

Agenda

Part of this material are copyright 1996-2004 by J.F Kurose and K.W. Ross, All Rights Reserved

- Internet architecture is very scalable
 - Connecting people and contents from all over the world
 - 2,000 M users (30% of human race)
 - Contents
 - > 100 M web sites
 - > 45,000 M web pages
- Thailand Statistics
 - Internet Penetration: 17.5M (26.3%) in 2010
 - World = 28.7%, Falkland Islands = 100% (1)
 - Asia = 21.5%, South Korea = 81% (13), (Vietnam = 27.1%)
 - Broadband: 1M in 2007 (1.5%) and 10M in 2009
 - Bermuda = 36.5% (1), South Korea = 27.4% (9)

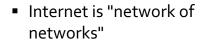
Internet clients

- Can be computer, mobile phones, etc.
- Web browser, email client, etc.
- Internet servers
 - Web servers

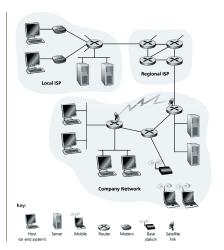
IP picture frame http://www.ceiva.com/

Other Internet Devices

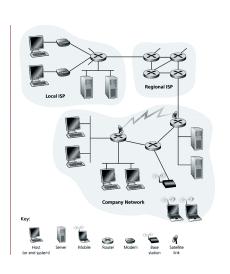
http://www-ccs.cs.umass.edu/~shri/iPic.html

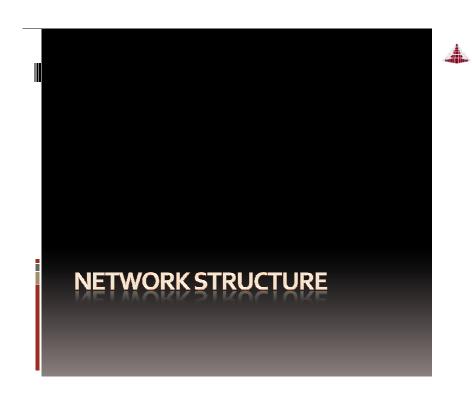


Other Internet Device



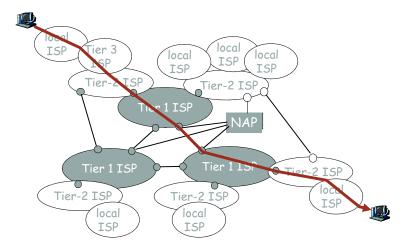
■ Internet Architecture




- Millions of connected devices (hosts = end systems)
- Running network apps
- communication links
 - fiber, copper, radio, satellite
 - transmission rate = bandwidth
- routers: forward packets (chunks of data)

Message Transmission

- Source host creates the message to send
- Message is transmitted via the local network to the local router (gateway)
- Message travels from router to router until the destination's gateway is reached
- Message is transmitted across the destination's LAN to the destination host.
- Destination host receives and acts upon the message



■ Internet Service Providers (ISPs)

- Tier 1 ("backbone")
 - AT&T, Sprint, UUNet, etc.
 - National & international connections
- Tier 2
 - Provide regional connections, e.g. Uninet, CAT
 - Purchase services from Tier 1 providers
- Tier 3 and local
 - "Last mile" connections e.g. ChulaNet, True
 - Purchase services from Tier 2
 - Sell services directly to individual & small business customers

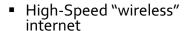
Message Path through Internet

Residential "gateway" connections

- Dialup modem
 - Standard analog telephone line
 - <= 56Kbps</p>
- Digital subscriber line (DSL)
 - Standard phone lines, restricted distance to modem
 - 3 Frequency channels (downstream, upstream, voice)
 - 384K–1.5Mbps downstream, 128K-256Kbps upstream
- ADSL: asymmetric digital subscriber line
 - up to 1 Mbps upstream (today typically < 256 kbps)
 - up to 8 Mbps downstream (today typically < 1 Mbps)
 - FDM: 50 kHz 1 MHz for downstream
 - 4 kHz 50 kHz for upstream
 - o kHz 4 kHz for ordinary telephone

Local Area Networks

- Ethernet (most common wired technology)
 - o 10 Mbps, 100 Mbps, 1Gbps even now 10Gps
 - Twisted pair copper wire or coax cable
- Wireless LAN
 - Base station (access point) connected to wired LAN
 - IEEE 802.11b is 11Mbps (802.11g is faster)
 - Typically good for 10s of meters
- WAP (Europe, US) and I-mode (Japan)
 - Extend cell-phone network to Internet
 - Eg. GPRS / EDGE
- Upcoming 3G
 - HSDPA

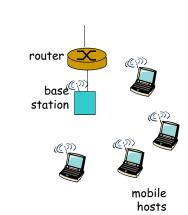


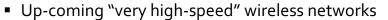
■ Building Links: Guided Media

- Twisted pair copper wire (phone, CAT-5)
 - 2 wires twisted around each other to help limit interference
 - CAT-5 cable has more twists, better insulation
- Coaxial Cable
 - Cable wrapped by insulation surrounded by another conductor
- Fiber optics

- Thin flexible "glass pipe"
- Require optical rather than electrical transmitters, receivers, switches, amplifiers, etc.

■ Wi-Fi: Internet without wire


- AKA. Hot-Spot
- Allow users with wireless-enabled device to access internet
 - Notebook, PDA, media boxes, game console
 - No setup needed
 - Available in many places (shopping centers, hotels, coffee shops, campus, home)

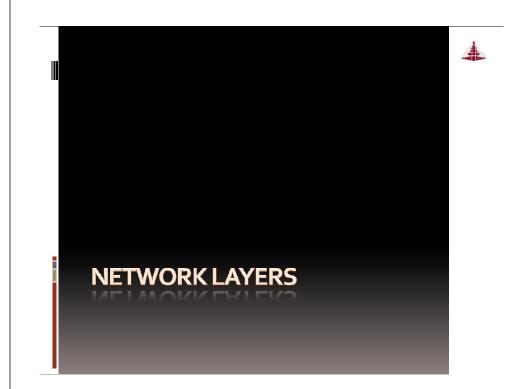


Wireless access networks


- Wireless access network connects end system to router
 - via base station aka "access point"
- Wireless LANs:
 - 802.11b (WiFi): 11 Mbps
- Wider-area wireless access
 - provided by telco operator
 - 3G ~ 384 kbps
 - WAP/GPRS in Europe

Wimax: Wi-Fi on Steroid

Long-range (10km or more)



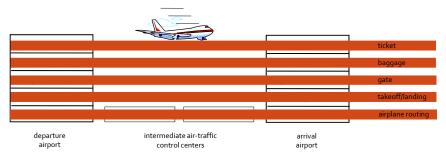
■ Wimax on Bike

Dealing with Complexity

- The path a message takes is complex; dealing with hosts, switches, packets, media, etc.
- Therefore we use an abstract model to divide the transmission into layers
- The sender at each layer uses the lower layers (as a black box) to send information directly to the recipient at that layer.
- Each layer considers information from layers above to be "data bits"

■ Example: Airplane Routing

ticket (purchase) ticket (complain) baggage (claim) baggage (check) gates (load) gates (unload) runway takeoff runway landing airplane routing airplane routing


airplane routing

Layering of airline functionality

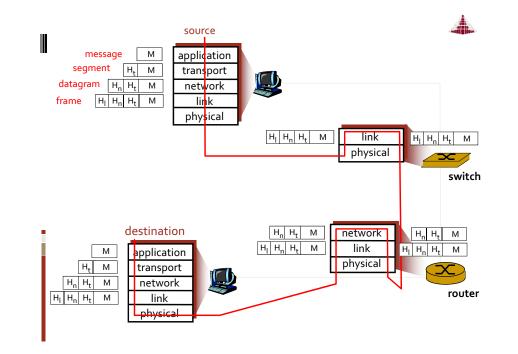
- Layers: each layer implements a service
 - via its own internal-layer actions
 - relying on services provided by layer below

Enveloping a Message

- Each layer takes data from the above layer
 - Breaks it apart if necessary (e.g. packetizing)
 - Adds an "envelope" = header and/or footer bits
 - Passes it to the next layer below, which will treat envelope as part of the data

Internet protocol stack

- application: supporting network applications
 - HTTP, FTP, SMTP
- transport: host-host data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - PPP, Ethernet
- physical: bits "on the wire"

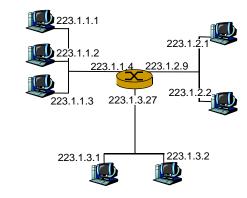

Application

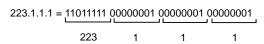
Transport

Network

Link

Physical

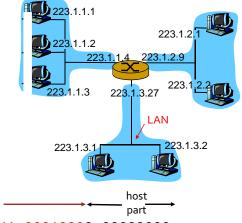




■ IP Addressing: introduction

IP address: 32-bit identifier for host, router *interface interface*: connection between host/router and physical link

- router's typically have multiple interfaces
- host may have multiple interfaces
- IP addresses associated with each interface


Subnets

IP address:

- subnet part (high order bits)
- host part (low order bits)

What's a subnet?

- device interfaces with same subnet part of IP address
- can physically reach each other without intervening router

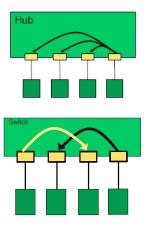
11001000 00010111 00010000 00000000

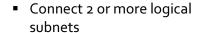
part

200.23.16.0/23

IPv6

- "Next generation" internet addressing
- 128 bits (rather than 32 in IPv4)
 - Not as big a deal as originally thought (NAT, CIDR)
 - "Every grain of sand on the planet can be internet-addressable)
 - Multicast and anycast (pick-1) addressing now supported
- Simplified header (next slide)
- From IPv4 to IPv6 (until all IPv6)
 - Dual stack router
 - Tunneling



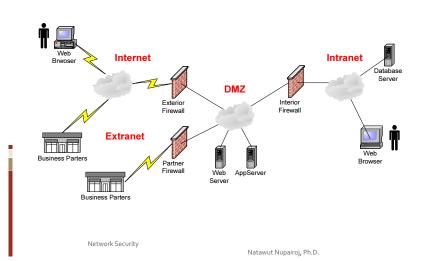

■ Equipment: Hub / Switch

- Transmission of data of physical layer
- Connect several LANs of the same type
- Switch is more intelligent than hub

2110684 - Basic Infrastructure

■ Equipment: Router / Layer-3 Switch

- Usually support multiple interface types (e.g. UTP, FC)
- Layer-3 Switch is router with less functions (e.g. only 1 interface type)

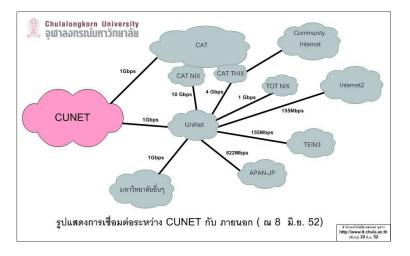


2110684 - Basic Infrastructure

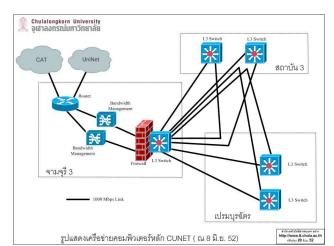
Equipment: Firewall Should arriving packet be allowed in? Departing packet let out?

- internal network connected to Internet via router firewall
- router filters packet-by-packet, decision to forward/drop packet based on:
 - source IP address, destination IP address
 - TCP/UDP source and destination port numbers
 - ICMP message type
 - TCP SYN and ACK bits

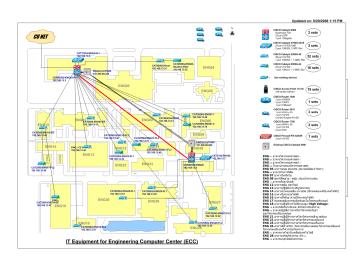
System Zones



IS Security



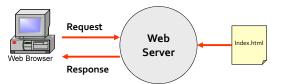
Real World: ChulaNet

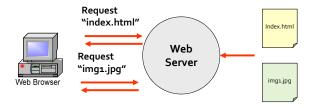


2110684 - Basic Infrastructure

Real World: ChulaNet

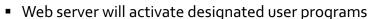
Real World: EngNet





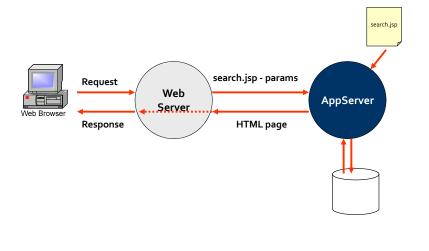
- Web-based applications consist of 2 page types
 - Static pages: HTML, picture, audio, text, etc.
 - Dynamic pages: result of search pages, form submission, etc.
- To serve a static page
 - Web server grabs a static page from a file in the server.

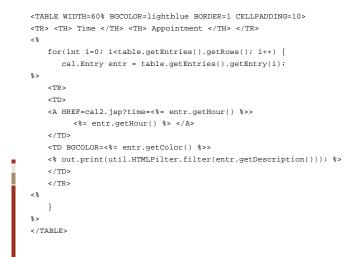
Serving a Static Page

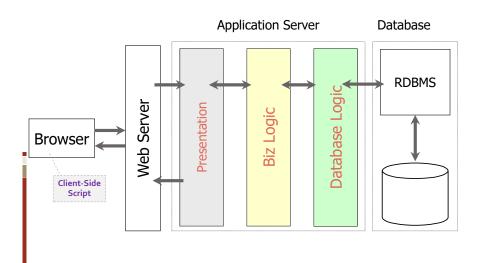


Serving a Static Page with Images

Serving a Dynamic Page


- Common Gateway Interface (CGI).
- Server-sided Java program.
- Used mostly to connect to database.
- File extensions
 - JSP, ASP, PHP, EXE, Class, etc.




Serving a Dynamic Page

JSP Example

■ Generic Web-Based Architecture

■ Software Framework

Source: Wikipedia

☐ Application Framework

- a software framework that is used to implement the standard structure of an application for a specific operating system
- Example: Microsoft MFC, Mac Cocoa, Widget toolkit

☐ Web Application Framework

- a software framework that is designed to support the development of dynamic websites, Web applications and Web services
- Example: JavaEE, .NET, Ruby on Rails, Struts, Spring, Seam

2110684 - Basic Infrastructure

■ Other Web Application Frameworks

Source: Wikipedia

2110684 - Basic Infrastructure

References

- J. Kurose and K. Ross, Computer Networking: A Top-Down Approach Featuring the Internet, 2nd Edition, Addison Wesley, 2002.
- P. Sokol, From EDI to Electronic Commerce: A Business Initiative, McGraw-Hill, 1995.
- M. Johnson, "XML for the absolute beginner", Javaworld, April 1999, http://www.javaworld.com/javaworld/jw-o4-1999/jw-o4-xml.html.
- W3C, "XML Tutorial", http://www.w3schools.com/xml/default.asp.
- M. Hall and L. Brown, "Introduction to XML", 2001, http://www.corewebprogramming.com.

2110684 - Basic Infrastructure