LARGE SCALE

2110414 Large Scale Computing Systems Natawut Nupairoj, Ph.D.

Outline

- □ Overview
- Hardware Virtualization
- Storage Technology

2110414 - Large Scale Computing Systems

Trends in IT Management

- Server performance and storage size grow very rapidly
- Equipment become much cheaper
- Some applications exhibit "seasonal" workload demands
- Lead to server and storage consolidation

5 Hardware Virtualization

Adapted from

- P. Strassmann, "Introduction to Virtualization", George Mason University, 2008
- M. Behrens, "Virtualization Assessment"

Server Consolidation

Old applications rely on many servers

- High operation cost: maintenance, electricity, etc.
- Heterogeneous environments
- Difficult to migrate
- New servers are very powerful and under-utilized
 - Some resources remain idle
- Reduce costs by consolidating servers

Virtualization Concept

Capacity Utilization: Stand-Alone vs. Virtualization Servers

8

Dedicated Server

Virtualization Approaches

9

Hardware-assisted virtualization

- Require hardware support e.g.
 CPU special instruction sets
- Accelerated virtualization, hardware virtual machine, native virtualization
- Full Virtualization
 - Guest OS is unaware of being virtualized
 - Required a special software called "Hypervisor" or "Virtual Machine Monitor" to manage the virtualization
 - May or may not required hardware support

2110414 - Large Scale Computing Systems

Virtualization Approaches

ParaVirtualization

- Host OS (Hypervisor) provides a special Hypercall API to perform some functions for Guest OS
- Guest OS kernel must be modified to utilize these APIs
- Host OS cannot touch Guest
 OS directly

Benefits of Virtualization

- Flexible Resource management
 - Server consolidation
 - Dynamic resource sharing
 - Reduce power consumption
- Simplify maintenance
 - Zero downtime maintenance
 - Live migration
 - Patch management
 - Efficient recovery

Resource Consolidation

12

- Reduce number of physical servers \Box Resource pooling
- Decrease power consumptions

- Flexible resource allocation

Flexible Resource Allocation

Cheaper Fail-Over

- □ Reduce the cost of dedicated fail-over servers
- □ Smooth transition when brining fail-over servers back

Efficient Recovery

- Recovery site concept
 - For disaster recovery
 - Cold site, warm site, hot site
 - Require duplicating infrastructure (e.g. servers, networks, etc.)
- Virtualization allows a new recovery model
 - Simplify and lower cost of recovery site
 - Leverage for other workloads e.g. for testing, for other apps, etc.

Test/Dev

Current Architecture

Virtualized Architecture

2110414 - Large Scale Computing Systems

Storage (Hard Disk Drive)

Capacity

- Interface Technology
 IDE (P-ATA) / SATA
 SCSI / SAS
 FC
- Performance
 - Seek Time
 - Data Transfer Rate (e.g. 15K RPM)

2110684 - IS Architecture Overview

Network Attached Storage (NAS)

- □ File-level data storage
- Connecting directly to standard network
- Standard file-based protocols
 - NFS, CIFS, FTP, HTTP
 - UPnP, Rsync, ...
- Pros: Simple to operate and maintain, Cheap
- Cons: Performance
 limitation

Storage Area Network (SAN)

- Block-level data storage
- Connect to "SAN" network
 - Ethernet
 - Fiber Channel
- Storage protocols
 - Fiber Channel Protocl (FCP)
 - iSCSI
 - Fiber Channel over Ethernet (FCoE)
- Pros: High performance
- Cons: Expensive, complex

Storage Architecture: SAN vs. NAS

SAN: Storage Area Network

NAS: Network Attached Storage

2110684 - IS Architecture Overview

2110414 - Large Scale Computing Systems

June 2006, Trends "Network Your Storage With IP"

IP-based storage adoption trends

RAID

- Redundant Array of Inexpensive Disks
 - Achieve high levels of storage reliability
 - Using low-cost and less reliable PC-class disk-drive components
- Hot-Spare
 - A drive physically installed in the array which is inactive until an active drive fails
- Hot-Swapped
 - Ability to add/remove disks without shutting down the system

Popular RAID Level

- RAID 0 Striping
 - improved performance
 - additional storage
 - no redundancy or fault tolerance
 - N storage capacity

Popular RAID Level

- □ RAID 1 Mirroring
 - Provides fault tolerance from disk errors
 - Up to one-disk failure
 - Increased read performance
 - Very small performance reduction when writing
 - 1 storage capacity

2110684 - IS Architecture Overview

Popular RAID Level

- RAID 5 Interleave
 Parity
 - Distributed data to all disks with one disk as a parity container
 - Good disk performance
 - Up to one-disk failure
 - N-1 storage capacity

References

 P. Strassmann, "Introduction to Virtualization", <u>http://www.strassmann.com/pubs/gmu/2008-10.pdf</u>, George Mason University, 2008