
1

Chapter 7

Performance Enhancement

In this chapter, we will concentrate on performance. Performance improvement
starts with an analysis of execution profile to understand where the data path
spends most of the time. The effort is then directed to redesign the data path,
usually by increasing the concurrent operations in the data path. There are
interactions amongst choice of design. Choosing one will affect another. The
gain in terms of performance must be weighted against the increased complexity
in terms of circuit size or the cost. For the purpose of our study we will not
change the instruction set. The performance improvement will come from the
change of “micro-architecture” only.

<fig the most frequent used instructions>

In an analysis of the profile of execution of instructions at the level of clock
cycle, most frequently used instructions are:

get

lit

ld add put ldx jt lt jf

0

5

10

15

20

25

30

35

2

get, lit, ld, add, put, ldx, jt, lt, jf

??? show the profile of execution the benchmark, frequency of each instruction
and clocks

These instructions altogether are more than 80% of all instructions executed in
the suite of benchmark programs (see the appendix for full details of the
benchmark programs and the frequencies of all instructions)1

To improve the performance, the effort should be spent on improving these
instructions.

Let the shorthand notation of push/pop be

push x is
 sp+1->sp
 x->mW(sp)

pop x is
 mR(sp)->x
 sp-1->sp

The microprograms for the instructions: get, lit, ld, add, put, ldx, jt, lt, jf are:

<get>
 push ts
 alu(fp-arg)->tbus, mR(tbus)->ts

<lit>
 push ts
 arg->ts

<ld>
 push ts
 mR(arg)->ts

<bop>

1

 Notable is the “inc v” instruction which is not generated from this compiler (gen2.txt).
It is used often but will not be included in this experiment.

3

 pop ff
 alu(ts op ff)->ts

<put>
 alu(fp-arg)->tbus, ts->mW(tbus)
 pop ts

<ldx> ; {ads idx}
 pop ff
 alu(ts+ff)->tbus, mR(tbus)->ts

<jt>
 alu(ts=0), ifT <j3> ; if true, don't jump
<j2>
 pc+arg
 pop ts

<jf>
 alu(ts=0), ifT <j2> ; if true, jump
<j3>
 pc+1
 pop ts

We can observe that all instructions perform push and pop. This is because two
reasons. The first reason is that it is the nature of the stack-based instruction set
and the second reason is that the top of stack is cached in TS. Therefore there is a
lot of traffic between TS and the stack segment. In Sx processor, push and pop
do one memory access and use ALU to do increment/decrement SP.

Key ideas
There are two key ideas:

1. The operations push/pop can be done in one clock if sp can be
incremented/decremented independent of ALU and they can achieve pre-
increment and post-decrement at the proper negative-edge of the clock.

2. To improve “get”, the most frequently used instruction, the local variable
must be stored in a register instead of memory as push/pop also accesses
memory. If it is done properly “get” will take just one clock. Let v[.]
denotes the “caching” register bank. It is connected to TS in the data
path (see Fig sx2-diagram).

4

<get>
 $1 push ts, $2 v[arg]->ts

Where $1 is positive-edge and $2 is negative-edge, v[.] is the cache register. The
old value ts is pushed into memory at $1, before the new value from v[arg] is
written to ts at $2.

push/pop

To push a register to memory in one clock, the “sp+1” must appear at the address
bus from the beginning of $1, ts is presented to data bus at the same time, at the
begining of $2 memory write signal is ended (it is assumed that the value is
written into memory here), the value of “sp+1” is also written to sp at this time.

push ts is
 sp+1->sp
 ts->mW(sp)

$1 sp+1->abus, ts->dbus, $2 mW(abus), sp+1->sp

Popping a register can be done in one cycle. The value “sp” is presented to the
address bus at $1. The memory is read. At $2, the data is latched to a register, at
the same time, “sp-1” is written to sp (post-decrement).

pop x is
 mR(sp)->x
 sp-1->sp

$1 sp->abus, mR(abus)->dbus, $2 dbus->x, sp-1->sp

With this new push/pop, other instructions will also improve. “lit” takes only one
cycle for execution.

<lit>
 $1 push ts, $2 arg->ts

“ld” cannot be done in one cycle as it reads the memory twice, the first one for
push ts, the second one for the value. Therefore “ld” takes 2 cycles for execution.

5

<ld>
 push ts
 mR(arg)->ts

All the binary operations now take 2 cycles.

<bop>
 pop ff
 alu(ts op ff)->ts

“put” can be done in one cycle. ts is read at $1 and transfer to v[arg]. A value in
the evaluation stack is popped into ts at $2.

<put>
 ts->v[arg], pop ts

Similarly to bop, “ldx” takes 2 cycles. “jt” and “jf” take 3 cycles.

Implementing the SP unit

The sp unit performs pre-increment at $1, post-decrement at $2, and load value
from bus at $2. There is a feedforward path from the adder “sp+1” to achieve the
pre-increment. All multiplexors are asserted at $1, latching the register sp is at
$2.

 sp+1
 ||<--------------
 || |
 <-- ||<---- sp --||---- +/- 1 <--
 | ||<-bus |
 | |

<fig the sp unit>

6

Stack frame

A number of registers are used to cache part of stack frame. The stack frame
remains unchange from the original design. The local variables, lv1..lvn, are
cached into v[1]..v[n] the cache registers. When the context is changed by
call/ret, these registers are affected. Before a new activation record is created the
“old” cached registers must be written back to the current activation record. And
vice versa, upon returned from a call, after the activation record is deleted and the
old one restored, the cache registers must be refreshed (re-cached) from the
activation record. This behaviour is the same as saving/restoring registers upon
call/ret on a register-based processor. However, in Sx, these saving/restoring are
performed at the microprogram level instead of at the instruction level.

call
* save v to the current stack frame
 push ts (flush stack)
 create a new frame
 save fp' and return address
* cache v from the new frame
 update sp

ret
 restore return address, sp
 restore the old frame
* cache v of this current frame (restore old v)
 if it is “ret” pop ts

The lines with * are the additional work that must be done to do stack frame
caching. The microprograms for call/ret for saving/caching v[.] are as follows.

<save v>
 alu(fp-n)->fp
 vn->mW(fp), alu(fp+1)->fp
 ...
 v1->mW(fp), alu(fp+1)->fp

<cache v>
 alu(fp-n)->fp
 mR(fp)->vn, alu(fp+1)->fp
 ...

7

 mR(fp)->v1, alu(fp+1)->fp

if the size of caching register is n then the extra cycle in call/ret instruction is big-
O(3(n+1)).

New data path

The enhanced Sx, or Sx2, has many additional functional units, notably the sp
unit and the v[.], cache registers. The number of v[.] is 4. However, the major
change is in the control unit. There are many more control signals to control the
additional functional units and there are more steps of control.

The events are defined as follows.

multiplexor x selects {ts, fs, nx}
multiplexor y selects {ff, u, arg}
multiplexor b selects {tbus, dbus, sp}
multiplexor d selects {fp, ts, v, u}
multiplexor a selects {pc, tbus, fp, spu}
multiplexor j selects {pc+1, pc+arg, tbus}
multiplexor si selects {sp+1, sp-1, sp+arg, tbus}
multiplexor so selects {spx, sp}
multiplexor z selects {dbus, ts}
multiplexor w selects {v1, v2, v3, v4, varg}
multiplexor t selects {vout, pc, bus}
multiplexor u selects {dbus, iru}

alu events are {add, sub, inc, dec, z, eq, op, p1, p2,
add2}
load registers events are {ir, ts, fp, sp, nx, ff, pc, v1,
v2, v3, v4, varg, u}
memory events are {mR, mW}
next micro-address events are {ifT, ifF, decode, ifu0,
ifp0, ifargm, skipu, trap}

8

<fig Sx2 data path>

The new events on the next micro-address {ifu0, ifp0, ifargm,
skipu} and the register U require further explanation. They are necessary for
the control of saving/caching the stack frame. The simple analysis of the

9

previous section has the worst case additional running time for using stack frame
caching is big-O(3(n+1)) cycles. However, it is not the case that a function will
use all v registers. Let maxv be the number of v registers, fs be the size of
activation record. If the size of activation record is less than maxv then only
v[1]..v[fs] must be saved/cached. Let u be max(fs,maxv); it is stored in the
register U. The U register is used to skip a number of microprogram words to
achieve this effect. The control signal is “skipu”. “skipu” sets the next
microprogram address to mpc+(maxv-u). This offset is already stored in the next
microprogram address field. The microprogram below shows the part to save v
registers at the function call.

<save v>
 alu(fp-u)->fp, skipu
 v[4]->mW(fp), fp+1->fp
 v[3]->mW(fp), fp+1->fp
 v[2]->mW(fp), fp+1->fp
 v[1]->mW(fp), fp+1->fp, <fetch>

Caching v registers can be achieved similarly. In fact, when calling a function,
not even u registers need to be cached, only the passing parameters (p) need to be
cached from the evaluation stack (it is a save when p < u). However, it becomes
too complex to do in a simple microprogram such as this due to the ordering the
variables. Therefore, a tradeoff has been made not to exploit this fact. One
special case has been implemented, when p = 0 to bypass the passing parameter
caching (using the event “ifp0”). These two parameters, p and u, are encoded in
the argument of “fun” instruction with the following format.

 fun.p.u.k p:8 u:8 k:8 op:8

Where k is the frame size, p is the arity, u is max(fs,maxv). This is done by the
code generator or at the loader of the processor simulator. The U register is valid
throughout the current context; it is used when “call” and “ret”.

Microprogram of Sx2

Here is the microprogram of the Sx2 processor in whole with the explanation.

<fetch>
 mR(pc)->ir, decode

10

The effect of concurrency of sp unit with other operations can be observed in
almost every instruction.

<bop>
 mR(sp)->ff, sp+1->sp
 alu(ts op ff)->ts, pc+1, <fetch>

<uop>
 alu(ts op ?)->ts, pc+1, <fetch>

When arg > maxv, the “get” accesses normal memory. Even in this case the step
of execution is shortening due to the sp unit. When arg <= maxv, the access in on
v registers and the execution takes only one cycle. The “decode” event performs
a check on the argument of “get” and branches to the proper “get x”
microprogram address where x is 1..maxv. The pre-increment using “sp+1” feed-
forward path can be seen.

<get>
 ts->mW(sp+1), sp+1->sp ; push ts
 alu(fp-arg)->tbus, mR(tbus)->ts, pc+1, <fetch>

<get1>
 ts->mW(sp+1), v[1]->ts, sp+1->sp, pc+1, <fetch>

<get2>
 ts->mW(sp+1), v[2]->ts, sp+1->sp, pc+1, <fetch>

<get3>
 ts->mW(sp+1), v[3]->ts, sp+1->sp, pc+1, <fetch>

<get4>
 ts->mW(sp+1), v[4]->ts, sp+1->sp, pc+1, <fetch>

“put” is similarly decoded. The post-decrement of sp unit allows the instruction
to be executed in one cycle.

<put>
 alu(fp-arg)->tbus, ts->mW(tbus)
 mR(sp)->ts, sp-1->sp, pc+1, <fetch>

11

<put1>
 ts->v[1], mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<put2>
 ts->v[2], mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<put3>
 ts->v[3], mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<put4>
 ts->v[4], mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<ld>
 ts->mW(sp+1), sp+1->sp
 mR(arg)->ts, pc+1, <fetch>

<st>
 ts->mW(arg)
 mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<ldx> ; {ads idx}
 mR(sp)->ff, sp-1->sp ; pop ads
 alu(ff+ts)->tbus, mR(tbus)->ts, pc+1, <fetch>

“stx” benefits from the sp unit the most as it pops the stack many times. In the
original Sx, “stx” takes 7 cycles, now it takes 4 cycles.

<stx> ; {ads idx val}
 mR(sp)->nx, sp-1->sp ; pop idx
 mR(sp)->ff, sp-1->sp ; pop ads
 alu(nx+ff)->tbus, ts->mW(tbus)
 mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<lit>
 ts->mW(sp+1), sp+1->sp, arg->ts, pc+1, <fetch>

<jmp>
 pc+arg, <fetch>

<jt>
 alu(ts=0), ifT j3 ; if true, don't jump

12

<j2>
 pc+arg, mR(sp)->ts, sp-1->sp, <fetch>

<jf>
 alu(ts=0), ifT j2 ; if true, jump
<j3>
 pc+1, mR(sp)->ts, sp-1->sp, <fetch>

Sx2 breaks call/fun into two instructions to reduce the maximum length of any
single instruction. The “call” instruction saves the return address to ts and saves
v registers. The “fun” creates the new activation record and caches the passing
parameters from the evaluation stack to v registers.

<call> ; store the return address is on ts
 ts->mW(sp+1), sp+1->sp, pc+1 ; flush ts
 pc->ts, arg->pc, if u=0 <fetch> ; save ret ads
<save v>
 alu(fp-u)->fp, skipu
 v[4]->mW(fp), fp+1->fp
 v[3]->mW(fp), fp+1->fp
 v[2]->mW(fp), fp+1->fp
 v[1]->mW(fp), fp+1->fp, <fetch>

<fun> ; fun.p.u.k
 fp->mW(sp+k), sp+k->sp ; save old fp, new sp
 sp->fp ; new fp
 u->mW(sp+1), iru->u, sp+1->sp ; push u
 pc+1, if p=0 <fetch>
<cache v>
 alu(fp-u)->fp, skipu
 mR(fp)->v[4], fp+1->fp
 mR(fp)->v[3], fp+1->fp
 mR(fp)->v[2], fp+1->fp
 mR(fp)->v[1], fp+1->fp, <fetch>

<ret>
 sp-1->ff
 alu(fp=ff), ifF <r2> ; test for retv
 ts->pc ; <do ret> retads on TS
 mR(sp)->u ; pop u

13

 alu(fp-arg)->sp
 mR(sp)->ts, sp-1->sp, if u=0 <r3> ; if u=0 skip cachev
 mR(fp)->fp, <cachev>
<r2>
 alu(fp+2)->tbus, mR(tbus)->ff ; ret ads on frame
 ff->pc
 alu(fp+1)->tbus, mR(tbus)->u ; pop u
 alu(fp-arg)->sp, if u=0 <r3> ; skip cachev
 mR(fp)->fp, <cachev>
<r3>
 mR(fp)->fp, <fetch> ; restore fp

In writing the microprogram for the instructions “inc” and “dec”, a different style
is used. Instead of decoding to “inc1”...”inc4”, a test is made to check the range
of the argument. If arg > maxv then it is a normal operation, else the access is on
v registers. The event “ifargm” does the test. The ts is saved to nx as the
operation uses ts. When the operation is completed, ts is restored from nx.

<inc>
 ts->nx, v[arg]->ts, ifargm <inc2> ; save ts to nx
 alu(ts+1)->ts ; op on v reg
 ts->v[arg], nx->ts, pc+1, <fetch>
<inc2>
 alu(fp-arg)->tbus, mR(tbus)->ts ; a normal op
 alu(ts+1)->ts
 alu(fp-arg)->tbus, ts->mW(tbus)
 nx->ts, pc+1, <fetch>

<dec>
 ts->nx, v[arg]->ts ifargm <dec2>
 alu(ts-1)->ts
 ts->v[arg], nx->ts, pc+1, <fetch>
<dec2>
 alu(fp-arg)->tbus, mR(tbus)->ts
 alu(ts-1)->ts
 alu(fp-arg)->tbus, ts->mW(tbus)
 nx->ts, pc+1, <fetch>
<sys>
<array>
<end>
 trap, pc+1, <fetch>

14

Performance

The table x shows the number of cycle used by each instruction. The number in
parentheses is the number of cycle of the original Sx for comparison. Please
observe that almost all instructions are faster. The “call/fun”, “ret” are slow in
the worst case, for example, call+fun is 16 cycles (Sx is only 8 cycles). “inc” and
“dec” is normal case are the same as Sx (due to the test for the range of
argument) but they are twice as fast if the argument is in the cache register.

Table x The number of cycle used by each instruction of Sx2. (n) shows the
number of Sx.

bop 3 (4) uop 2 (3) get 3 (4) get1..4 2 (4)

put 3 (4) put1..4 2 (4) ld 3 (4) st 3 (4)

ldx 3 (4) stx 5 (8) lit 2 (4) jmp 2 (2)

jt 3 (4) jf 3 (4) call max 7 (8) fun max 9 (0)

ret max 12 (8) retv max 12 (7) retv max 12 (7) inc1..4 3 (6)

dec 6 (6) dec1..4 3 (6)

A number of benchmark programs are compiled and then run on the Sx2
processor simulator. The table below reports the number of instruction, the
number of cycle and the cycle-per-instruction number for each program.

Table x the performance of Sx2 processor

program noi/clk/cpi sx1 sx2

bubble 10068 44214 4.39 10262 32090 3.13
hanoi 2312 10092 4.37 2377 7544 3.17
matmul 3043 12880 4.23 3097 9348 3.02
perm 4868 20932 4.30 4935 14663 2.97
queen 618665 2576210 4.16 620724 1717782 2.77
quick 3172 13539 4.27 3224 9551 2.96
sieve 28026 124338 4.44 28029 75204 2.68
aes 30579 131560 4.29 30724 90498 2.95

<fig some graph???>

15

The average cpi of Sx2 is 2.9. From the table, comparing the number of clock
between the original Sx and Sx2, the average ratio is 0.70. That is, Sx2 is 30%
faster than the original Sx.

Other interesting observation is the size of microprogram. Sx2 is obviously more
complex. The size of its microprogram is larger. We calculate the size of
microprogram as the number of bit in the ROM. Here is the comparison.

Sx width 38 length 62 38x62 = 2356 bits
Sx2 width 71 length 74 71x74 = 5254 bits

Therefore, the complexity in the control unit of Sx2 is double of Sx.

Summary

To improve the performance of Sx processor, we employ the technique of stack
frame caching. The stack frame caching relies on the fast register to cache a part
of stack frame so that the access to these variables takes only one cycle. The
separation of SP from the ALU path to have its own increment/decrement, the sp
unit, helps to shorten the cycle of the push/pop values from the evaluation stack.
There are many approaches to enhance the performance of a processor. In
general, the memory sub-system has the major impact on performance. However,
in our presentation, the speed of memory, its access time, is assumed to be one
cycle, therefore it does not affect our design. This is not a realistic assumption
for a general purpose processor but in the context of implementing the design on
FPGA with its internal memory block, this is correct.

Further reading

The conventional approaches to performance enhancement are to use pipeline
and multiple functional units. These techniques have been used successfully in
every commercial processor available today. Most computer architecture
textbook described these methods. The most widely used text written by the
computer architects who invent the concept of reduced instruction set computer
(RISC), is the text by Hennessy and Patterson [ref]. The pipeline technique is
perhaps the earliest technique for performance enhancement. It has been used for
many complex functional units such as floating-point calculation [ref Kogge].

16

Multiple functional units were the landmark of “super computer” in its era. In
fact, the first one to employ multiple function units successfully is CDC6600, the
most exciting computer architecture of its day [ref].

References

[1] [my ncsec 2006 paper on stack frame caching] (being written)
[2] [my combined instruction paper] Chongstitvatana, P., "Post processing

optimization of byte-code instructions by extension of its virtual
machine", 20th Electrical Engineering Conference, Thailand, 1997.

[3] [my series of performance improvement of stack processor]
Sattayawiboon, C., Sripornprasert, J., Tansutthiwess, S., Tonteerawong,
P., and Chongstitvatana, P., "A stack processor with integrated display
circuit for a low cost CD-ROM reading device", ECTI International
Conference, May 10-13, Thailand, 2006.

[4] Chongstitvatana, P., "A compact code 16-bit processor for embedded
applications", Joint conf. of computer science and software engineering,
Nov 2005, Thailand.

[5] Nanthanavoot, P., Burutarchanai, A., and Chongstitvatana, P.,
"Instruction packing for a 32-bit resource efficient processor," National
Science and Technology Development Agency (NSTDA) Annual
Conference, Thailand, 27-30 March 2005 (in Thai).

[6] Burutarchanai, A., Nanthanavoot, P., Aporntewan, C.,
and Chongstitvatana, P., "A stack-based processor for resource efficient
embedded systems", Proc. of IEEE TENCON 2004, 21-24 November
2004, Thailand.

[7] Burutarchanai, A., Kotrajaras, V. and Chongstitvatana, P., "A fast
instruction fetch unit for an embedded stack processor", Proc. of Int.
Conf. on Information and Communication Technologies (ICT 2004), 18-
19 November, 2004. Thailand.

[8] Burutarchanai, A., and Chongstitvatana, P., "Design of a two-phased
clocked control unit for performance enhancement of a stack processor",
National Computer Science and Engineering Conference, Thailand, 21-
22 Sept. 2004, pp.114-119.

[9] Nanthanavoot P. and Chongstitvatana, P., "Code-Size Reduction for
Embedded Systems using Bytecode Translation Unit", Conf. of
Electrical/Electronics, Computer, Telecommunications, and Information
Technology (ECTI), Thailand, 13-14 May 2004.

17

[10] Wongsiriprasert, C. and Chongstitvatana, P., "Performance
comparison between two virtual machine interpreters : stack-based vs.
register-based", Proc. of 3rd Annual National Symposium on
Computational Science and Engineering, Bangkok, 1999, pp. 401-406.

[11] CAQA text
[12] Kogge pipeline
[13] CDC6600

 [IBM94] International Business Machines, Inc., The PowerPC architecture: A
specification for a new family of RISC processors. San Francisco: CA,
Morgan Kaufmann, 1994.

[ILI82] Iliffe, J., Advanced computer design, Prentice-Hall, London, 1982.
[LEV89] Levy M., and Eckhouse, R., Computer programming and architecture:

the VAX, Bedford, Mass., Digital Press, 1989
[LUN77] Lunde, A., “Empirical evaluation of some features of instruction set

processor architecture”, Comm. of the ACM, March 1977.
[PAT82] Patterson, D., and Sequin, C., “A VLSI RISC”, Computer, 15, no. 9,

September, 1982, pp. 8-21.
[PAT85] Patterson, D., “Reduced instruction set computers”, Comm. of the

ACM, 28, no.1, January 1985.
[STA88] Stallings, W., “Reduced instruction set computer architecture”, Proc. of

the IEEE, vol. 76, no. 1, January 1988, pp. 38-55.

