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Chapter 7 

Performance Enhancement 
 
In this chapter, we will concentrate on performance.  Performance improvement 
starts with an analysis of execution profile to understand where the data path 
spends most of the time.  The effort is then directed to redesign the data path, 
usually by increasing the concurrent operations in the data path.  There are 
interactions amongst choice of design.  Choosing one will affect another.  The 
gain in terms of performance must be weighted against the increased complexity 
in terms of circuit size or the cost.   For the purpose of our study we will not 
change the instruction set.  The performance improvement will come from the 
change of “micro-architecture” only.   
 
 

 
<fig the most frequent used instructions> 

 
In an analysis of the profile of execution of instructions at the level of clock 
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get, lit, ld, add, put, ldx, jt, lt, jf  

 
??? show the profile of execution the benchmark, frequency of each instruction 
and clocks 
 
These instructions altogether are more than 80% of all instructions executed in 
the suite of benchmark programs (see the appendix for full details of the 
benchmark programs and the frequencies of all instructions)1 
 
To improve the performance, the effort should be spent on improving these 
instructions. 
 
Let the shorthand notation of  push/pop be 
 

push x is    
  sp+1->sp 
  x->mW(sp) 
 
pop x is 
  mR(sp)->x 
  sp-1->sp 

 
The microprograms for the instructions: get, lit, ld, add, put, ldx, jt, lt, jf are: 
 

<get> 
  push ts 
  alu(fp-arg)->tbus, mR(tbus)->ts 
 
<lit> 
  push ts 
  arg->ts 
 
<ld> 
  push ts 
  mR(arg)->ts 

 
<bop>  

                                                      
1

 Notable is the “inc v” instruction which is not generated from this compiler (gen2.txt).  
It is used often but will not be included in this experiment. 
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     pop ff 
  alu(ts op ff)->ts 
 
<put> 
  alu(fp-arg)->tbus, ts->mW(tbus) 
  pop ts 
 
<ldx>                    ; {ads idx} 
  pop ff 
  alu(ts+ff)->tbus, mR(tbus)->ts 
 
<jt> 
  alu(ts=0), ifT <j3>   ; if true, don't jump 
<j2> 
  pc+arg  
  pop ts 
 
<jf> 
  alu(ts=0), ifT <j2>   ; if true, jump 
<j3> 
  pc+1 
  pop ts 

 
We can observe that all instructions perform push and pop.  This is because two 
reasons. The first reason is that it is the nature of the stack-based instruction set 
and the second reason is that the top of stack is cached in TS. Therefore there is a 
lot of traffic between TS and the stack segment.  In Sx processor, push and pop 
do one memory access and use ALU to do increment/decrement SP. 
 

Key ideas 
There are two key ideas: 

1. The operations push/pop can be done in one clock if sp can be 
incremented/decremented independent of ALU and they can achieve pre-
increment and post-decrement at the proper negative-edge of the clock.  

2. To improve “get”, the most frequently used instruction, the local variable 
must be stored in a register instead of memory as push/pop also accesses 
memory.  If it is done properly “get” will take just one clock. Let v[.] 
denotes the “caching” register bank.  It is connected to TS in the data 
path (see Fig sx2-diagram). 
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<get> 
  $1 push ts, $2 v[arg]->ts 

 
Where $1 is positive-edge and $2 is negative-edge, v[.] is the cache register.  The 
old value ts is pushed into memory at $1, before the new value from v[arg] is 
written to ts at $2.  
 

push/pop 

 
To push a register to memory in one clock, the “sp+1” must appear at the address 
bus from the beginning of $1, ts is presented to data bus at the same time, at the 
begining of $2 memory write signal is ended (it is assumed that the value is 
written into memory here), the value of “sp+1” is also written to sp at this time. 
 

push ts is    
  sp+1->sp 
  ts->mW(sp) 
 
$1 sp+1->abus, ts->dbus, $2 mW(abus), sp+1->sp 

 
Popping a register can be done in one cycle.  The value “sp” is presented to the 
address bus at $1. The memory is read.  At $2, the data is latched to a register, at 
the same time, “sp-1” is written to sp (post-decrement). 
 

pop x is 
  mR(sp)->x 
  sp-1->sp 
 
$1 sp->abus, mR(abus)->dbus, $2 dbus->x, sp-1->sp 

 
With this new push/pop, other instructions will also improve. “lit” takes only one 
cycle for execution. 
 

<lit>  
  $1 push ts, $2 arg->ts 

 
“ld” cannot be done in one cycle as it reads the memory twice, the first one for 
push ts, the second one for the value. Therefore “ld” takes 2 cycles for execution. 
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<ld> 
  push ts 
  mR(arg)->ts    

 
All the binary operations now take 2 cycles.  
 

<bop>  
  pop ff 
  alu(ts op ff)->ts 

 
“put” can be done in one cycle. ts is read at $1 and transfer to v[arg].  A value in 
the evaluation stack is popped into ts at $2. 
 

<put> 
  ts->v[arg], pop ts 

 
Similarly to bop, “ldx” takes 2 cycles. “jt” and “jf” take 3 cycles. 
 

Implementing the SP unit 

 
The sp unit performs pre-increment at $1, post-decrement at $2, and load value 
from bus at $2.  There is a feedforward path from the adder “sp+1” to achieve the 
pre-increment.  All multiplexors are asserted at $1, latching the register sp is at 
$2. 
 
 
           sp+1 
     ||<-------------- 
     ||               | 
 <-- ||<---- sp --||---- +/- 1 <-- 
          |       ||<-bus         | 
          |                       | 
          ------------------------- 
 

<fig the sp unit> 
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Stack frame 

 
A number of registers are used to cache part of stack frame.  The stack frame 
remains unchange from the original design. The local variables, lv1..lvn, are 
cached into v[1]..v[n] the cache registers.  When the context is changed by 
call/ret, these registers are affected.  Before a new activation record is created the 
“old” cached registers must be written back to the current activation record.  And 
vice versa, upon returned from a call, after the activation record is deleted and the 
old one restored, the cache registers must be refreshed (re-cached) from the 
activation record. This behaviour is the same as saving/restoring registers upon 
call/ret on a register-based processor.  However, in Sx, these saving/restoring are 
performed at the microprogram level instead of at the instruction level. 
 

call 
* save v to the current stack frame 
  push ts (flush stack) 
  create a new frame 
  save fp' and return address 
* cache v from the new frame 
  update sp 

 
ret 
  restore return address, sp 
  restore the old frame 
* cache v of this current frame (restore old v) 
  if it is “ret” pop ts 

 
The lines with * are the additional work that must be done to do stack frame 
caching.  The microprograms for call/ret for saving/caching v[.] are as follows. 
 

<save v> 
  alu(fp-n)->fp 
  vn->mW(fp), alu(fp+1)->fp 
  ... 
  v1->mW(fp), alu(fp+1)->fp  

 
<cache v> 
  alu(fp-n)->fp 
  mR(fp)->vn, alu(fp+1)->fp 
  ... 
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  mR(fp)->v1, alu(fp+1)->fp 
 
 
if the size of caching register is n then the extra cycle in call/ret instruction is big-
O(3(n+1)). 
 

New data path 
 
The enhanced Sx, or Sx2, has many additional functional units, notably the sp 
unit and the v[.], cache registers. The number of v[.] is 4.  However, the major 
change is in the control unit.  There are many more control signals to control the 
additional functional units and there are more steps of control.   
 
The events are defined as follows. 
 

multiplexor x selects {ts, fs, nx} 
multiplexor y selects {ff, u, arg} 
multiplexor b selects {tbus, dbus, sp} 
multiplexor d selects {fp, ts, v, u} 
multiplexor a selects {pc, tbus, fp, spu} 
multiplexor j selects {pc+1, pc+arg, tbus} 
multiplexor si selects {sp+1, sp-1, sp+arg, tbus} 
multiplexor so selects {spx, sp} 
multiplexor z selects {dbus, ts} 
multiplexor w selects {v1, v2, v3, v4, varg} 
multiplexor t selects {vout, pc, bus}  
multiplexor u selects {dbus, iru} 

 
alu events are {add, sub, inc, dec, z, eq, op, p1, p2, 
add2} 
load registers events are {ir, ts, fp, sp, nx, ff, pc, v1, 
v2,  v3, v4, varg, u} 
memory events are {mR, mW} 
next micro-address events are {ifT, ifF, decode, ifu0, 
ifp0, ifargm, skipu, trap} 
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<fig Sx2 data path> 
 
 
The new events on the next micro-address {ifu0, ifp0, ifargm, 
skipu} and the register U require further explanation.  They are necessary for 
the control of saving/caching the stack frame.  The simple analysis of the 
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previous section has the worst case additional running time for using stack frame 
caching is big-O(3(n+1)) cycles.  However, it is not the case that a function will 
use all v registers.  Let maxv be the number of v registers, fs be the size of 
activation record.  If the size of activation record is less than maxv then only 
v[1]..v[fs] must be saved/cached. Let u be max(fs,maxv); it is stored in the 
register U. The U register is used to skip a number of microprogram words to 
achieve this effect.  The control signal is “skipu”.  “skipu” sets the next 
microprogram address to mpc+(maxv-u). This offset is already stored in the next 
microprogram address field.  The microprogram below shows the part to save v 
registers at the function call.   
 

<save v> 
   alu(fp-u)->fp, skipu 
   v[4]->mW(fp), fp+1->fp 
   v[3]->mW(fp), fp+1->fp 
   v[2]->mW(fp), fp+1->fp 
   v[1]->mW(fp), fp+1->fp, <fetch>     

 
Caching v registers can be achieved similarly.  In fact, when calling a function, 
not even u registers need to be cached, only the passing parameters (p) need to be 
cached from the evaluation stack (it is a save when p < u).  However, it becomes 
too complex to do in a simple microprogram such as this due to the ordering the 
variables.  Therefore, a tradeoff has been made not to exploit this fact.  One 
special case has been implemented, when p = 0 to bypass the passing parameter 
caching (using the event “ifp0”).  These two parameters, p and u, are encoded in 
the argument of “fun” instruction with the following format. 
 

  fun.p.u.k    p:8 u:8 k:8 op:8 
 
Where k is the frame size, p is the arity, u is max(fs,maxv).  This is done by the 
code generator or at the loader of the processor simulator.  The U register is valid 
throughout the current context; it is used when “call” and “ret”. 
 

Microprogram of Sx2 
 
Here is the microprogram of the Sx2 processor in whole with the explanation. 
 

<fetch> 
  mR(pc)->ir, decode 
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The effect of concurrency of sp unit with other operations can be observed in 
almost every instruction. 
 

<bop> 
  mR(sp)->ff, sp+1->sp 
  alu(ts op ff)->ts, pc+1, <fetch> 
 
<uop> 
  alu(ts op ?)->ts, pc+1, <fetch> 

 
When arg > maxv, the “get” accesses normal memory.  Even in this case the step 
of execution is shortening due to the sp unit. When arg <= maxv, the access in on 
v registers and the execution takes only one cycle. The “decode” event performs 
a check on the argument of “get” and branches to the proper “get x” 
microprogram address where x is 1..maxv.  The pre-increment using “sp+1” feed-
forward path can be seen. 
 

<get> 
  ts->mW(sp+1), sp+1->sp ; push ts 
  alu(fp-arg)->tbus, mR(tbus)->ts, pc+1, <fetch> 
 
<get1> 
  ts->mW(sp+1), v[1]->ts, sp+1->sp, pc+1, <fetch> 
 
<get2> 
  ts->mW(sp+1), v[2]->ts, sp+1->sp, pc+1, <fetch> 
 
<get3> 
  ts->mW(sp+1), v[3]->ts, sp+1->sp, pc+1, <fetch> 
 
<get4> 
  ts->mW(sp+1), v[4]->ts, sp+1->sp, pc+1, <fetch> 

 
“put” is similarly decoded.  The post-decrement of sp unit allows the instruction 
to be executed in one cycle. 
 

<put> 
  alu(fp-arg)->tbus, ts->mW(tbus) 
  mR(sp)->ts, sp-1->sp, pc+1, <fetch> 
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<put1> 
  ts->v[1], mR(sp)->ts, sp-1->sp, pc+1, <fetch> 
 
<put2> 
  ts->v[2], mR(sp)->ts, sp-1->sp, pc+1, <fetch> 
 
<put3> 
  ts->v[3], mR(sp)->ts, sp-1->sp, pc+1, <fetch> 
 
<put4> 
  ts->v[4], mR(sp)->ts, sp-1->sp, pc+1, <fetch> 
 
<ld> 
  ts->mW(sp+1), sp+1->sp 
  mR(arg)->ts, pc+1, <fetch> 
 
<st> 
  ts->mW(arg) 
  mR(sp)->ts, sp-1->sp, pc+1, <fetch> 
 
<ldx>                           ;  {ads idx} 
  mR(sp)->ff, sp-1->sp          ; pop ads 
  alu(ff+ts)->tbus, mR(tbus)->ts, pc+1, <fetch> 

 
“stx” benefits from the sp unit the most as it pops the stack many times.  In the 
original Sx, “stx” takes 7 cycles, now it takes 4 cycles. 
 

<stx>                           ;  {ads idx val} 
  mR(sp)->nx, sp-1->sp      ; pop idx 
  mR(sp)->ff, sp-1->sp      ; pop ads 
  alu(nx+ff)->tbus, ts->mW(tbus) 
  mR(sp)->ts, sp-1->sp, pc+1, <fetch> 
 
<lit> 
  ts->mW(sp+1), sp+1->sp, arg->ts, pc+1, <fetch> 
 
<jmp> 
  pc+arg, <fetch> 
 
<jt> 
  alu(ts=0), ifT j3             ; if true, don't jump 
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<j2> 
  pc+arg, mR(sp)->ts, sp-1->sp, <fetch> 
 
<jf> 
  alu(ts=0), ifT j2                 ; if true, jump 
<j3> 
  pc+1, mR(sp)->ts, sp-1->sp, <fetch> 

 
Sx2 breaks call/fun into two instructions to reduce the maximum length of any 
single instruction.  The “call” instruction saves the return address to ts and saves 
v registers.  The “fun” creates the new activation record and caches the passing 
parameters from the evaluation stack to v registers. 
 

<call>               ; store the return address is on ts 
  ts->mW(sp+1), sp+1->sp, pc+1     ; flush ts 
  pc->ts, arg->pc, if u=0 <fetch>  ; save ret ads 
<save v> 
  alu(fp-u)->fp, skipu    
  v[4]->mW(fp), fp+1->fp 
  v[3]->mW(fp), fp+1->fp 
  v[2]->mW(fp), fp+1->fp 
  v[1]->mW(fp), fp+1->fp, <fetch> 

 
<fun>                            ; fun.p.u.k 
  fp->mW(sp+k), sp+k->sp         ; save old fp, new sp 
  sp->fp                         ; new fp 
  u->mW(sp+1), iru->u, sp+1->sp  ; push u 
  pc+1, if p=0 <fetch> 
<cache v> 
  alu(fp-u)->fp, skipu 
  mR(fp)->v[4], fp+1->fp 
  mR(fp)->v[3], fp+1->fp 
  mR(fp)->v[2], fp+1->fp 
  mR(fp)->v[1], fp+1->fp, <fetch> 

 
<ret> 
  sp-1->ff 
  alu(fp=ff), ifF <r2>           ; test for retv 
  ts->pc                         ; <do ret> retads on TS 
  mR(sp)->u                      ; pop u 
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  alu(fp-arg)->sp 
  mR(sp)->ts, sp-1->sp, if u=0 <r3> ; if u=0 skip cachev 
  mR(fp)->fp, <cachev> 
<r2> 
  alu(fp+2)->tbus, mR(tbus)->ff     ; ret ads on frame 
  ff->pc 
  alu(fp+1)->tbus, mR(tbus)->u      ; pop u 
  alu(fp-arg)->sp, if u=0 <r3>      ; skip cachev 
  mR(fp)->fp, <cachev> 
<r3> 
  mR(fp)->fp, <fetch>               ; restore fp 

 
In writing the microprogram for the instructions “inc” and “dec”, a different style 
is used.  Instead of decoding to “inc1”...”inc4”, a test is made to check the range 
of the argument.  If arg > maxv then it is a normal operation, else the access is on 
v registers.  The event “ifargm” does the test.  The ts is saved to nx as the 
operation uses ts.  When the operation is completed, ts is restored from nx. 
 

<inc> 
  ts->nx, v[arg]->ts, ifargm <inc2> ; save ts to nx 
  alu(ts+1)->ts                     ; op on v reg 
  ts->v[arg], nx->ts, pc+1, <fetch> 
<inc2> 
  alu(fp-arg)->tbus, mR(tbus)->ts   ; a normal op 
  alu(ts+1)->ts 
  alu(fp-arg)->tbus, ts->mW(tbus) 
  nx->ts, pc+1, <fetch> 
 
<dec> 
  ts->nx, v[arg]->ts  ifargm <dec2> 
  alu(ts-1)->ts 
  ts->v[arg], nx->ts, pc+1, <fetch> 
<dec2> 
  alu(fp-arg)->tbus, mR(tbus)->ts 
  alu(ts-1)->ts 
  alu(fp-arg)->tbus, ts->mW(tbus) 
  nx->ts, pc+1, <fetch> 
<sys> 
<array> 
<end> 
  trap, pc+1, <fetch> 
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Performance 
 
The table x shows the number of cycle used by each instruction.  The number in 
parentheses is the number of cycle of the original Sx for comparison. Please 
observe that almost all instructions are faster.  The “call/fun”, “ret” are slow in 
the worst case, for example, call+fun is 16 cycles (Sx is only 8 cycles).  “inc” and 
“dec” is normal case are the same as Sx (due to the test for the range of 
argument) but they are twice as fast if the argument is in the cache register. 
 
Table x  The number of cycle used by each instruction of Sx2. (n) shows the 
number of Sx. 
 

bop 3 (4) uop 2 (3) get 3 (4) get1..4 2 (4) 

put 3 (4) put1..4 2 (4) ld 3 (4) st 3 (4) 

ldx 3 (4) stx 5 (8) lit 2 (4) jmp 2 (2) 

jt 3 (4) jf 3 (4) call max 7 (8) fun max 9 (0) 

ret max 12 (8) retv max 12 (7) retv max 12 (7) inc1..4 3 (6) 

dec 6 (6) dec1..4 3 (6)   
 
A number of benchmark programs are compiled and then run on the Sx2 
processor simulator.   The table below reports the number of instruction, the 
number of cycle and the cycle-per-instruction number for each program. 
 
Table x the performance of Sx2 processor 
 
program noi/clk/cpi    sx1        sx2 
 
bubble   10068   44214 4.39  10262   32090 3.13 
hanoi     2312   10092 4.37   2377    7544 3.17 
matmul    3043   12880 4.23   3097    9348 3.02 
perm      4868   20932 4.30   4935   14663 2.97 
queen   618665 2576210 4.16 620724 1717782 2.77 
quick     3172   13539 4.27   3224    9551 2.96 
sieve    28026  124338 4.44  28029   75204 2.68 
aes      30579  131560 4.29  30724   90498 2.95 
 

<fig some graph???> 
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The average cpi of Sx2 is 2.9.  From the table, comparing the number of clock 
between the original Sx and Sx2, the average ratio is 0.70.  That is, Sx2 is 30% 
faster than the original Sx. 
 
Other interesting observation is the size of microprogram.  Sx2 is obviously more 
complex. The size of its microprogram is larger.  We calculate the size of 
microprogram as the number of bit in the ROM.  Here is the comparison. 
 
Sx   width 38  length 62  38x62 = 2356 bits 
Sx2 width 71  length 74  71x74 = 5254 bits 
 
Therefore, the complexity in the control unit of Sx2 is double of Sx. 
 

Summary 
 
To improve the performance of Sx processor, we employ the technique of stack 
frame caching.  The stack frame caching relies on the fast register to cache a part 
of stack frame so that the access to these variables takes only one cycle. The 
separation of SP from the ALU path to have its own increment/decrement, the sp 
unit, helps to shorten the cycle of the push/pop values from the evaluation stack.  
There are many approaches to enhance the performance of a processor. In 
general, the memory sub-system has the major impact on performance. However, 
in our presentation, the speed of memory, its access time, is assumed to be one 
cycle, therefore it does not affect our design.  This is not a realistic assumption 
for a general purpose processor but in the context of implementing the design on 
FPGA with its internal memory block, this is correct. 
 

Further reading  
 
The conventional approaches to performance enhancement are to use pipeline 
and multiple functional units.  These techniques have been used successfully in 
every commercial processor available today.  Most computer architecture 
textbook described these methods.  The most widely used text written by the 
computer architects who invent the concept of reduced instruction set computer 
(RISC), is the text by Hennessy and Patterson [ref].  The pipeline technique is 
perhaps the earliest technique for performance enhancement.  It has been used for 
many complex functional units such as floating-point calculation [ref Kogge]. 
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Multiple functional units were the landmark of “super computer” in its era.  In 
fact, the first one to employ multiple function units successfully is CDC6600, the 
most exciting computer architecture of its day [ref]. 
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