2110684 - IS Architecture Overview

IS ARCHITECTURE OVERVIEW

2110684 Information System Architecture Natawut Nupairoj, Ph.D.

Course Plan

- Overview and Background Concepts
- Core Infrastructure
- System Management / Security / Tuning

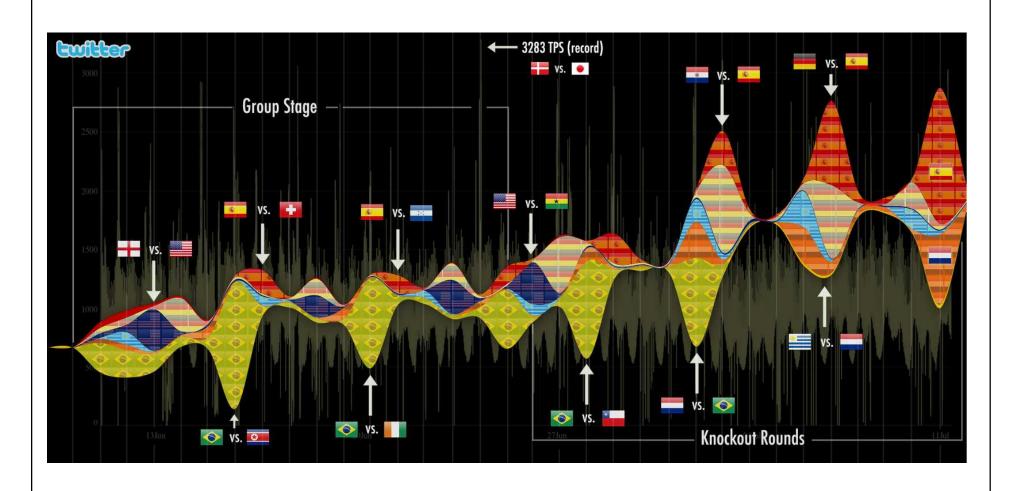
Things That Architects Can Do

- Plan technology direction and set technology standards
 - Help you figure out which technologies you should support.
- Review plans, designs and purchases
 - Assess how well a plan aligns with current direction and desired future positions.
- Identify opportunities to reuse components and services.
 - Leverage enterprise contracts and license agreements.
 - Integrate shared services where they might be cost-effective.
- Review business organization and business processes
 - Technical Architecture: align your technology plan with enterprise goals, business plans and business processes.
 - Enterprise Architecture: align your business plans, business process and technology plan with your enterprise goals.

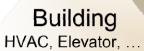
From Don Jerman, "Architecture Review Processes"

Most common information today?

- Data records
 - Structured data
- Text, web pages, documents
 - Unstructured, or semi-structured data
- □ Images, video, music, voice,....
 - Multimedia data, multimedia documents
- Spatial/geographic data
 - Maps, spatial analysis data, census data, etc.


Real World Example: Twitter

- SMS of the Internet
- Sending short 140-character message to followers
- Start in 2006
- From 120,000 tweets/month (in 2007)
 to 1,500,000,000 tweets/day (in 2010) 750 tweets/second
- □ 300,000 new subscribers a day
- Just reach 20,000,000,000 tweets in July 31st, 2010 (a Japanese graphic designer)

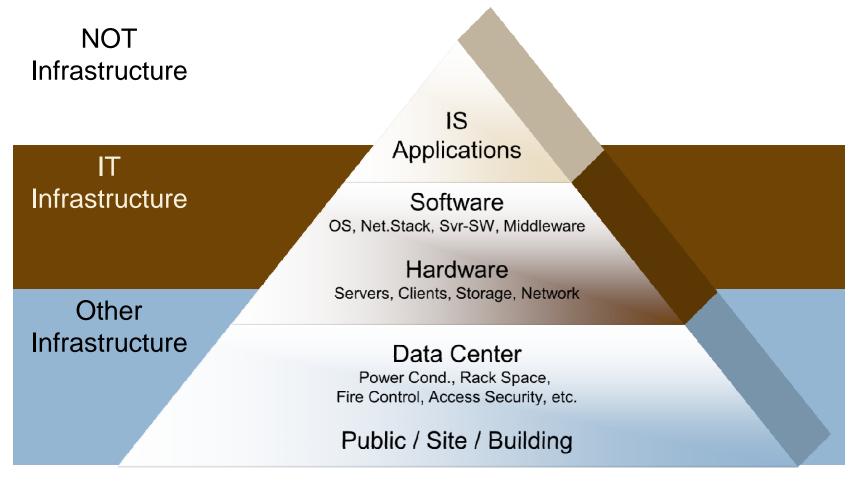

Twitter vs. World Cup 2010

What is Infrastructure?

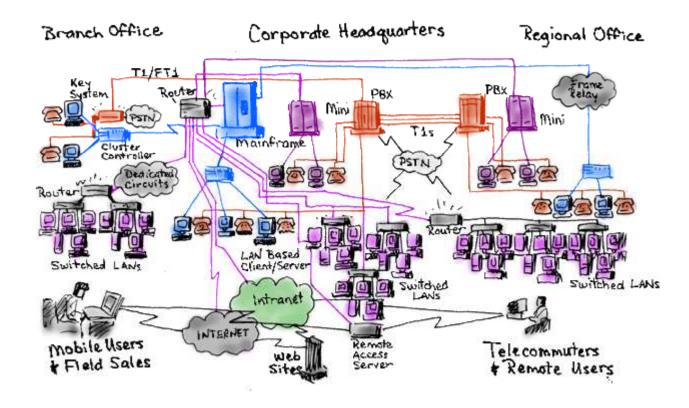
- Infrastructure:
 - "the structure beneath a structure"
 - public utilities e.g. water, electricity, telephone, etc.
 - Infrastructure is usually shared and layer-based.
 - Lower layers are more static and permanent than upper layers.
 - Layers are independent in term of lifecycles (plan, build, run, change, exit) and ownership.

Layers of Infrastructure

Campus / Site Parking, Security, ...


Public

Transportation, Communication, Water, ...


What is IT Infrastructure?

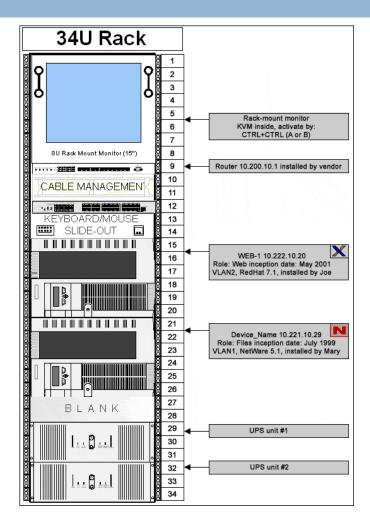
- □ IT Infrastructure:
 - "the structure of IT systems that supports IS, which comprise of IT components, the externally visible properties of those components, and the relationships among them"
 - Consist of both Hardware and Software.
 - Always rely on other infrastructure e.g. Data Center, Building, etc.

Layers of IT Infrastructure

IT Infrastructure

Base Infrastructure

- □ Servers:
 - Web server, Application server, Database server, ...
- Storage:
 - Main storage, secondary storage, backup, ...
- Networks:
 - Internet, Intranet, proprietary networks, ...
- Security:
 - Network security equipment, data encryption, ...


Server

- Workhorse of IT system
 - shares a resource (e.g. files) to one or more clients
- Must be high-performance, robust, and reliable
 - Using high-grade components
 - Fast and large RAM
 - □ High I/O (e.g. FC) and network bandwidths
 - Redundant power supply
- Often installed on racks

Rack-Mount Server

2110684 - IS Architecture Overview

Mainframe: The Big Iron

- Large, powerful computers for running many different tasks at the same time
- Highly reliable and secured servers
- Extensive input-output facilities
- Backward compatibility with older software
- Support massive throughput

Real World: IBM System Z10

- Announced in 2008
- Capacity
 - □ Up to 64 x Quad-core (4.4 GHz) CPUs
 - □ Up to 1.5 TB main memory

Mainframe vs. Supercomputer

Mainframe

- optimized for simple
 computations with huge
 amounts of external data
 (e.g. payroll processing)
- Can handle a wider variety of tasks
- Good at batch processing,such as billing

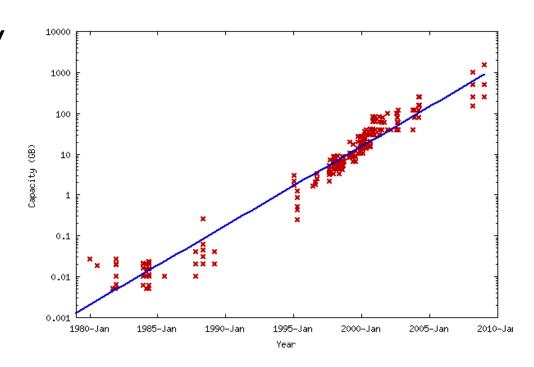
Supercomputer

- optimized for complicated computations that take place largely in memory (e.g. weather forecasting)
- built for one or a very few specific institutional tasks (e.g. simulation and modeling)

Blade Server

- Stripped down computer servers with a modular design
- Hosted in blade enclosure
 - Support multiple blade servers
 - Provides power, cooling, networking, interconnects, and management
- Benefits
 - Space and power consumption optimization

Blade Server


Blade Server

Storage (Hard Disk Drive)

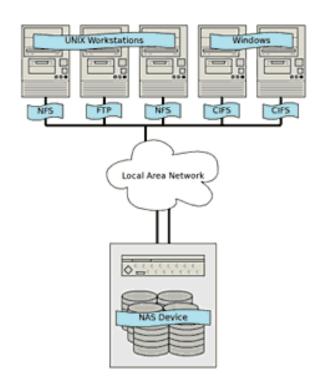
- Capacity
- Interface Technology
 - □ IDE (P-ATA) / SATA
 - □ SCSI / SAS
 - □ FC
- Performance
 - Seek Time
 - Data Transfer Rate(e.g. 15K RPM)

Network Attached Storage (NAS)

- □ File-level data storage
- Connecting directly to standard network
- Standard file-based protocols
 - NFS, CIFS, FTP, HTTP
 - UPnP, Rsync, ...
- Pros: Simple to operate and maintain, Cheap
- Cons: Performance limitation

Storage Area Network (SAN)

- Block-level data storage
- Connect to proprietary "SAN" network
- Storage protocols
 - SCSI
 - Fiber Channel
 - FICON
- □ Pros: High performance
- □ Cons: Expensive, complex

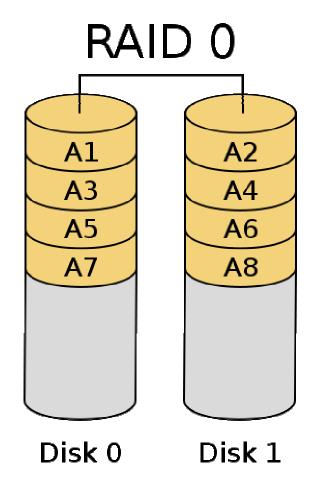


Storage Architecture: SAN vs. NAS

SAN: Storage Area Network

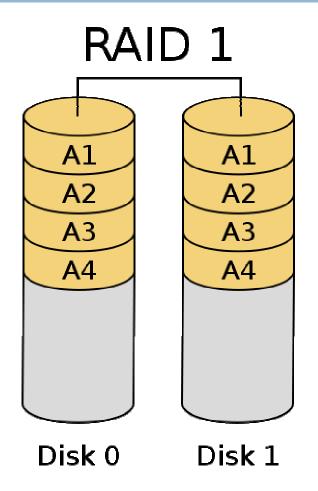
Client Layer: Application File System Fabric Layer: SAN (usually Fibre Channel) Storage Layer: SAN device SAN device Client Access LAN Application File System Router Tape Backup

NAS: Network Attached Storage

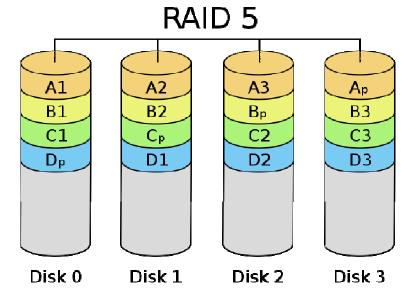


RAID

- Redundant Array of Inexpensive Disks
 - Achieve high levels of storage reliability
 - Using low-cost and less reliable PC-class disk-drive components
- Hot-Spare
 - A drive physically installed in the array which is inactive until an active drive fails
- Hot-Swapped
 - Ability to add/remove disks without shutting down the system


Popular RAID Level

- □ RAID 0 Striping
 - improved performance
 - additional storage
 - no redundancy or fault tolerance
 - N storage capacity


Popular RAID Level

- □ RAID 1 Mirroring
 - Provides fault tolerance from disk errors
 - Up to one-disk failure
 - Increased read performance
 - Very small performance reduction when writing
 - 1 storage capacity

Popular RAID Level

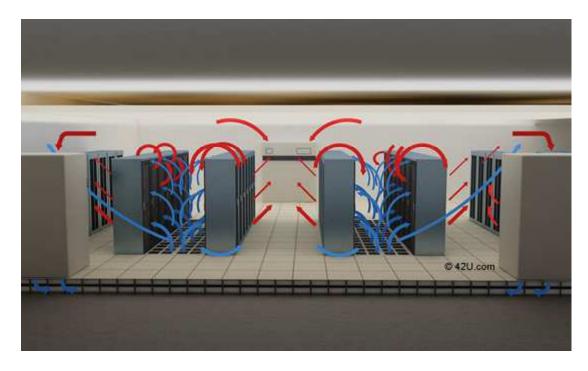
- RAID 5 InterleaveParity
 - Distributed data to all disks with one disk as a parity container
 - Good disk performance
 - Up to one-disk failure
 - N-1 storage capacity

Backup

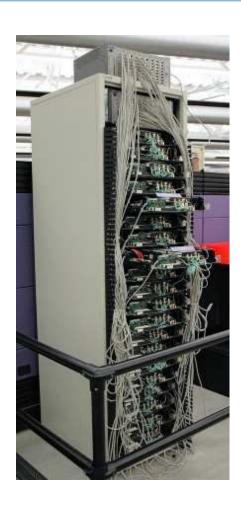
- Make copies of data to be restored when disaster occurs or files are accidentally deleted
- Wide-range of medias
 - Magnetic tapes
 - Hard disks
 - Remote backup services
- Full vs. Incremental

Data Center

- A room / floor / building that hosts computer systems
- Provide
 - Power supplies
 - Network
 - Environmental controls
 - Security


Data Center Components

Data Center Components



- Workload
 - Hundreds of millions of search request per day
 - Process about 1 petabyte of user-generated data every hour
 - Support various Google products
 - Search, advertising, email, maps, video, chat, blogger

- Develop its own distributed systems infrastructure
 - GFS
 - MapReduce
 - BigTable
- Use commodity hardware for cost-effective solution
 - Linux, in-house rack design, PC class mother boards, low end storage
 - Estimated 450,000 low-cost commodity servers in 2006

Data Center Map (as of April 2008)

- spent on data centers
 - \$1.9 billion in 2006
 - \$2.4 billion in 2007
- cost on the order of US\$2 million per
 month in electricity charges

Location Selection Criteria

- Large volumes of cheap electricity
- Green energy / renewable power sources
- Proximity to rivers and lakes for cooling purposes
- Large areas of land for more privacy and security
- Distance to other Google data centers (for fast connections)
- Tax incentives

Issues of ISA

- Infrastructure choices
 - Transact patterns
 - Centralized or distributed
 - Programming languages and development
- Security
 - Internet is a global network
 - Security becomes very important
 - Security infrastructure
 - Attacking prevention: firewall, VPN, IDS
 - Secured data transfer: encryption algorithms, security protocols

Issues (2)

- Performance
 - Responsiveness
 - How long (turn-around time) can a user tolerate?
 - Scalability
 - If we have more users, can the system still respond within a certain period of time?
 - If we have new services, can the system provide new services while it still meets the responsiveness criteria.

Issues (3)

- Manageability
 - Operational
 - Reliability / Availability / Downtime (including maintenance period)
 - Cooling issues
 - Cost
 - Electricity
 - Maintainability
 - How difficult is it for the admins to deploy, maintain, and upgrade the system?

Summary

- □ Transact Pattern: Tier-Based Architecture
- □ IT Infrastructure
 - Server
 - Storage
- Real World: Google Infrastructure
- Infrastructure Issues

References

- T. Hoff, "Google Architecture", http://highscalability.com/google-architecture, 23
 Nov 2008.
- □ "Google Platform", http://en.wikipedia.org/wiki/Google platform
- E. Turban et al., Information Technology for Management: Transforming Business in the Digital Economy, John Wiley & Sons, Inc., 2002.
- □ B. Robertson and V. Sribar, The Adaptive Enterprise, Intel Press, January 2002.
- R. Peacock, "Distributed Architecture Technologies", IEEE IT Professional, May/June 2000, pp. 58-60.