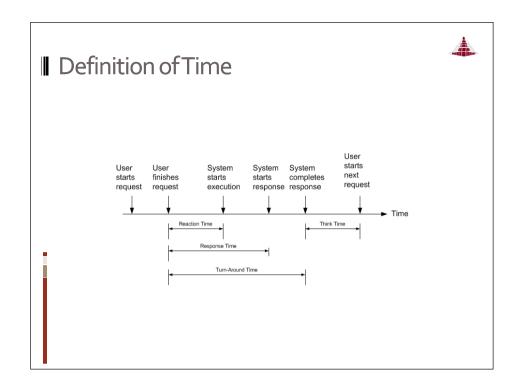
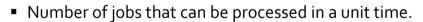


Capacity Planning

- Determining the production capacity needed by an organization to meet changing demands for its products
- Infrastructure Sizing
 - Servers, Network, Storage
 - Depends on to-be-deployed applications and hardware
 - Vendor can provide more accurate sizing
 - Can refer to standard benchmark for rough estimation
 - SPEC
 - TPC


2110684 - Basic Infrastructure



Popular Metrics

- Time Execution Time
- Rate Throughput and Processing Speed
- Resource Utilization
- Ratio Cost Effectiveness
- Reliability Error Rate
- Availability Mean Time To Failure (MTTF)

Throughput

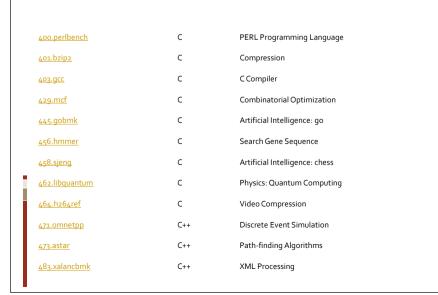
- Aka. Bandwidth (in communication).
- The more, the better.
- High throughput does not necessary mean low execution time.
 - Pipeline.
 - Multiple execution units.

Utilization

- The percentage of resources being used
- Ratio of
 - busy time vs. total time
- The more the better?
 - True for manager
 - But may be not for user/customer
- Resource with highest utilization is the "bottleneck"

Cost Effectiveness

- Peak performance/cost ratio
- Price/performance ratio



SPEC

- By Standard Performance Evaluation Corporation
- Using real applications
- http://www.spec.org
- SPEC CPU2006
 - Measure CPU performance
 - Raw speed of completing a single task
 - Rates of processing many tasks
 - CINT2006 Integer performance
 - CFP2006 Floating-point performance

CFP2006

410.bwaves	Fortran	Fluid Dynamics
416.gamess	Fortran	Quantum Chemistry
433.milc	С	Physics: Quantum Chromodynamics
434.zeusmp	Fortran	Physics / CFD
435.gromacs	C/Fortran	Biochemistry/Molecular Dynamics
436.cactusADM	C/Fortran	Physics / General Relativity
437.leslie3d	Fortran	Fluid Dynamics
<u>444.namd</u>	C++	Biology / Molecular Dynamics
447.dealII	C++	Finite Element Analysis
450.soplex	C++	Linear Programming, Optimization
453.povray	C++	Image Ray-tracing
454.calculix	C/Fortran	Structural Mechanics
459.GemsFDTD	Fortran	Computational Electromagnetics
<u>465.tonto</u>	Fortran	Quantum Chemistry
<u>470.lbm</u>	С	Fluid Dynamics
<u>481.wrf</u>	C/Fortran	Weather Prediction
<u>482.sphinx3</u>	С	Speech recognition

Top 10 CINT2006 Speed (as of 29 July 2009)

System	Result	# Cores	# Chips	Cores/Chip	Processor
Sun Blade X6275 (Intel Xeon X5570 2.93GHz)	37.4	8	2	4	Intel Xeon X5570
ASUS TS700-E6 (Z8PE-D12X) server system (Intel Xeon W5580)	37.3	8	2	4	Intel Xeon W5580
CELSIUS R670, Intel Xeon W5580	37.2	8	2	4	Intel Xeon W5580
Sun Blade X6270 (Intel Xeon X5570 2.93GHz)	36.9	8	2	4	Intel Xeon X5570
Sun Ultra 27 (Intel Xeon W3570 3.2GHz)	36.8	4	1	4	Intel Xeon W3570
Sun Fire X4170 (Intel Xeon X5570 2.93GHz)	36.8	8	2	4	Intel Xeon X5570
Sun Blade X6270 (Intel Xeon X5570 2.93GHz)	36.8	8	2	4	Intel Xeon X5570
Sun Blade X6275 (Intel Xeon X5570 2.93GHz)	36.7	8	2	4	Intel Xeon X5570
Dell Precision T7500 (Intel Xeon W5580, 3.20 GHz)	36.7	8	2	4	Intel Xeon W5580
CELSIUS M470, Intel Xeon W5580	36.6	4	1	4	Intel Xeon W5580

4

Other Interesting SPECs

- SPEC jAppServer2004
 - Measure the performance of J₂EE 1.3 application servers
- SPEC Web2009
 - Emulates users sending browser requests over broadband Internet connections to a web server
- SPECpower_ssj2008
 - Evaluates the power and performance characteristics of volume server class computers

■ TPC

- Transaction Processing Performance Council
- http://www.tpc.org
- TPC-C: performance of Online Transaction Processing (OLTP) system
 - tpmC: transactions per minute.
 - \$/tpmC: price/performance.
- Simulate the wholesale company environment
 - N warehouses, 10 sales districts each.
 - Each district serves 3,000 customers with one terminal in each district.

TPCTransactions

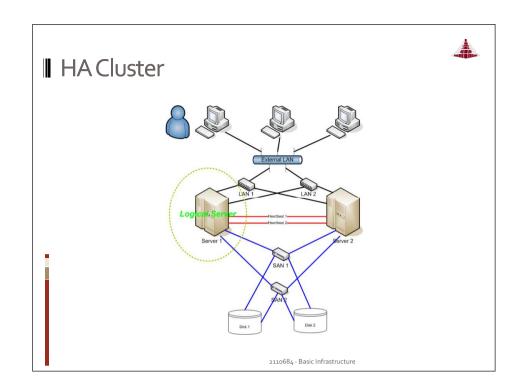
- An operator can perform one of the five transactions
 - Create a new order.
 - Make a payment.
 - Check the order's status.
 - Deliver an order.
 - Examine the current stock level.
- Measure from the throughput of New-Order.
- Top 10 (Performance, Price/Performance).

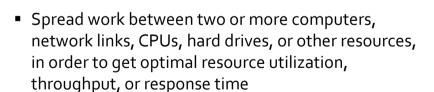
Top 10 TPC-C Performance (as of 29 July 2009)

				Price/tpm0	System Availability		Operating System		Date Submitted	Cluste
1	IBM	IBM Power 595 Server Model 9119-FHA	6,085,166	2.81 USD	12/10/08	IBM DB2 9.5	IBM AIX 5L V5.3	Microsoft COM+	06/10/08	N
***	Bul	Bull Escala PL6460R	6,085,166	2.81 USD	12/15/08	IBM DB2 9.5	IBM AIX 5L V5.3	Microsoft COM+	06/15/08	N
2	49	HP Integrity Superdome- Itanium2/1.6GHz/24MB iL3	4,092,799	2.93 USD	08/06/07	Oracle Database 10g R2 Enterprise Edt w/Partitioning	HP-UX 11i v3	BEA Tuxedo 8.0	02/27/07	N
3	IBM	IBM System p5 595	4,033,378	2.97 USD	01/22/07	IBM DB2 9	IBM AIX 5L V5.3	Microsoft COM+	01/22/07	N
4	IBM	IBM eServer p5 595	3,210,540	5.07 USD	05/14/05	IBM DB2 UDB 8.2	IBM AIX 5L V5.3	Microsoft COM+	11/18/04	N
5	FUĴĨTSU	PRIMEQUEST 580A 32p/64c	2,382,032	3.76 USD	12/04/08	Oracle Database 10g R2 Enterprise Edt w/Partitioning	Red Hat Enterprise Linux 4 AS	BEA Tuxedo 8.1	12/04/08	N
6	FUĴĨTSU	PRIMEQUEST 580 32p/64c	2,196,268	4.70 USD	04/30/08	Oracle 10g Enterprise Ed R2 w/ Partitioning	Red Hat Enterprise Linux 4 AS	BEA Tuxedo 8.1	10/30/07	N
7	IBM	IBM System p 570	1,616,162	3.54 USD	11/21/07	IBM DB2 Enterprise 9	IBM AIX 5L V5.3	Microsoft COM+	05/21/07	N
***	Bul-	Bull Escala PL1660R	1,616,162	3.54 USD	12/16/07	IBM DB2 9.1	IBM AIX SL V5.3	Microsoft COM+	12/17/07	N
8	IBM	IBM eServer p5 595	1,601,784	5.05 USD	04/20/05	Oracle Database 10g Enterprise Edition	IBM AIX 5L V5.3	Microsoft COM+	04/20/05	N
9	FUĴÎTSU	PRIMEQUEST 540A 16p/32c	1,354,086	3.25 USD	11/22/08	Oracle Database 10g release2 Enterprise Edt	Red Hat Enterprise Linux 4 AS	BEA Tuxedo 8.1	11/22/08	N
10	NEC	NEC Express5800/1320Xf (16p/32c)	1,245,516	4.57 USD	04/30/08	Oracle Database 10g R2 Enterprise Edt w/Partitioning	Red Hat Enterprise Linux 4 AS	BEA Tuxedo 8.1	01/21/08	N

Top 10 TPC-C Price/Performance (as of 29 July 2009)

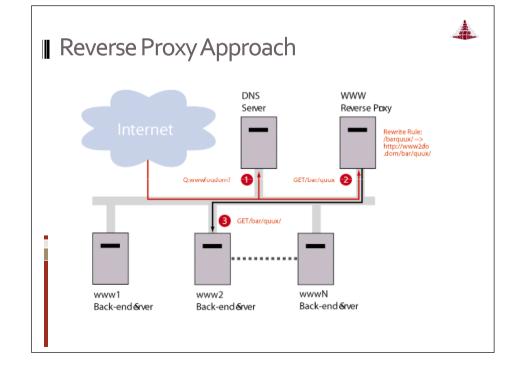
Rank				Price/tpm0	System Availability				Date Submitted	Cluste
1	49	HP ProLiant ML350 G6	232,002	.54 USD	05/21/09	Oracle Database 11g Standard Edition One	Orade Enterprise Linux	Microsoft COM+	05/21/09	N
2	DOLL	Dell PowerEdge 2900	104,492	.60 USD	02/20/09	Oracle Database 11g Standard Edition One	Microsoft Windows Server 2003 Standard Ed. x64	Microsoft COM+	02/20/09	N
3	DOLL	Dell PowerEdge 2900	97,083	.68 USD	06/16/08	Oracle Database 11g Standard Edition One	Microsoft Windows Server 2003 Standard Ed. x64	Microsoft COM+	06/16/08	N
4	4 2	HP ProLiant ML35UG5	102,454	.73 USD	12/31/07		Microsoft Windows Standard ×64 Etd. SP1 R2	Microsoft COM+	09/12/07	N
5	49	HP ProLiant ML350G5	100,926	.74 USD	06/08/07	Oracle Database 10g Standard Edition One	Orade Enterprise Linux	Microsoft COM+	06/08/07	N
6	49	HP ProLiant ML350G5	82,774	.84 USD	03/27/07		Microsoft Windows 2003 x64 Server Std. Ed.	Microsoft COM+	03/27/07	N
7	Anywhere	Dell PowerEdge 2950 III	20,705	.85 USD	08/05/08	Sybase SQL Anywhere 11.0	Microsoft Windows 2003 x64 Standard R2 SP2	Microsoft COM+	07/29/08	N
8		PowerEdge 2900/1/2.33GHz/2x4M	69,564	.91 USD	03/09/07		Microsoft Windows 2003 Server Std Edt SP1	Microsoft COM+	03/09/07	N
9		HP ProLiant DL585G5/2.7GHz	579,814	.96 USD	11/17/08	Microsoft SQL Server 2005 ×64 Enterprise Edt SP2	Microsoft Windows Server 2003 Enterprise x64 Ent. R2	Microsoft COM+	11/17/08	N
10	49	HP ProLiant DL580G5	639,253	.97 USD	01/26/09	Oracle Database 11g Standard Edition	Orade Enterprise Linux TP	Microsoft COM+	01/16/09	N



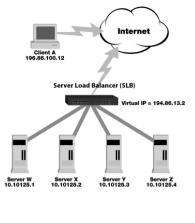

System Availability

- How to ensures a certain absolute degree of operational continuity during a given measurement period
- Availability includes ability of the user community to access the system, whether to submit new work, update or alter existing work, or collect the results of previous work
- Model of Availability
 - Active-Standby: HA Cluster or Failover Cluster
 - Active-Active: Server Load Balancing

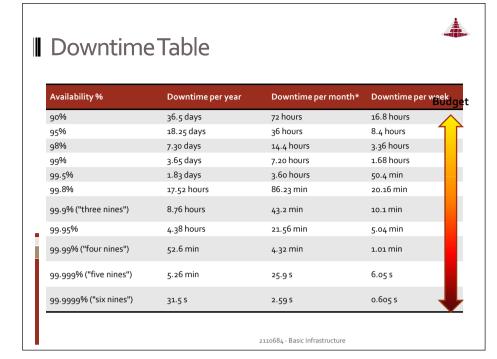
110684 - Basic Infrastructure

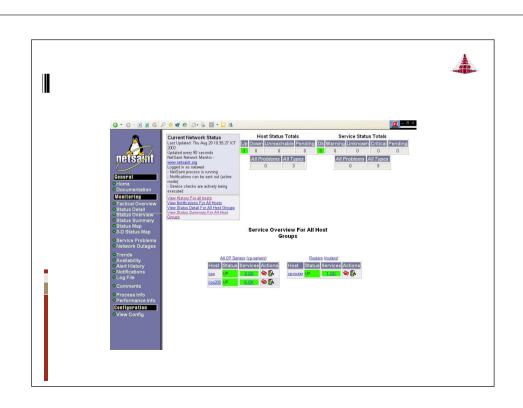


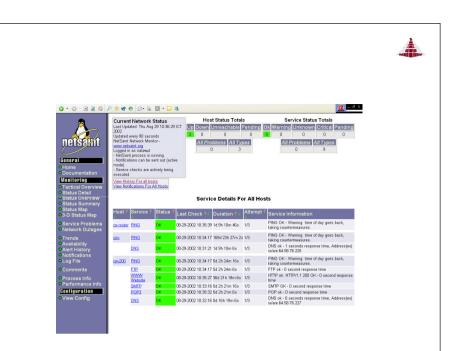
Server Load Balancing

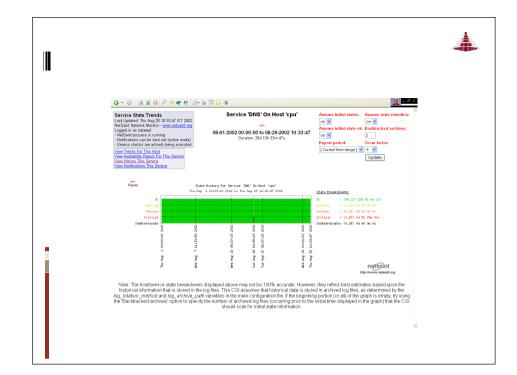


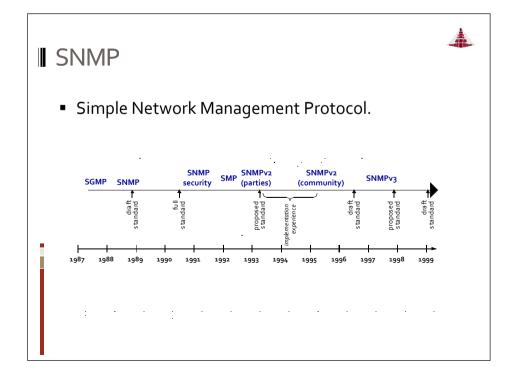
- Approaches
 - The DNS Approach
 - The Reverse Proxy Approach
 - Load balancer Approach

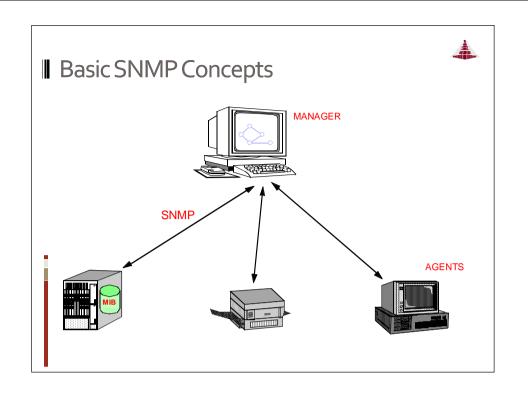


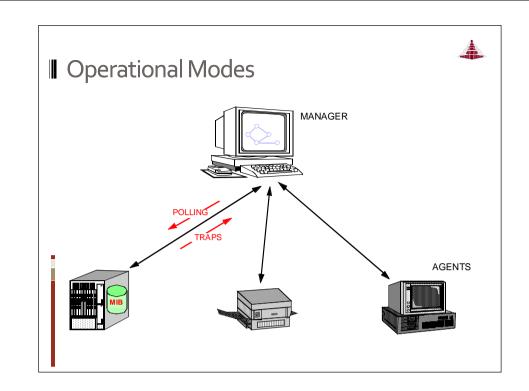


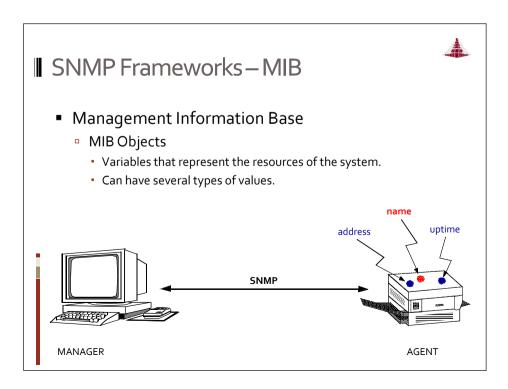

2110684 - Basic Infrastructure




- There are several network management applications
 - OS Tools
 - Ping, tracerout, netstat, etc.
 - Freewares
 - Netsaint, MRTG, snort, etc.
 - Commercial
 - CA Unicenter, HP Openview, IBM Trivoli, CiscoWorks.







Security Management

- Security must be considered both at infrastructure level and application level
- Infrastructure level
 - Control physical access
 - Operating system level = "hardening"
 - Secure coding
 - Avoid certain coding patterns to remove vulnerbilities
 - Network security

2110684 - Basic Infrastructur

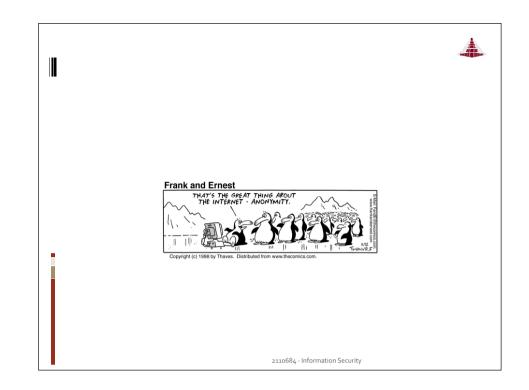
Security Equipment

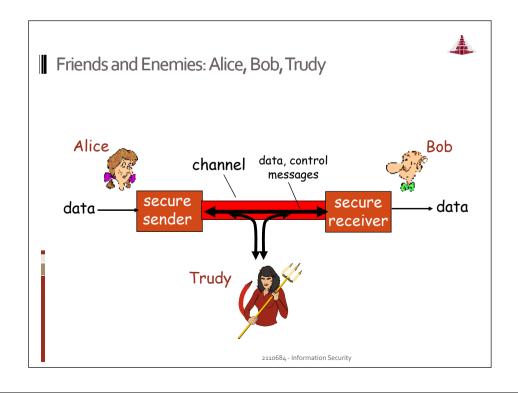
- IDS / IPS
- Anti-Virus
- Spam Filter
- Authentication

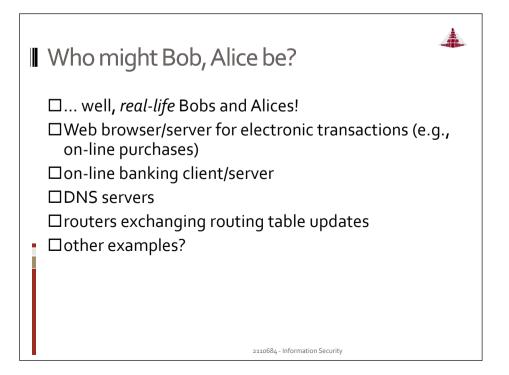
2110684 - Basic Infrastructure

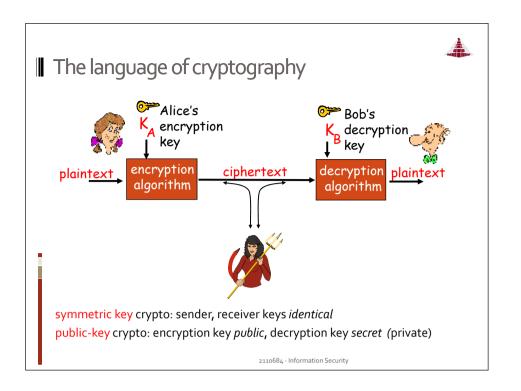
■ Two-Factor Authentication

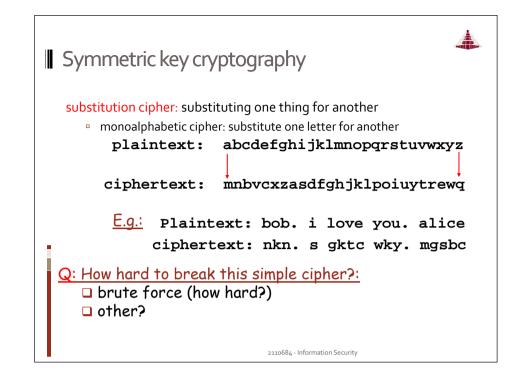
- Something you know
 - Password
- Something you have
 - ID Card, Credit Card, Mobile Phone
- Something you are
 - Biometric: retina, voice, fingerprint, etc.

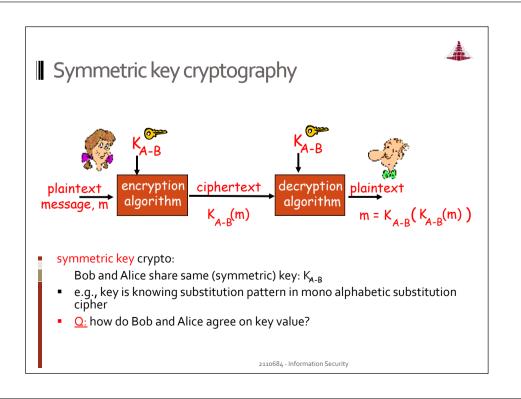


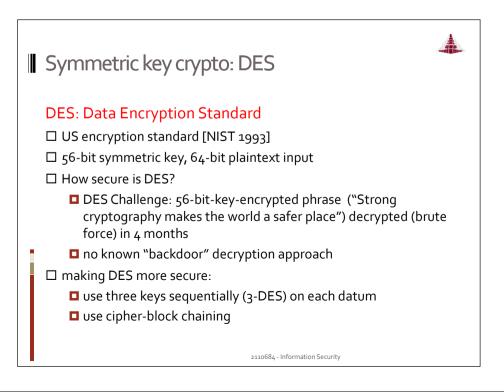

2110684 - Basic Infrastructure

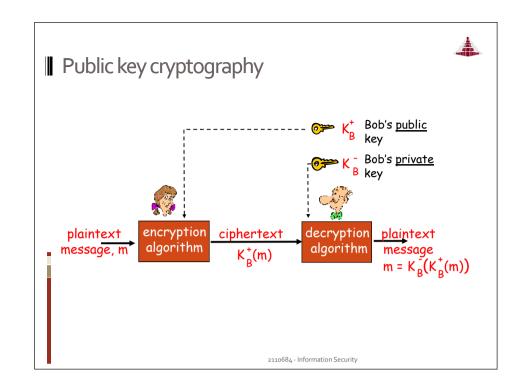



- Confidentiality: only sender, intended receiver should "understand" message contents.
- Authentication: confirm identity of each other.
- Message Integrity: ensure message not altered (in transit, or afterwards) without detection.


110684 - Information Security



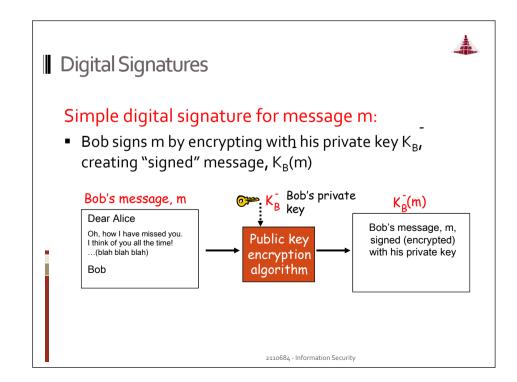



symmetric key crypto

- Sender and receiver know shared secret key
- Q: how to agree on key in first place (particularly if never "met")?

public key cryptography

- radically different approach [Diffie-Hellman76, RSA78]
- sender, receiver do not share secret key
- *public* encryption key known to *all*
- private decryption key known only to receiver


2110684 - Information Security

Digital Signatures

- sender (Bob) digitally signs document
 - establishing he is document owner/creator.
- verifiable, nonforgeable:
 - recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document

2110684 - Information Security

Digital Signatures (more)

- Suppose Alice receives msg m, digital signature K_B(m)
- Alice verifies m signed by Bob by applying Bob's public key K_B to $K_B(m)$ then checks $K_B(K_B(m)) = m$.
- If K_B(K_B(m)) = m, whoever signed m must have used Bob's private kev.

Alice thus verifies that:

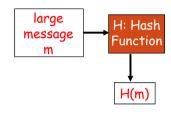
Bob signed m.

No one else signed m.

Bob signed m and not m'.

Non-repudiation:

✓ Alice can take m, and signature K_B(m) to court and prove that Bob signed m.


2110684 - Information Security

Message Digests

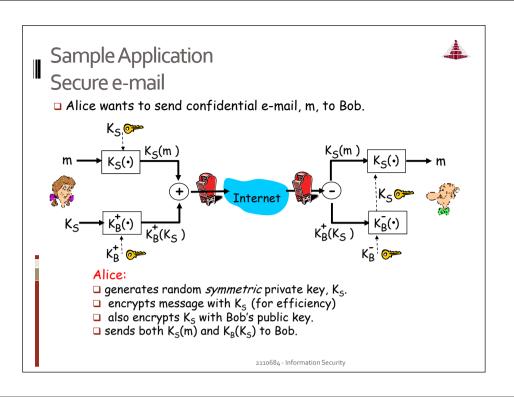
Computationally expensive to public-key-encrypt long messages <u>Goal:</u> fixed-length, easy- to-compute digital "fingerprint"

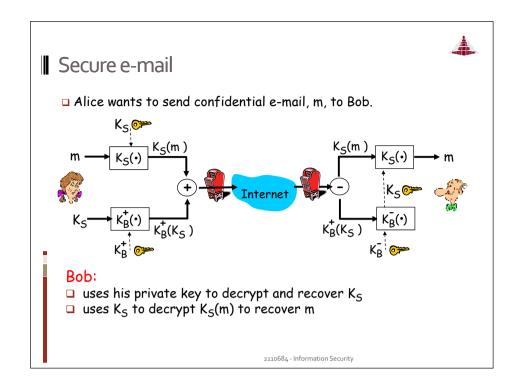
• apply hash function H to m, get fixed size message digest, H(m).

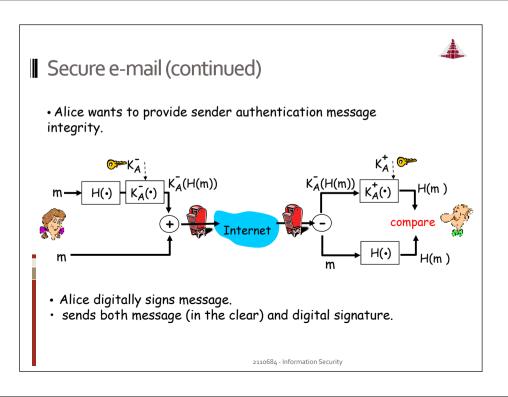
Hash function properties:

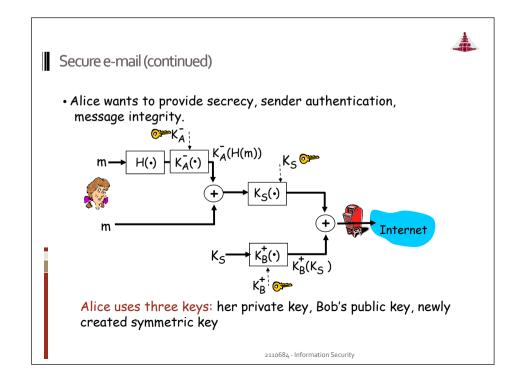
- many-to-1
- produces fixed-size msg digest (fingerprint)
- given message digest x, computationally infeasible to find m such that x = H(m)

2110684 - Information Security


__Digital signature = signed message digest Alice verifies signature and Bob sends digitally signed integrity of digitally signed message: message: large H(m)function msg digest $K_R^-(H(m))$ digital Bob's @= large signature private message Bob's 🚌 (encrypt) public> signature (decrypt) encrypted function msg digest $K_{R}^{-}(H(m))$ H(m)2110684 - Information Security


Hash Function Algorithms



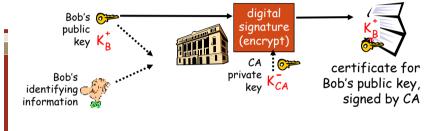

- MD5 hash function widely used (RFC 1321)
 - computes 128-bit message digest in 4-step process.
 - arbitrary 128-bit string x, appears difficult to construct msg m whose MD5 hash is equal to x.
- SHA-1 is also used.
 - US standard [NIST, FIPS PUB 180-1]
 - 160-bit message digest

2110684 - Information Security

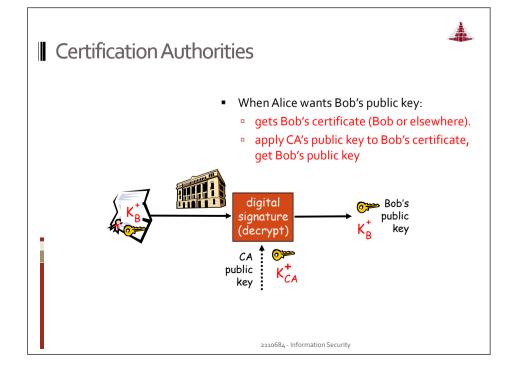
Trusted Intermediaries

Public key problem:

When Alice obtains Bob's public key (from web site, e-mail, diskette), how does she know it is Bob's public key, not Trudy's?


Solution:

trusted certification authority (CA)


110684 - Information Security

Certification Authorities Certification authority (CA): binds properties

- Certification authority (CA): binds public key to particular entity, E.
- E (person, router) registers its public key with CA.
 - E provides "proof of identity" to CA.
 - CA creates certificate binding E to its public key.
 - certificate containing E's public key digitally signed by CA CA says "this is E's public key"

2110684 - Information Security

Smart Card

Digital signing

Natawut Nupairoj, Ph.D.

IS Security 64

References

- J. Kurose and K. Ross, Computer Networking: A Top-Down Approach Featuring the Internet, 2nd Edition, Addison Wesley, 2002.
- P. Sokol, From EDI to Electronic Commerce: A Business Initiative, McGraw-Hill, 1995.
- M. Johnson, "XML for the absolute beginner", Javaworld, April 1999, http://www.javaworld.com/javaworld/jw-o4-1999/jw-o4-xml.html.
- W₃C, "XML Tutorial", http://www.w₃schools.com/xml/default.asp.
- M. Hall and L. Brown, "Introduction to XML", 2001, http://www.corewebprogramming.com.

2110684 - Basic Infrastructure

References

- J. Kurose and K. Ross, *Computer Networking: A Top-Down Approach Featuring the Internet*, Addison Wesley, 2001.
- Netsaint, http://www.netsaint.org.
- The SimpleWeb Tutorials, http://www.simpleweb.org/tutorials/.
- Electronic and telecommunication Institute, Lessons about SNMP, http://www.et.put.poznan.pl/snmp/main/mainmenu.html.
- Yoram Cohen, SNMP Simple Network Management Protocol, http://www.rad.com/networks/1995/snmp/snmp.htm.