code executes in a CPU thread

 Parallel kernel C code executes in thread blocks across

multiple processing elements

CUDA Development: nvcc

Normal C Program

void VecAdd_CPU(float* A, float* B, float* C, int N)

{

for(int i=0 ; i < N ; i++)

C[i] = A[i] + B[i];

}

void main()

{

VecAdd_CPU(A, B, C, N);

}

CUDA Program

// Kernel definition

__global__ void VecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

void main()

{

// Kernel invocation

VecAdd<<<1, N>>>(A, B, C);

}

Source: High Performance Computing with CUDA, DoD HPCMP: 2009

CUDA Thread Model

 CUDA Thread can be

 one-dimensional

 two-dimensional

 three-dimensional

 Thread Hierarchy

 Grid

 (2-D) Block

 (3-D) Thread

Calling CUDA Kernel

 Modified C function call syntax:

kernel<<<dim3 dG, dim3 dB>>>(…)

 Execution Configuration (“<<< >>>”)

 dG - dimension and size of grid in blocks

 Two-dimensional: x and y

 Blocks launched in the grid: dG.x*dG.y

 dB - dimension and size of blocks in threads:

 Three-dimensional: x, y, and z

 Threads per block: dB.x*dB.y*dB.z

 Unspecified dim3 fields initialize to 1

Example: Adding 2-D Matrix
// Kernel definition

__global__ void MatAdd(float A[M][N], float B[M][N], float C[M][N])

{

int i = threadIdx.x;

int j = threadIdx.y;

C[i][j] = A[i][j] + B[i][j];

}

void main()

{

// Kernel invocation

dim3 dimBlock(M, N);

MatAdd<<<1, dimBlock>>>(A, B, C);

}

CUDA Built-In Device Variables

 All __global__ and __device__ functions have access to

these automatically defined variables

 dim3 gridDim;

 Dimensions of the grid in blocks (at most 2D)

 dim3 blockDim;

 Dimensions of the block in threads

 dim3 blockIdx;

 Block index within the grid

 dim3 threadIdx;

 Thread index within the block

Example: Adding 2-D Matrix
// Kernel definition

__global__ void MatAdd(float A[M][N], float B[M][N], float C[M][N])

{

int i = blockIdx.x;

int j = threadIdx.x;

C[i][j] = A[i][j] + B[i][j];

}

void main()

{

// Kernel invocation

MatAdd<<<M, N>>>(A, B, C);

}

Example: Adding 2-D Matrix
// Kernel definition

__global__ void MatAdd(float A[M][N], float B[M][N], float C[M][N])

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

if (i < N && j < N)

C[i][j] = A[i][j] + B[i][j];

}

int main()

{

// Kernel invocation

dim3 dimBlock(16, 16);

dim3 dimGrid((M + dimBlock.x – 1) / dimBlock.x,

(N + dimBlock.y – 1) / dimBlock.y);

MatAdd<<<dimGrid, dimBlock>>>(A, B, C);

}

Function Qualifiers

 Kernels designated by function qualifier:

 __global__

 Function called from host and executed on device

 Must return void

 Other CUDA function qualifiers

 __device__

 Function called from device and run on device

 Cannot be called from host code

Exercise
int main()

{

...

kernel<<<3, 5>>>(d_a);

...

}

__global__ void kernel(int *a)

{

int idx = blockIdx.x*blockDim.x + threadIdx.x;

a[idx] = 7;

}

__global__ void kernel(int *a)

{

int idx = blockIdx.x*blockDim.x + threadIdx.x;

a[idx] = blockIdx.x;

}

__global__ void kernel(int *a)

{

int idx = blockIdx.x*blockDim.x + threadIdx.x;

a[idx] = threadIdx.x;

}

Exercise

Output: 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Output: 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2

Output: 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Incremental Array Example

CPU Program CUDA Program

void inc_cpu(int *a, int N)

{

int idx;

for (idx = 0; idx<N; idx++)

a[idx] = a[idx] + 1;

}

void main()

{

…

inc_cpu(a, N);

…

}

__global__ void inc_gpu(int *a_d, int N)

{

int idx = blockIdx.x * blockDim.x

+ threadIdx.x;

if (idx < N)

a_d[idx] = a_d[idx] + 1;

}

void main()

{

…

dim3 dimBlock (blocksize);

dim3 dimGrid(ceil(N/(float)blocksize));

inc_gpu<<<dimGrid, dimBlock>>>(a_d, N);

…

}

Incremental Array Example

 Increment N-element vector a by scalar b

 Let’s assume N=16, blockDim=4 -> 4 blocks

blockIdx.x=0

blockDim.x=4

threadIdx.x=0,1,2,3

idx=0,1,2,3

blockIdx.x=1

blockDim.x=4

threadIdx.x=0,1,2,3

idx=4,5,6,7

blockIdx.x=2

blockDim.x=4

threadIdx.x=0,1,2,3

idx=8,9,10,11

blockIdx.x=3

blockDim.x=4

threadIdx.x=0,1,2,3

idx=12,13,14,15

int idx = blockDim.x * blockId.x + threadIdx.x;

will map from local index threadIdx to global index

NB: blockDim should be bigger than 4 in real code, this is just an example

Note on CUDA Kernel

 Kernels are C functions with some restrictions

 Cannot access host memory

 Must have void return type

 No variable number of arguments (“varargs”)

 Not recursive

 No static variables

 Function arguments automatically copied from host

to device

CUDA Memory Hierarchy

 Each thread has private

per-thread local memory

 All threads in a block have

per-block shared memory

 All threads can access

shared global memory

Source: High Performance Computing with CUDA, DoD HPCMP: 2009

CUDA Host/Device Memory Spaces

 “Local” memory resides in device DRAM

 Use registers and shared memory to minimize local memory

use

 Host can read and write global memory but not shared

memory

Source: High Performance Computing with CUDA, DoD HPCMP: 2009

Memory Spaces

 CPU and GPU have separate memory spaces

 Data is moved across PCIe bus

 Use functions to allocate/set/copy memory on GPU

 Very similar to corresponding C functions

 Host (CPU) manages device (GPU) memory

cudaMalloc(void **pointer, size_t nbytes)

cudaMemset(void *pointer, int value, size_t count)

cudaFree(void *pointer)

int n = 1024;

int nbytes = 1024*sizeof(int);

int *a_d = 0;

cudaMalloc((void**)&a_d, nbytes);

cudaMemset(a_d, 0, nbytes);

cudaFree(a_d);

Host / Device Data Copies

cudaMemcpy(void *dst, void *src, size_t nbytes, enum

cudaMemcpyKind direction);

 direction specifies locations (host or device) of src and dst

 Blocks CPU thread: returns after the copy is complete

 Doesn’t start copying until previous CUDA calls complete

 enum cudaMemcpyKind

 cudaMemcpyHostToDevice

 cudaMemcpyDeviceToHost

 cudaMemcpyDeviceToDevice

int main(void)

{

float *a_h, *b_h; // host data

float *a_d, *b_d; // device data

int N = 14, nBytes, i ;

nBytes = N*sizeof(float);

a_h = (float *)malloc(nBytes);

b_h = (float *)malloc(nBytes);

cudaMalloc((void **) &a_d, nBytes);

cudaMalloc((void **) &b_d, nBytes);

for (i=0, i<N; i++) a_h[i] = 100.f + i;

cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice);

cudaMemcpy(b_d, a_d, nBytes, cudaMemcpyDeviceToDevice);

cudaMemcpy(b_h, b_d, nBytes, cudaMemcpyDeviceToHost);

for (i=0; i< N; i++) assert(a_h[i] == b_h[i]);

free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);

return 0;

}

Host Synchronization

 All kernel launches are asynchronous

 control returns to CPU immediately

 kernel starts executing once all previous CUDA calls
have completed

 Memcopies are synchronous

 control returns to CPU once the copy is complete

 copy starts once all previous CUDA calls have completed

 cudaThreadSynchronize()

 blocks until all previous CUDA calls complete

 Asynchronous CUDA calls provide:

 non-blocking memcopies

 ability to overlap memcopies and kernel execution

Host Synchronization Example

…

// copy data from host to device

cudaMemcpy(a_d, a_h, numBytes, cudaMemcpyHostToDevice);

// execute the kernel

inc_gpu<<<ceil(N/(float)blocksize), blocksize>>>(a_d, N);

// run independent CPU code

run_cpu_stuff();

// copy data from device back to host

cudaMemcpy(a_h, a_d, numBytes, cudaMemcpyDeviceToHost);

…

GPU Thread Synchronization

 void __syncthreads();

 Synchronizes all threads in a block

 Generates barrier synchronization instruction

 No thread can pass this barrier until all threads in the block

reach it

 Used to avoid RAW / WAR / WAW hazards when accessing

shared memory

 Allowed in conditional code only if the conditional is

uniform across the entire thread block

CUDA Shared Memory

 __device__

 Stored in global memory (large, high latency, no cache)

 Allocated with cudaMalloc (__device__ qualifier implied)

 Accessible by all threads

 Lifetime: application

 __shared__

 Stored in on-chip shared memory (very low latency)

 Specified by execution configuration or at compile time

 Accessible by all threads in the same thread block

 Lifetime: thread block

 Unqualified variables:

 Scalars and built-in vector types are stored in registers

 Arrays may be in registers or local memory

Using Shared Memory

Size known at compile time Size known at kernel launch

__global__ void kernel(…)

{

…

__shared__ float sData[256];

…

}

int main(void)

{

…

kernel<<<nBlocks,blockSize>>>(…);

…

}

__global__ void kernel(…)

{

…

extern __shared__ float sData[];

…

}

int main(void)

{

…

smBytes=blockSize*sizeof(float);

kernel<<<nBlocks, blockSize,

smBytes>>>(…);

…

}

Example: Matrix Multiplication version 1

Example: Matrix Multiplication version 2

Still A Specialized Processor

 Very Efficient For
 Fast Parallel Floating Point Processing

 Single Instruction Multiple Data Operations

 High Computation per Memory Access

 Not As Efficient For
 Double Precision (need to test performance)

 Logical Operations on Integer Data

 Branching-Intensive Operations

 Random Access, Memory-Intensive Operations

How to Build CUDA on Windows XP

 Requirements for building CUDA program

 CUDA software (available at no cost from http://www.nvidia.com/cuda)

 CUDA toolkit

 CUDA SDK

 Microsoft Visual Studio 2005 or 2008, or the corresponding versions of

Microsoft Visual C++ Express

 CUDA VS Wizard (http://sourceforge.net/projects/cudavswizard/)

 Requirements for running CUDA

 Using emulator in SDK (EmuDebug / EmuRelease)

 CUDA-enabled GPU with device driver (version 185.xx+)

 See “CUDA Getting Started” for more details

Assignment

 Writing an CUDA program for Calculating PI

 You must measure the elapsed time for calculation

 Due date: 19 February 2010 at 18:00

 How to submit: sending email to “natawut.n@chula.ac.th”

 Note: I will use timestamp on your email

