2110412 Parallel Comp Arch Performance and Benchmarking

Natawut Nupairoj, Ph.D. Department of Computer Engineering, Chulalongkorn University

Important Keywords

Peak Performance

- > Theoretical performance.
- ▶ Typically, peak of single CPU * n

Sustained Performance

• The maximal achievable performance by running a benchmark.

Performance Questions

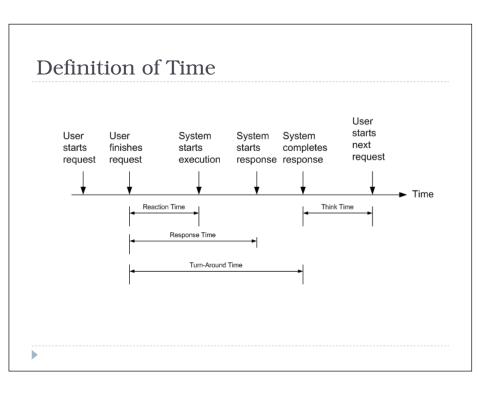
- How to characterize the performance of applications and systems?
- > User's requirements in performance and cost?
- How about performance measurement?
- How will system perform when having more resources or more workload?

Performance Metrics

- Indicators of how good the systems are.
- > To evaluate correctly, we must consider:
 - What is the metric (or metrics) ?
 - What is its definition ?
 - How to measure it ? Benchmark algorithm ?
 - What is the evaluating environment ?
 - Configuration.
 - Workload.

Popular Metrics

- Time Execution Time
- Rate Throughput and Processing Speed
- Resource Utilization
- Ratio Cost Effectiveness
- ▶ Reliability Error Rate
- Availability Mean Time To Failure (MTTF)


Execution Time

- Aka. Wall clock time, elapsed time, delay.
- CPU time + I/O + user + ...
- The lower, the better.
- Factors

ь

- Algorithm.
- Data structure.
- Input.
- Hardware/Software/OS.
- Language.

Analysis of Time

Let's try "time" command for Unix

90.7u 12.9s 2:39 65%

- User time = 90.7 secs
- System time = 12.9 secs
- Elapsed time = 2 mins 39 secs = 159 secs
- ▶ (90.7 + 12.9) / 159 = 65%
- Meaning?

Processing Speed

- How fast can the system execute ?
- ▶ MIPS, MFLOPS.
- The more, the better.
- Can be very misleading !!!

k = m + n;	for j=0 to x	for $j=0$ to $x/4$
k = m + n;	k = m + n;	k = m + n;
k = m + n;		k = m + n;
k = m + n;		k = m + n;
		k = m + n;

Throughput

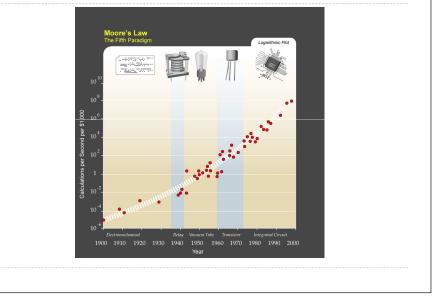
- > Number of jobs that can be processed in a unit time.
- Aka. Bandwidth (in communication).
- The more, the better.
- High throughput does not necessary mean low execution time.
 - Pipeline.

ь

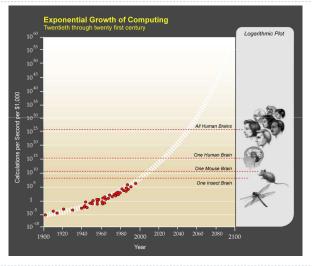
Multiple execution units.


Utilization

- The percentage of resources being used
- Ratio of
 - busy time vs. total time
 - sustained speed vs. peak speed
- The more the better?
 - True for manager
 - But may be not for user/customer
- Resource with highest utilization is the "bottleneck"



Cost Effectiveness


- Peak performance/cost ratio
- Price/performance ratio
- > PCs are much better in this category than Supercomputer

Moore's Law (1965)

Kurzweil: The Law of Accelerating Returns

Performance of Parallel Systems

Factors

- Components and architecture.
- Degree of Parallelism.
- Overheads.

Architecture

- > CPU speed.
- > Memory size and speed.
- Memory hierarchy.

Parallelism and Overheads

Execution time

T = Tpar + Tseq + Tcomm

Tpar – Time spent in Parallel

- All nodes execute at the same time
- Computation Time (mostly)
- Depends on Algorithm
- Load-imbalance (Degree of Parallelism)

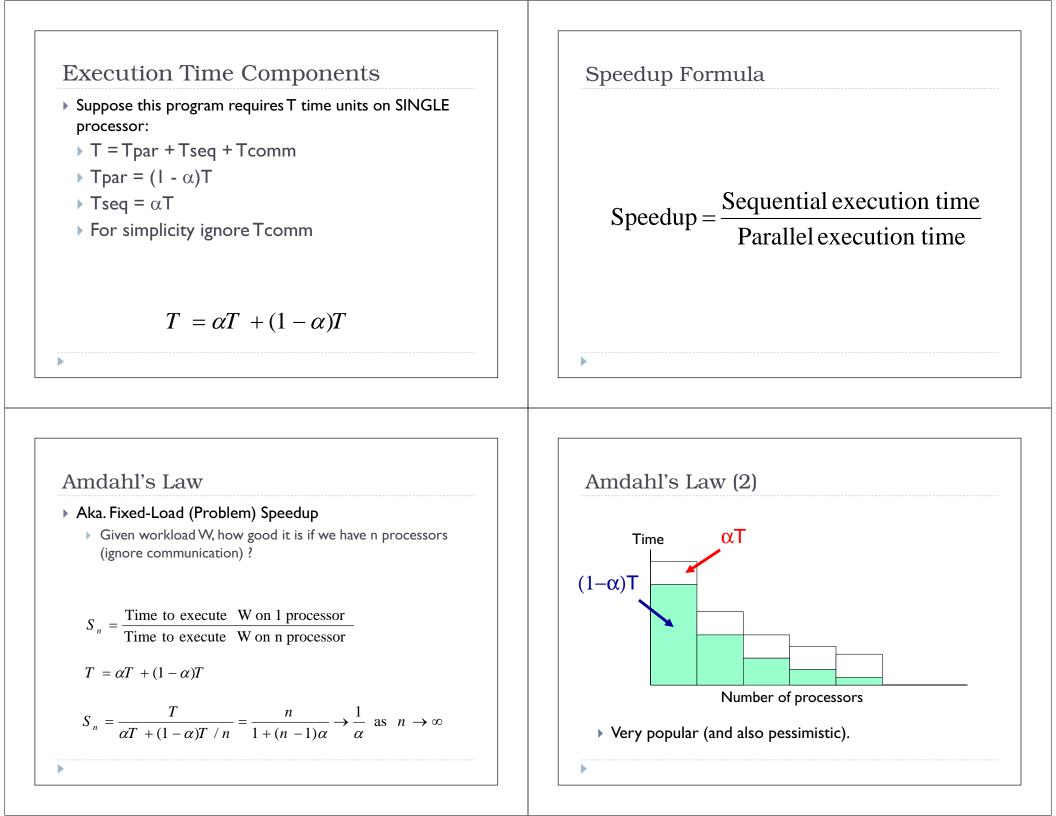
Speedup Analysis

- How good the parallel system is, when compared to the sequential system
 - Predict the scalability
- Speedup metrics
 - Amdahl's Law
 - Gustafson's Law

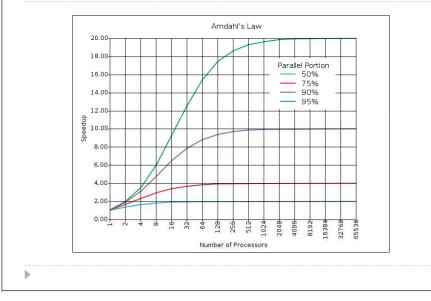
Parallelism and Overheads

Tseq – Time spent in Sequential

- > Only one node (usually master) do the job
- Load / save data from disk
- Critical sections
- > Usually, occurs during start and end of program


Tcomm - Communication overhead

- Communication between nodes
- Data movement
- > Synchronization: barrier, lock, and critical region
- Aggregation: reduction.


Execution Time Components

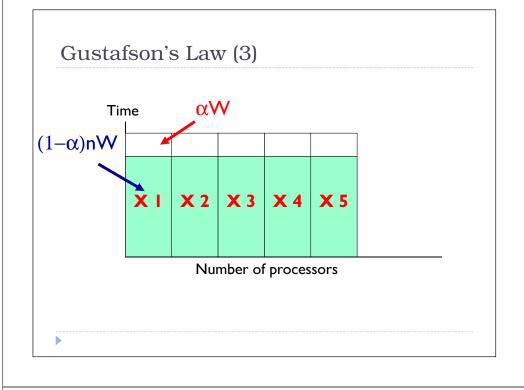
- Given program with Workload W:
 - \blacktriangleright Let α be the percentage of SEQUENTIAL portion in this program
 - Parallel portion = I α

$W = \alpha W + (1 - \alpha) W$

Impact of Parallel Portion (1 - α)

Example 1


95% of a program's execution time occurs inside a loop that can be executed in parallel. What is the maximum speedup we should expect from a parallel version of the program executing on 8 CPUs?


Example 2

20% of a program's execution time is spent within inherently sequential code. What is the limit to the speedup achievable by a parallel version of the program?

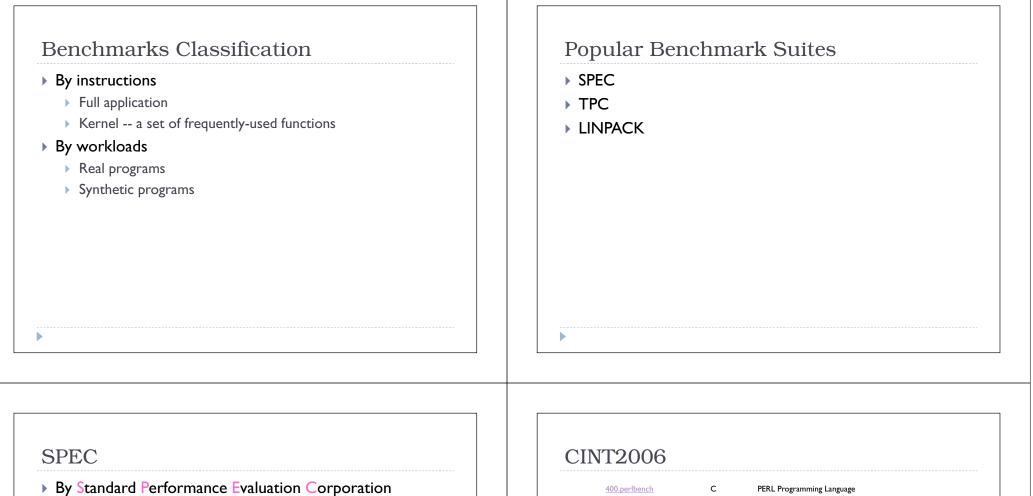
Limitations of Amdahl's Law

- Ignores Tcomm
 - Overestimates speedup achievable
- Very pessimistic
 - When people have bigger machines, they always run bigger programs
 - Thus, when people have more processors, they usually run bigger workloads
 - More workloads = more parallel portion
 - Workload may not be fixed, but SCALE

Example 1

An application running on 10 processors spends 3% of its time in serial code. What is the scaled speedup of the application?

Example 2


What is the maximum fraction of a program's parallel execution time that can be spent in serial code if it is to achieve a scaled speedup of 7 on 8 processors?

Performance Benchmarking

Benchmark

ь

- > Measure and predict the performance of a system
- Reveal the strengths and weaknesses
- Benchmark Suite
 - A set of benchmark programs and testing conditions and procedures
- Benchmark Family
 - A set of benchmark suites

- Using real applications
- http://www.spec.org
- ▶ SPEC CPU2006
 - Measure CPU performance
 - Raw speed of completing a single task
 - Rates of processing many tasks
 - CINT2006 Integer performance
 - CFP2006 Floating-point performance

400.perlbench	С	PERL Programming Language
401.bzip2	С	Compression
<u>403.gcc</u>	С	C Compiler
<u>429.mcf</u>	С	Combinatorial Optimization
445.gobmk	С	Artificial Intelligence: go
456.hmmer	С	Search Gene Sequence
458.sjeng	С	Artificial Intelligence: chess
462.libquantum	С	Physics: Quantum Computing
464.h264ref	С	Video Compression
471.omnetpp	C++	Discrete Event Simulation
473.astar	C++	Path-finding Algorithms
483.xalancbmk	C++	XML Processing

CFP2006

410.bwaves	Fortran	Fluid Dynamics
416.gamess	Fortran	Quantum Chemistry
433.milc	с	Physics: Quantum Chromodynamics
434.zeusmp	Fortran	Physics / CFD
435.gromacs	C/Fortran	Biochemistry/Molecular Dynamics
436.cactusADM	C/Fortran	Physics / General Relativity
437.leslie3d	Fortran	Fluid Dynamics
444.namd	C++	Biology / Molecular Dynamics
447.dealll	C++	Finite Element Analysis
450.soplex	C++	Linear Programming, Optimization
453.povray	C++	Image Ray-tracing
454.calculix	C/Fortran	Structural Mechanics
459.GemsFDTD	Fortran	Computational Electromagnetics
<u>465.tonto</u>	Fortran	Quantum Chemistry
<u>470.lbm</u>	с	Fluid Dynamics
<u>481.wrf</u>	C/Fortran	Weather Prediction
482.sphinx3	с	Speech recognition

Top 10 CINT2006 Speed (as of 29 July 2009)

System	Result	# Cores	# Chips	Cores/Chip
Sun Blade X6275 (Intel Xeon X5570 2.93GHz)	37.4	8	2	4
ASUS TS700-E6 (Z8PE-D12X) server system (Intel Xeon W5580)	37.3	8	2	4
CELSIUS R670, Intel Xeon W5580	37.2	8	2	4
Sun Blade X6270 (Intel Xeon X5570 2.93GHz)	36.9	8	2	4
Sun Ultra 27 (Intel Xeon W3570 3.2GHz)	36.8	4	1	4
Sun Fire X4170 (Intel Xeon X5570 2.93GHz)	36.8	8	2	4
Sun Blade X6270 (Intel Xeon X5570 2.93GHz)	36.8	8	2	4
Sun Blade X6275 (Intel Xeon X5570 2.93GHz)	36.7	8	2	4
Dell Precision T7500 (Intel Xeon W5580, 3.20 GHz)	36.7	8	2	4
CELSIUS M470, Intel Xeon W5580	36.6	4	1	4

Top 10 CINT2006 Speed (as of 4 August 2010)

System	Result	# Cores	# Chips	Cores/Chip
IBM Power 780 Server (4.14 GHz, 16 core)	44	16	4	4
PRIMERGY RX200 S6, Intel Xeon X5677, 3.47 GHz	43.5	8	2	4
PRIMERGY BX922 S2, Intel Xeon X5677, 3.46 GHz	43.4	8	2	4
IBM System x3500 M3 (Intel Xeon X5677)	43.4	8	2	4
NovaScale R440 F2 (Intel Xeon X5677, 3.46 GHz)	43.4	8	2	4
PowerEdge R610 (Intel Xeon X5677, 3.46 GHz)	43.4	8	2	4
NovaScale T840 F2 (Intel Xeon X5677, 3.46 GHz)	43.3	8	2	4
PowerEdge T610 (Intel Xeon X5677, 3.46 GHz)	43.3	8	2	4
PRIMERGY BX924 S2, Intel Xeon X5677, 3.46 GHz	43.3	8	2	4
NovaScale R460 F2 (Intel Xeon X5677, 3.46 GHz)	43.3	8	2	4

Other Interesting SPECs

▶ SPEC MPI2007

ь

- Benchmark based on MPI to measure floating-point computational intensive applications on clusters and SMP
- SPEC jAppServer2004
 - Measure the performance of J2EE 1.3 application servers

SPEC Web2009

- Emulates users sending browser requests over broadband Internet connections to a web server
- SPECpower_ssj2008
 - Evaluates the power and performance characteristics of volume server class computers

TPC

- Transaction Processing Performance Council
- http://www.tpc.org
- TPC-C: performance of Online Transaction Processing (OLTP) system
 - tpmC: transactions per minute.
 - > \$/tpmC: price/performance.
- Simulate the wholesale company environment
 - N warehouses, 10 sales districts each.
 - Each district serves 3,000 customers with one terminal in each district.

TPC Transactions

> An operator can perform one of the five transactions

- Create a new order.
- Make a payment.
- Check the order's status.
- > Deliver an order.
- > Examine the current stock level.
- Measure from the throughput of New-Order.
- Top 10 (Performance, Price/Performance).

Top 10 TPC-C Performance (as of 29 July 2009)

Rank	Company	System	tpm0	Price/tpmC	System Availability	Database	Operating System	TP Monitor	Date Submitted	Cluster
1	IBM	IBM Power 595 Server Model 9119-FHA	6,085,166	2.81 USD	12/10/08	IBM D82 9.5	IBM AIX 5L V5.3	Microsoft COM+	06/10/08	N
***	Bull	Bull Escala PL6460R	6,085,166	2.81 USD	12/15/08	IBM DB2 9.5	IBM AIX 5L V5.3	Microsoft COM+	06/15/08	N
2	()	HP Integrity Superdome- Itanium2/1.6GHz/24MB iL3	4,092,799	2.93 USD	08/06/07	Oracle Database 10g R2 Enterprise Edt w/Partitioning	HP-UX 11i v3	BEA Tu×edo 8.0	02/27/07	N
3	IBM	IBM System p5 595	4,033,378	2.97 USD	01/22/07	IBM DB2 9	IBM AIX 5L V5.3	Microsoft COM+	01/22/07	N
4	IBM	IBM eServer p5 595	3,210,540	5.07 USD	05/14/05	18M D82 UD8 8.2	IBM AIX DL VD.3	Microsoft COM+	11/18/04	N
5	FUĴÎTSU	PRIMEQUEST 580A 32p/64c	2,382,032	3.76 USD	12/04/08	Oracle Database 10g R2 Enterprise Edt v/Partitioning	Red Hat Enterprise Linux 4 AS	BEA Tu×edo 8.1	12/04/08	N
6	FUĴĨTSU	PRIMEQUEST 580 32p/64c	2,196,268	4.70 USD	04/30/08	Oracle 10g Enterprise Ed R2 v/ Partitioning	Red Hat Enterprise Linux 4 AS	BEA Tu×edo 8.1	10/30/07	N
7	IBM	IBM System p 570	1,616,162	3.54 USD	11/21/07	IBM DB2 Enterprise 9	IBM AIX 5L V5.3	Microsoft COM+	05/21/07	N
***	Bull	Bull Escala PL1660R	1,616,162	3.54 USD	12/16/07	IBM D82 9.1	IBM AIX 5L V5.3	Microsoft COM+	12/17/07	N
8	IBM	IBM eServer p5 595	1,601,784	5.05 USD	04/20/05	Orade Database 10g Enterprise Edition	IBM AIX 5L V5.3	Microsoft COM+	04/20/05	N
9	FUĴÎTSU	PRIMEQUEST 540A 16p/32c	1,354,086	3.25 USD	11/22/08	Orade Database 10g release2 Enterprise Edt	Red Hat Enterprise Linux 4 AS	BEA Tu×edo 8.1	11/22/08	N
10	NEC	NEC Express5800/1320Xf (16p/32c)	1,245,516	4.57 USD	04/30/08	Oracle Database 10g R2 Enterprise Edt v/Partitioning	Red Hat Enterprise Linux 4 AS	BEA Tu×edo 8.1	01/21/08	N

Top 10 TPC-C Performance (as of 4 August 2010)

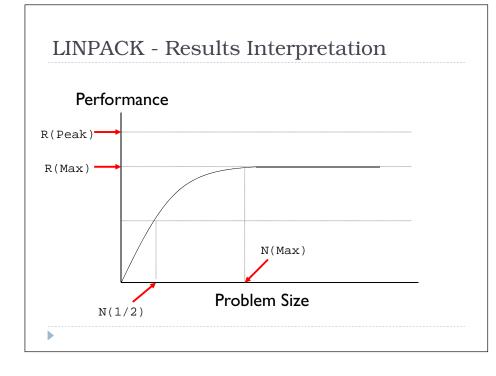
Rank	Company	System	tpmC	Price/tpmC	Watts/KtpmC	System Availability	Database	Operating System	TP Monitor	Date Submitted	Cluster
1	ORACLE	Sun SPARC Enterprise T5440 Server Cluster	7,646,486	2.36 USD	NR	03/19/10	Oracle Database 11g Ent. Ed. w/Real Application Clusters w/Partitionin	Sun Solaris 10 10/09	Tuxedo CFS-R	11/03/09	Y
2	IBM	IBM Power 595 Server Model 9119-FHA	6,085,166	2.81 USD	NR.	12/10/08	IBM D62 9.5		Microsoft COM+	06/10/08	N
***	Bul	Bull Escala PL6460R	6,085,166	2.81 USD	NR	12/15/08	IBM DB2 9.5		Microsoft COM+	06/15/08	N
3	Ø	HP Integrity Superdome- Itanium2/1.6GHz/24MB iL3	4.092.799	2.93 USD	NR	05/06/07	Oracle Database 10g R2 Enterprise Edt w/Partitioning	HP-UX 111 v3	BEA Tuxedo 8.0	02/27/07	N
4	IBM	IBM System p5 595	4.033,378	2.97 USD	NR	01/22/07	IBM D82 9	IBM AIX 5L V5.3	Microsoft COM+	01/22/07	N
5	IBM	IBM eServer p5 595	3,210,540	5.07 USD	NR	05/14/05	IBM D82 UD8 8.2	IBM AIX 5L V5.3	Microsoft COM+	11/18/04	N
6	FUĴITSU	PRIMEQUEST 580A 32p/64c	2,382,032	3.76 USD	NR	12/04/08	Oracle Database 10g R2 Enterprise Edt w/Partitioning	Red Hat Enterprise Linux 4 AS	BEA Tuxedo 8.1	12/04/08	N
7	FUĴÎTSU	PRIMEQUEST 580 32p/64c	2,196,268	4.70 USD	NR	04/30/08	Oracle 10g Enterprise Ed R2 w/ Partitioning	Red Hat Enterprise Linux 4 AS	BEA Tuxedo 8.1	10/30/07	N
8	IBM	IBM System p 570	1,616,162	3.54 USD	NR	11/21/07	IBM DB2 Enterprise 9	IBM AIX SL V5.3	Microsoft COM+	05/21/07	N
***	°8∪Ŀ	Bull Escala PL1660R	1,616,162	3.54 USD	NR	12/16/07	IBM DB2 9.1	IBM AIX 5L V5.3	Microsoft COM+	12/17/07	N
9	IBM	IBM eServer p5 595	1,601,784	5.05 USD	NR	04/20/05	Oracle Database 10g Enterprise Edition	IBM AIX SL V5.3	Microsoft COM+	04/20/05	N
10	FUĴITSU	PRIMEQUEST 540A 16p/32c	1,354,086	3.25 USD	NR	11/22/08	Oracle Database 10g release2 Enterprise Edt	Red Hat Enterprise Linux 4 AS	BEA Tuxedo 8.1	11/22/08	N

Top 10 TPC-C Price/Performance (as of 29 July 2009)

Rank				Price/tpm0	System Availability				Date Submitted	
1		HP ProLiant ML350 G6	232,002	.54 USD		Oracle Database 11g Standard Edition One		Microsoft COM+	05/21/09	N
2	Dell	Dell PowerEdge 2900	104,492	.60 USD		Oracle Database 11g Standard Edition One		Microsoft COM+	02/20/09	N
з	Dell	Dell PowerEdge 2900	97,083	.68 USD	06/16/08	Oracle Database 11g Standard Edition One		Microsoft COM+	06/16/08	N
4	Ø	HP ProLiant ML350G5	102,454	.73 USD		Oracle Database 11g Standard Edition One		Microsoft COM+	09/12/07	N
5	$\langle p \rangle$	HP ProLiant ML350G5	100,926	.74 USD		Oracle Database 10g Standard Edition One		Microsoft COM+	06/08/07	N
6	$\langle p \rangle$	HP ProLiant ML350G5	82,774	.84 USD		Microsoft SQL Server 2005 ×64 Enterprise Edt. SP1		Microsoft COM+	03/27/07	N
7	Anywhere	Dell PowerEdge 2950 III	20,705	.85 USD	08/05/08	Sybase SQL Anywhere 11.0		Microsoft COM+	07/29/08	N
8		PowerEdge 2900/1/2.33GHz/2x4M	69,564	.91 USD	03/09/07	Microsoft SQL Server 2005 Standard Ed.			03/09/07	N
9		HP ProLiant DL585G5/2.7GHz	579,814	.96 USD		Microsoft SQL Server 2005 x64 Enterprise Edt SP2		Microsoft COM+	11/17/08	N
10		HP ProLiant DL580G5	639,253	.97 USD		Oracle Database 11g Standard Edition		Microsoft COM+	01/16/09	N

Top 10 TPC-C Price/Performance (as of 4 August 2010)

Rank				Price/tpmC	Watts/KtpmC	System Availability				Date Submitted	
1	Dell	Dell PowerEdge T710	239,392	.50 USD	NR	11/18/09	Oracle Database 11g Standard Edition One	Microsoft Windows Server 2003 Enterprise x64 Edition	Microsoft COM+	11/18/09	N
2	Ø	HP ProLiant ML350 G6	232,002	.54 USD	NR	05/21/09	Oracle Database 11g Standard Edition One	Oracle Enterprise Linux	Microsoft COM+	05/21/09	N
3	Ø	HP ProLiant DL385G7	705,652	.60 USD	NR	09/01/10	Microsoft SQL Server 2005 Enterprise x64 Edition SP3	Microsoft Windows Server 2008 R2 Enterprise Edition	Microsoft COM+	04/08/10	N
4	Dell	Dell PowerEdge 2900	104,492	.60 USD	NR	02/20/09	Oracle Database 11g Standard Edition One	Microsoft Windows Server 2003 Standard Ed. x64	Microsoft COM+	02/20/09	N
•	DOLL	Dell PowerEdge 2900	97,083	.66 USU	NR	00/10/08	Oracle Database 11c Standard Edition One	Nicrosoft Windows Server 2003 Standard Ed. X54	Microsoft COM+	06/16/08	N
6	Ø	HP ProLiant DL380 G7	803,068	.68 USD	NR	09/01/10	Microsoft SQL Server 2005 Enterprise x64 Edition SP3	Microsoft Windows Server 2008 R2 Enterprise Ed for X64-Based Systems	Microsoft COM+	05/11/10	N
,	Ø	HP ProLiant DL585 G7	1.193,472	.68 USD	5.93	09/01/10	Microsoft SQL Server 2005 Enterprise x64 Edition SP3	Microsoft Windows Server 2008 R2 Enterprise Edition	Microsoft COM+	06/21/10	N
8	IBM	IBM Power 780 Server Model 9179-MHB	1,200,011	.69 USD	NR	10/13/10	IBM D82 9.5	AIX Version 6.1	Microsoft COM+	04/13/10	N
9	(p)	HP ProLiant ML350G5	102,454	.73 USD	NR	12/31/07	Oracle Database 11g Standard Edition One	Microsoft Windows Standard x64 Etd. SP1 R2	Microsoft COM+	09/12/07	N
10	Ø	HP ProLiant ML350G5	100,926	.74 USD	NR	06/08/07	Oracle Database 10g Standard Edition One	Oracle Enterprise Linux	Microsoft COM+	06/08/07	N

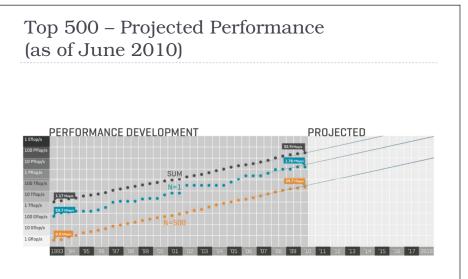

LINPACK

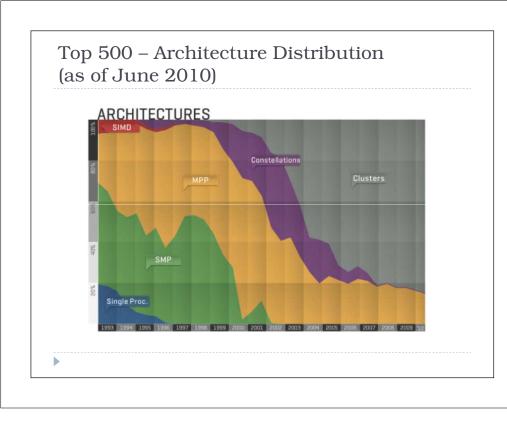
- Linear Algebra Package
- By Jack Dongarra at University of Tennessee
- http://www.top500.org
- Collection of FORTRAN subroutines
 - Solve linear equations
 - Numerical, Micro, Kernel, Synthetic
 - Used in Top-500 list

LINPACK

- Metrics and parameters
 - R(max) sustained maximal speed achieved.
 - ▶ N(max) problem size when R(max) is achieved.
 - \blacktriangleright N(1/2) problem size when half of R(max).
 - ▶ R(peak) theoretical peak speed of the system measured.
- Top-500 list

See results.




Top 10 of Top 500 Performance (as of June 2009)

Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}	Power
1	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8I 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband / 2008 IBM	129600	1105.00	1456.70	2483.47
2	Oak Ridge National Laboratory United States	Jaguar - Cray XT5 QC 2.3 GHz / 2008 Cray Inc.	150152	1059.00	1381.40	6950.60
3	Forschungszentrum Juelich (FZJ) Germany	JUGENE - Blue Gene/P Solution / 2009 IBM	294912	825.50	1002.70	2268.00
4	NASA/Ames Research Center/NAS United States	Pleiades - SGI Altix ICE 8200EX, Xeon QC 3.0/2.66 GHz / 2008 SGI	51200	487.01	608.83	2090.00
5	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution / 2007 IBM	212992	478.20	596.38	2329.60
6	National Institute for Computational Sciences/University of Tennessee United States	Kraken XT5 - Cray XT5 QC 2.3 GHz / 2008 Cray Inc.	66000	463.30	607.20	
7	Argonne National Laboratory United States	Blue Gene/P Solution / 2007 IBM	163840	458.61	557.06	1260.00
8	Texas Advanced Computing Center/Univ. of Texas United States	Ranger - SunBlade x6420, Opteron QC 2.3 Ghz, Infiniband / 2008 Sun Microsystems	62976	433.20	579.38	2000.00
9	DOE/NNSA/LLNL United States	Dawn - Blue Gene/P Solution / 2009 IBM	147456	415.70	501.35	1134.00
10	Forschungszentrum Juelich (FZJ) Germany	JUROPA - Sun Constellation, NovaScale R422-E2, Intel Xeon X5570, 2.93 GHz, Sun M9/Mellanox GDR Infiniband/Partec Parastation / 2009 Bull SA	26304	274.80	308.28	1549.00

Top 10 of Top 500 Performance (as of June 2010)

Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}	Power
1	Oak Ridge National Laboratory United States	Jaguar - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009 Cray Inc.	224162	1759.00	2331.00	6950.60
2	National Supercomputing Centre in Shenzhen (NSCS) China	Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla C2050 GPU / 2010 Dawning	120640	1271.00	2984.30	
3	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband /2009 IBM	122400	1042.00	1375.78	2345.50
4	National Institute for Computational Sciences/University of Tennessee United States	Kraken XT5 - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009 Cray Inc.	98928	831 70	1028 85	
5	Forschungszentrum Juelich (FZJ) Germany	JUGENE - Blue Gene/P Solution / 2009 IBM	294912	825.50	1002.70	2268.00
6	NASA/Ames Research Center/NAS United States	Pleiades - SGI Altix ICE 8200EX/8400EX, Xeon HT QC 3.0/Xeon Westmere 2.93 Ghz, Infiniband / 2010 SGI	81920	772.70	973.29	3096.00
7	National SuperComputer Center in Tianjin/NUDT China	Tianhe-1 - NUDT TH-1 Cluster, Xeon E5540/E5450, ATI Radeon HD 4870 2, Infiniband / 2009 NUDT	71680	563.10	1206.19	
8	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution / 2007 IBM	212992	478.20	596.38	2329.60
9	Argonne National Laboratory United States	Intrepid - Blue Gene/P Solution / 2007 IBM	163840	458.61	557.06	1260.00
10	Sandia National Laboratories / National Renewable Energy Laboratory United States	Red Sky - Sun Blade x6275, Xeon X55xx 2.93 Ghz, Infiniband / 2010 Sun Microsystems	42440	433.50	497.40	

