

Course Plan

- Overview and Background Concepts
- Networking and Web-Based Technology
- □ System Management / Security / Tuning

2110684 - IS Architecture Overview

Size of Information

- □ How much computer storage is needed?
 - Bits, bytes, kilobytes, megabyte, terabyte, petabytes
- Examples:
 - □ Library of Congress: 3 PB
 - 20 TB for Books (20M books)
 - 13 TB for Photographs (13M photographs)
 - 200 TB for Maps (4M maps)
 - 500 TB for Movies (500K Movies)
 - 2,000 TB for CDs (3.5M sound recordings)
 - NASA Satellite Image DL: collection of 2 TB/day

Most common information today?

- Data records
 - Structured data
- □ Text, web pages, documents
 - Unstructured, or semi-structured data
- □ Images, video, music, voice,....
 - Multimedia data, multimedia documents
- Spatial/geographic data
 - Maps, spatial analysis data, census data, etc.

2110684 - IS Architecture Overview

Tier/Logic Definition

- □ Presentation Logic: User Interfaces.
- □ Business Logic: Application Programs and Services.
- □ Data Logic: Databases.

2110684 - IS Architecture Overview

Example: Registration System

- □ Presentation Logic: web pages
 - □ Login / Logout.
 - Register classes.
 - Add / Drop classes.
 - □ Change section.
 - Personal information.

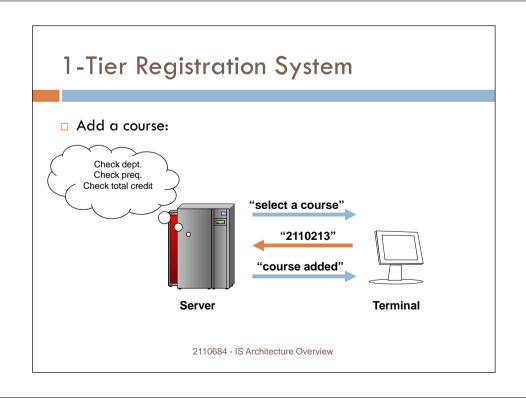
2110684 - IS Architecture Overview

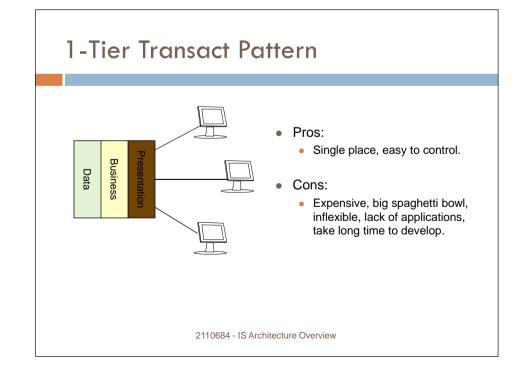
Example: Registration System

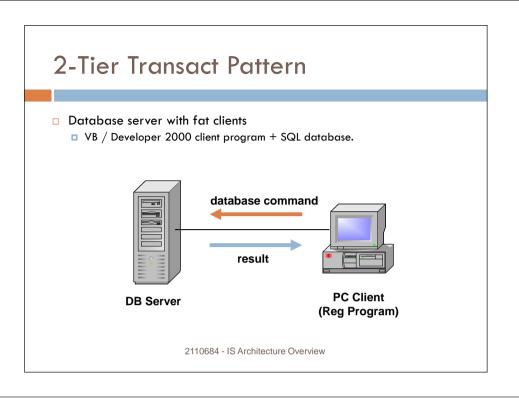
- □ Business Logic: Modules and Services
 - Authenticate.
 - Add a class.
 - □ Drop a class.
 - □ Change section.
 - □ Show classes, grades, etc.
 - □ Validate class selection (called by add/drop class).

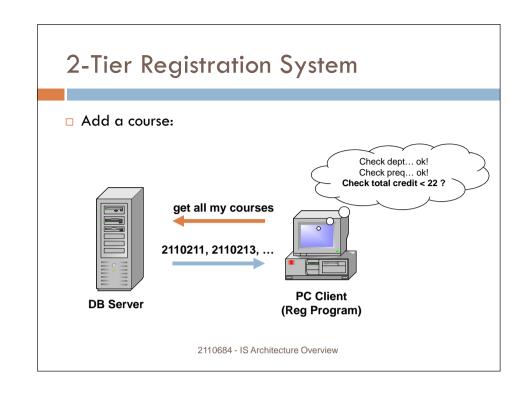
2110684 - IS Architecture Overview

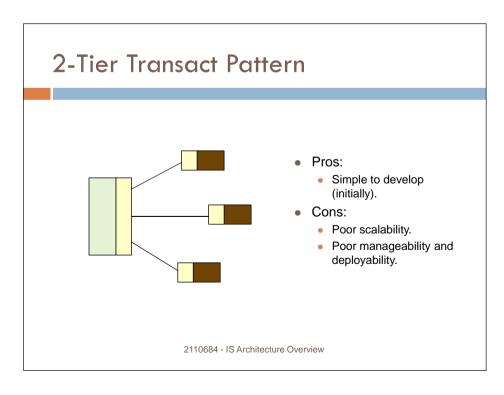
Example: Registration System

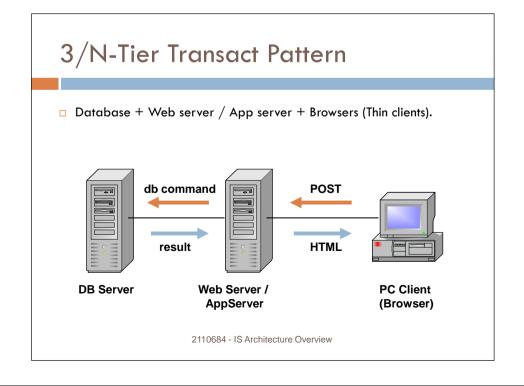

- □ Data Logic
 - Class database
 - Course number, title, credit, pre-requisite, etc.
 - Class availability database
 - Year, semester, course number.
 - Student database
 - Student-id, password, name, year.
 - Student class database
 - Year, semester, student-id, course number, grade.

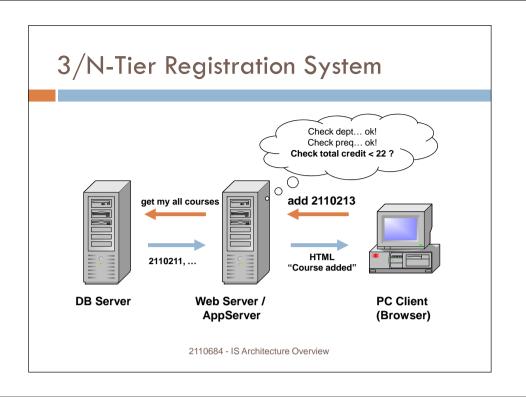

Architectural Pattern: Transact

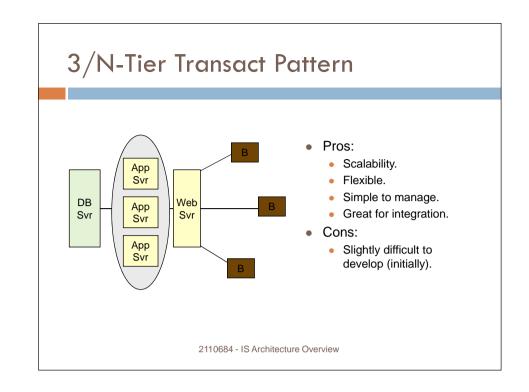

- □ Applications with business data is stored for a long time e.g. customer orders, student registration, etc.
- □ Types of architectures
 - □ 1-Tier.
 - 2-Tier (commonly known as client/server).
 - \square 3/N-Tier (commonly known as web-based).

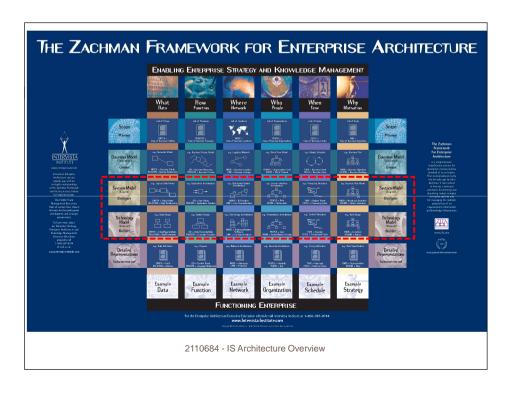

2110684 - IS Architecture Overview

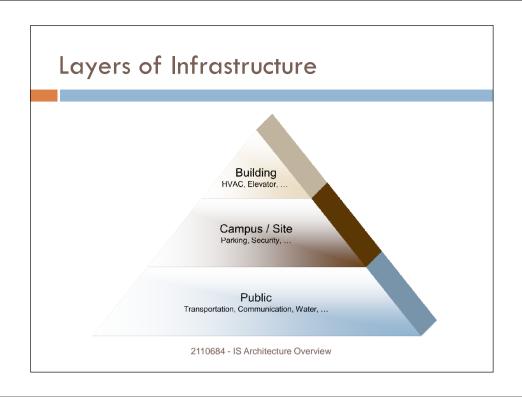

1-Tier Transact Pattern Server with "dumb" terminals. key "a" display "a" Terminal









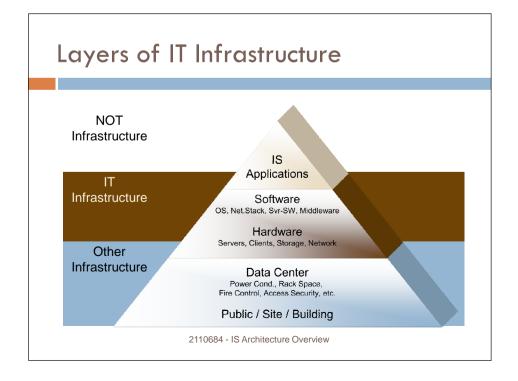


What is Infrastructure?

Infrastructure:

"the structure beneath a structure"

- □ public utilities e.g. water, electricity, telephone, etc.
- □ Infrastructure is usually shared and layer-based.
- $\hfill \square$ Lower layers are more static and permanent than upper layers.
- Layers are independent in term of lifecycles (plan, build, run, change, exit) and ownership.


What is IT Infrastructure?

□ IT Infrastructure:

"the structure of IT systems that supports IS, which comprise of IT components, the externally visible properties of those components, and the relationships among them"

- Consist of both Hardware and Software.
- □ Always rely on other infrastructure e.g. Data Center, Building, etc.

2110684 - IS Architecture Overview

Base Infrastructure

□ Servers:

■ Web server, Application server, Database server, ...

■ Storage:

Main storage, secondary storage, backup, ...

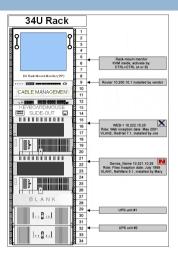
■ Networks:

□ Internet, Intranet, proprietary networks, ...

Security:

□ Network security equipment, data encryption, ...

Server


- □ Workhorse of IT system
 - shares a resource (e.g. files) to one or more clients
- □ Must be high-performance, robust, and reliable
 - Using high-grade components
 - Fast and large RAM
 - □ High I/O (e.g. FC) and network bandwidths
 - Redundant power supply
- Often installed on racks

2110684 - IS Architecture Overview

Rack-Mount Server

2110684 - IS Architecture Overview

Mainframe: The Big Iron

- Large, powerful computers for running many different tasks at the same time
- Highly reliable and secured servers
- □ Extensive input-output facilities
- Backward compatibility with older software
- □ Support massive throughput

2008/05/31 80

- Real World: IBM System Z10
 - □ Announced in 2008
 - Capacity
 - Up to 64 x Quad-core (4.4 GHz) CPUs
 - □ Up to 1.5 TB main memory

2110684 - IS Architecture Overview

Mainframe vs. Supercomputer

Mainframe

- optimized for simple computations with huge amounts of external data (e.g. payroll processing)
- Can handle a wider variety of tasks
- Good at batch processing, such as billing

Supercomputer

- optimized for complicated computations that take place largely in memory (e.g. weather forecasting)
- built for one or a very few specific institutional tasks (e.g. simulation and modeling)

2110684 - IS Architecture Overview

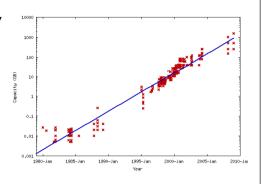
Blade Server

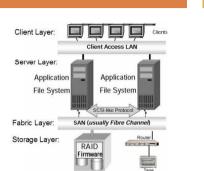
- Stripped down computer servers with a modular design
- □ Hosted in blade enclosure
 - □ Support multiple blade servers
 - Provides power, cooling, networking, interconnects, and management
- Benefits
 - Space and power consumption optimization

2110684 - IS Architecture Overview

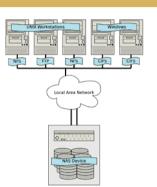
Blade Server

2110684 - IS Architecture Overview


Blade Server


Storage (Hard Disk Drive)

- Capacity
- □ Interface Technology
 - □ IDE (P-ATA) / SATA
 - □ SCSI / SAS
 - □ FC
- Performance
 - Seek Time
 - Data Transfer Rate (e.g. 15K RPM)

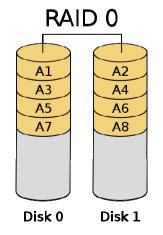

2110684 - IS Architecture Overview

Storage Architecture: SAN vs. NAS

SAN: Storage Area Network

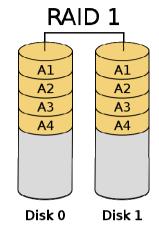
NAS: Network Attached Storage

2110684 - IS Architecture Overview


RAID

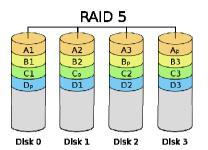
- □ Redundant Array of Inexpensive Disks
 - Achieve high levels of storage reliability
 - Using low-cost and less reliable PC-class disk-drive components
- □ Hot-Spare
 - A drive physically installed in the array which is inactive until an active drive fails
- □ Hot-Swapped
 - Ability to add/remove disks without shutting down the system

2110684 - IS Architecture Overview


Popular RAID Level

- □ RAID 0 Striping
 - improved performance
 - additional storage
 - no redundancy or fault tolerance
 - N storage capacity

Popular RAID Level


- □ RAID 1 Mirroring
 - Provides fault tolerance from disk errors
 - □ Up to one-disk failure
 - Increased read performance
 - Very small performance reduction when writing
 - □ 1 storage capacity

2110684 - IS Architecture Overview

Popular RAID Level

- □ RAID 5 Interleave Parity
 - Distributed data to all disks with one disk as a parity container
 - Good disk performance
 - □ Up to one-disk failure
 - N-1 storage capacity

2110684 - IS Architecture Overview

Real World: Google Infrastructure

- Workload
 - Hundreds of millions of search request per day
 - Process about 1 petabyte of user-generated data every hour
 - Support various Google products
 - Search, advertising, email, maps, video, chat, blogger

2110684 - IS Architecture Overview

Real World: Google Infrastructure

- □ Develop its own distributed systems infrastructure
 - GFS
 - MapReduce
 - BigTable
- □ Use commodity hardware for cost-effective solution
 - □ Linux, in-house rack design, PC class mother boards, low end storage
 - □ Estimated 450,000 low-cost commodity servers in 2006

Real World: Google Infrastructure

2110684 - IS Architecture Overview

Real World: Google Infrastructure

Data Center Map (as of April 2008)

- spent on data centers
 - \$1.9 billion in 2006
 - \$2.4 billion in 2007
- cost on the order of US\$2 million per month in electricity charges

Location Selection Criteria

- Large volumes of cheap electricity
- Green energy / renewable power sources
- Proximity to rivers and lakes for cooling purposes
- Large areas of land for more privacy and security
- Distance to other Google data centers (for fast connections)
- Tax incentives

2110684 - IS Architecture Overview

Issues of ISA

- Infrastructure choices
 - Transact patterns
 - Centralized or distributed
 - Programming languages and development
- Security
 - Internet is a global network
 - Security becomes very important
 - Security infrastructure
 - Attacking prevention: firewall, VPN, IDS
 - Secured data transfer: encryption algorithms, security protocols

Issues (2)

- Performance
 - Responsiveness
 - How long (turn-around time) can a user tolerate?
 - Scalability
 - If we have more users, can the system still respond within a certain period of time?
 - If we have new services, can the system provide new services while it still meets the responsiveness criteria.

2110684 - IS Architecture Overview

Issues (3)

- Manageability
 - Operational
 - Reliability / Availability / Downtime (including maintenance period)
 - Cooling issues
 - Cost
 - Electricity
 - Maintainability
 - How difficult is it for the admins to deploy, maintain, and upgrade the system?

2110684 - IS Architecture Overview

References

- T. Hoff, "Google Architecture", http://highscalability.com/google-architecture, 23
 Nov 2008.
- □ "Google Platform", http://en.wikipedia.org/wiki/Google_platform
- E. Turban et al., Information Technology for Management: Transforming Business in the Digital Economy, John Wiley & Sons, Inc., 2002.
- B. Robertson and V. Sribar, The Adaptive Enterprise, Intel Press, January 2002.
- R. Peacock, "Distributed Architecture Technologies", IEEE IT Professional, May/June 2000, pp. 58-60.

2110684 - IS Architecture Overview

Summary

- □ Transact Pattern: Tier-Based Architecture
- □ IT Infrastructure
 - Server
 - Storage
- □ Real World: Google Infrastructure
- □ Infrastructure Issues