
2110412 Parallel Comp Arch
CUDA: Parallel Programming on GPU

Natawut Nupairoj, Ph.D.

Department of Computer Engineering, Chulalongkorn University

Outline

� Overview

� Parallel Computing with GPU

� Introduction to CUDA

� CUDA Thread Model

� CUDA Memory Hierarchy and Memory Spaces� CUDA Memory Hierarchy and Memory Spaces

� CUDA Synchronization

Overview

� Modern graphics accelerators are called GPUs

(Graphics Processing Units)

� How GPUs speed up graphics:

� Pipelining: similar to pipelining in CPUs.

� CPUs like Pentium 4 has 20 pipeline stages.CPUs like Pentium 4 has 20 pipeline stages.

� GPUs typically have 600-800 stages

-- very few branches & most of the functionality is fixed.

Source: Leigh, “Graphics Hardware Architecture & Miscellaneous Real Time Special Effects”

Overview – 2D Primitive - BitBLT

Source: Wikipedia

Overview – Chroma Key Overview

� Parallelizing

� Process the data in parallel within the GPU. In essence

multiple pipelines running in parallel.

� Basic model is SIMD (Single Instruction Multiple Data) – ie

same graphics algorithms but lots of polygons to process.

Source: Leigh, “Graphics Hardware Architecture & Miscellaneous Real Time Special Effects”

SIMD (revisited)

� One control unit tells processing elements to compute
(at the same time).

P M
D

P M
D

P M
D

Ctrl

I

� Examples

� TMC/CM-1, Maspar MP-1, Modern GPU

P M
D

P M
D

Modern GPU is More General
Purpose – Lots of ALU’s

The nVidia G80 GPU

► 128 streaming floating point processors @1.5Ghz
► 1.5 Gb Shared RAM with 86Gb/s bandwidth
► 500 Gflop on one chip (single precision)

Source: Kirk, “Parallel Computing: What has changed lately?”

Programming Interface

� Interface to GPU via nVidia’s proprietary API – CUDA (very
C-like)

� Looks a lot like UPC (simplified CUDA below)

void AddVectors(float *r, float *a, float *a)void AddVectors(float *r, float *a, float *a)

{

int tx = threadId.x; //~processor rank

r[tx] = a[tx] + b[tx]; //executed in parallel

}

Still A Specialized Processor

� Very Efficient For
� Fast Parallel Floating Point Processing

� Single Instruction Multiple Data Operations

� High Computation per Memory Access

� Not As Efficient For� Not As Efficient For
� Double Precision (need to test performance)

� Logical Operations on Integer Data

� Branching-Intensive Operations

� Random Access, Memory-Intensive Operations

Parallel Programming with CUDA

Source: CUDA Tutorial Workshop, ISC-2009

SETI@home and CUDA

� Run 5x to 10x times faster than CPU-only version

Introduction to CUDA

� nVidia introduced CUDA in November 2006

� Utilize parallel computing engine in GPU to solve

complex computational problems

� CUDA is industry-standard C

� Subset of C with extensionsSubset of C with extensions

� Write a program for one thread

� Instantiate it on many parallel threads

� Familiar programming model and language

� CUDA is a scalable parallel programming model

� Program runs on any number of processors without

recompiling

CUDA Concept

� Co-Execution between Host (CPU) and Device (GPU)

� Parallel portions are executed on the device as kernels

� One kernel is executed at a time

� Many threads execute each kernel

� All threads run the same code

� Each thread has an ID that it uses to compute memory

addresses and make control decisions

� Serial program with parallel kernels, all in C

� Serial C code executes in a CPU thread

� Parallel kernel C code executes in thread blocks across

multiple processing elements

CUDA Development: nvcc

Normal C Program

void VecAdd_CPU(float* A, float* B, float* C, int N)

{

for(int i=0 ; i < N ; i++)

C[i] = A[i] + B[i];

}}

void main()

{

VecAdd_CPU(A, B, C, N);

}

CUDA Program

// Kernel definition

__global__ void VecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x;

C[i] = A[i] + B[i];C[i] = A[i] + B[i];

}

void main()

{

// Kernel invocation

VecAdd<<<1, N>>>(A, B, C);

}

Source: High Performance Computing with CUDA, DoD HPCMP: 2009

CUDA Thread Model

� CUDA Thread can be

� one-dimensional

� two-dimensional

� three-dimensional

� Thread Hierarchy

Grid� Grid

� (2-D) Block

� (3-D) Thread

Calling CUDA Kernel

� Modified C function call syntax:

kernel<<<dim3 dG, dim3 dB>>>(…)

� Execution Configuration (“<<< >>>”)

� dG - dimension and size of grid in blocksdG - dimension and size of grid in blocks

� Two-dimensional: x and y

� Blocks launched in the grid: dG.x*dG.y

� dB - dimension and size of blocks in threads:

� Three-dimensional: x, y, and z

� Threads per block: dB.x*dB.y*dB.z

� Unspecified dim3 fields initialize to 1

Example: Adding 2-D Matrix
// Kernel definition

__global__ void MatAdd(float A[M][N], float B[M][N] , float C[M][N])

{

int i = threadIdx.x;

int j = threadIdx.y;

C[i][j] = A[i][j] + B[i][j];

}

void main()

{

// Kernel invocation

dim3 dimBlock(M, N);

MatAdd<<<1, dimBlock>>>(A, B, C);

}

CUDA Built-In Device Variables

� All __global__ and __device__ functions have access to

these automatically defined variables

� dim3 gridDim;

� Dimensions of the grid in blocks (at most 2D)

dim3 blockDim;� dim3 blockDim;

� Dimensions of the block in threads

� dim3 blockIdx;

� Block index within the grid

� dim3 threadIdx;

� Thread index within the block

Example: Adding 2-D Matrix
// Kernel definition

__global__ void MatAdd(float A[M][N], float B[M][N] , float C[M][N])

{

int i = blockIdx.x;

int j = threadIdx.x;

C[i][j] = A[i][j] + B[i][j];

}

void main()

{

// Kernel invocation

MatAdd<<<M, N>>>(A, B, C);

}

Example: Adding 2-D Matrix
// Kernel definition

__global__ void MatAdd(float A[M][N], float B[M][N] , float C[M][N])

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

if (i < N && j < N)

C[i][j] = A[i][j] + B[i][j];

}

int main()

{

// Kernel invocation

dim3 dimBlock(16, 16);

dim3 dimGrid((M + dimBlock.x – 1) / dimBlock.x,

(N + dimBlock.y – 1) / dimBlock.y);

MatAdd<<<dimGrid, dimBlock>>>(A, B, C);

}

Function Qualifiers

� Kernels designated by function qualifier:

� __global__

� Function called from host and executed on device

� Must return void

� Other CUDA function qualifiers� Other CUDA function qualifiers

� __device__

� Function called from device and run on device

� Cannot be called from host code

Exercise
int main()

{

...

kernel<<<3, 5>>>(d_a);

...

}

__global__ void kernel(int *a)

{

int idx = blockIdx.x*blockDim.x + threadIdx.x;

a[idx] = 7;

}

__global__ void kernel(int *a)

{

Exercise

Output: 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

int idx = blockIdx.x*blockDim.x + threadIdx.x;

a[idx] = blockIdx.x;

}

__global__ void kernel(int *a)

{

int idx = blockIdx.x*blockDim.x + threadIdx.x;

a[idx] = threadIdx.x;

}

Output: 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2

Output: 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Incremental Array Example

CPU Program CUDA Program

void inc_cpu(int *a, int N)

{

int idx;

for (idx = 0; idx<N; idx++)

a[idx] = a[idx] + 1;

__global__ void inc_gpu(int *a_d, int N)

{

int idx = blockIdx.x * blockDim.x

+ threadIdx.x;

if (idx < N)

a_d[idx] = a_d[idx] + 1;

}

void main()

{

…

inc_cpu(a, N);

…

}

}

void main()

{

…

dim3 dimBlock (blocksize);

dim3 dimGrid(ceil(N/(float)blocksize));

inc_gpu<<<dimGrid, dimBlock>>>(a_d, N);

…

}

Incremental Array Example

� Increment N-element vector a by scalar b

� Let’s assume N=16, blockDim=4 -> 4 blocks

blockIdx.x=0

blockDim.x=4

threadIdx.x=0,1,2,3

idx=0,1,2,3

blockIdx.x=1

blockDim.x=4

threadIdx.x=0,1,2,3

idx=4,5,6,7

blockIdx.x=2

blockDim.x=4

threadIdx.x=0,1,2,3

idx=8,9,10,11

blockIdx.x=3

blockDim.x=4

threadIdx.x=0,1,2,3

idx=12,13,14,15

int idx = blockDim.x * blockId.x + threadIdx.x;

will map from local index threadIdx to global index

NB: blockDim should be bigger than 4 in real code, this is just an example

Note on CUDA Kernel

� Kernels are C functions with some restrictions

� Cannot access host memory

� Must have void return type

� No variable number of arguments (“varargs”)

� Not recursiveNot recursive

� No static variables

� Function arguments automatically copied from host

to device

CUDA Memory Hierarchy

� Each thread has private

per-thread local memory

� All threads in a block have

per-block shared memory

� All threads can access

shared global memoryshared global memory

Source: High Performance Computing with CUDA, DoD HPCMP: 2009

CUDA Host/Device Memory Spaces

� “Local” memory resides in device DRAM

� Use registers and shared memory to minimize local memory

use

� Host can read and write global memory but not shared

memory

Source: High Performance Computing with CUDA, DoD HPCMP: 2009

Memory Spaces

� CPU and GPU have separate memory spaces

� Data is moved across PCIe bus

� Use functions to allocate/set/copy memory on GPU

� Very similar to corresponding C functions

� Host (CPU) manages device (GPU) memory

cudaMalloc(void **pointer, size_t nbytes)
cudaMemset(void *pointer, int value, size_t count)
cudaFree(void *pointer)

int n = 1024;
int nbytes = 1024*sizeof(int);
int *a_d = 0;
cudaMalloc((void**)&a_d, nbytes);
cudaMemset(a_d, 0, nbytes);
cudaFree(a_d);

Host / Device Data Copies

cudaMemcpy(void *dst, void *src, size_t nbytes, enum
cudaMemcpyKind direction);

� direction specifies locations (host or device) of src and dst

� Blocks CPU thread: returns after the copy is complete� Blocks CPU thread: returns after the copy is complete

� Doesn’t start copying until previous CUDA calls complete

� enum cudaMemcpyKind

� cudaMemcpyHostToDevice

� cudaMemcpyDeviceToHost

� cudaMemcpyDeviceToDevice

int main(void)

{

float *a_h, *b_h; // host data

float *a_d, *b_d; // device data

int N = 14, nBytes, i ;

nBytes = N*sizeof(float);

a_h = (float *)malloc(nBytes);

b_h = (float *)malloc(nBytes);

cudaMalloc((void **) &a_d, nBytes);

cudaMalloc((void **) &b_d, nBytes);

for (i=0, i<N; i++) a_h[i] = 100.f + i;

cudaMemcpy(a_d, a_h, nBytes, cudaMemcpyHostToDevice);

cudaMemcpy(b_d, a_d, nBytes, cudaMemcpyDeviceToDevi ce);

cudaMemcpy(b_h, b_d, nBytes, cudaMemcpyDeviceToHost);

for (i=0; i< N; i++) assert(a_h[i] == b_h[i]);

free(a_h); free(b_h); cudaFree(a_d); cudaFree(b_d);

return 0;

}

Host Synchronization

� All kernel launches are asynchronous

� control returns to CPU immediately

� kernel starts executing once all previous CUDA calls
have completed

� Memcopies are synchronous
� control returns to CPU once the copy is complete� control returns to CPU once the copy is complete

� copy starts once all previous CUDA calls have completed

� cudaThreadSynchronize()
� blocks until all previous CUDA calls complete

� Asynchronous CUDA calls provide:
� non-blocking memcopies

� ability to overlap memcopies and kernel execution

Host Synchronization Example

…

// copy data from host to device

cudaMemcpy(a_d, a_h, numBytes, cudaMemcpyHostToDevice);

// execute the kernel

inc_gpu <<<ceil(N/(float) blocksize), blocksize >>>(a_d , N);inc_gpu <<<ceil(N/(float) blocksize), blocksize >>>(a_d , N);

// run independent CPU code

run_cpu_stuff();

// copy data from device back to host

cudaMemcpy(a_h, a_d, numBytes, cudaMemcpyDeviceToHost);

…

GPU Thread Synchronization

� void __syncthreads();

� Synchronizes all threads in a block

� Generates barrier synchronization instruction

� No thread can pass this barrier until all threads in the block

reach it

Used to avoid RAW / WAR / WAW hazards when accessing � Used to avoid RAW / WAR / WAW hazards when accessing

shared memory

� Allowed in conditional code only if the conditional is

uniform across the entire thread block

CUDA Shared Memory

� __device__

� Stored in global memory (large, high latency, no cache)

� Allocated with cudaMalloc (__device__ qualifier implied)

� Accessible by all threads

� Lifetime: application

� __shared__

Stored in on-chip shared memory (very low latency)

__shared__

� Stored in on-chip shared memory (very low latency)

� Specified by execution configuration or at compile time

� Accessible by all threads in the same thread block

� Lifetime: thread block

� Unqualified variables:

� Scalars and built-in vector types are stored in registers

� Arrays may be in registers or local memory

Using Shared Memory

Size known at compile time Size known at kernel launch

__global__ void kernel(…)

{

…

__shared__ float sData[256];

…

__global__ void kernel(…)

{

…

extern __shared__ float sData[];

…

}

int main(void)

{

…

kernel<<<nBlocks,blockSize>>>(…);

…

}

}

int main(void)

{

…

smBytes=blockSize*sizeof(float);

kernel<<<nBlocks, blockSize,

smBytes>>>(…);

…

}

Example: Matrix Multiplication version 1 Example: Matrix Multiplication version 2

How to Build CUDA on Windows XP

� Requirements for building CUDA program

� CUDA software (available at no cost from http://www.nvidia.com/cuda)

� CUDA toolkit

� CUDA SDK

� Microsoft Visual Studio 2005 or 2008, or the corresponding versions of

Microsoft Visual C++ Express

CUDA VS Wizard (http://sourceforge.net/projects/cudavswizard/)� CUDA VS Wizard (http://sourceforge.net/projects/cudavswizard/)

� Requirements for running CUDA

� Using emulator in SDK (EmuDebug / EmuRelease)

� CUDA-enabled GPU with device driver (version 185.xx+)

� See “CUDA Getting Started” for more details

Assignment

� Writing an CUDA program for Calculating PI

� You must measure the elapsed time for calculation

� This is an individual project

� Due date: 21 September 2010 at 18:00

� How to submit: sending email to “natawut.n@chula.ac.th”� How to submit: sending email to “natawut.n@chula.ac.th”

� Note: I will use timestamp on your email

