
Comparison of Technology-Based and State-Based Representations

for the Synthesis of Synchronous Sequential Logic from Partial

Input/Output Sequence

Chaiyasit Manovit Chatchawit Aporntewan
Prabhas Chongstitvatana

Department of Computer Engineering, Faculty of Engineering,
Chulalongkorn University, Bangkok 10330, Thailand

Tel: (622)218-6982 Fax: (662)218-6955
prabhas@chula.ac.th

Abstract

This paper compares the computational e�orts of
synchronous sequential logic circuit synthesis from
partial input/output sequence by Genetic Algorithm
(GA) using di�erent representations; technology-
based and state-based. The state-based representa-
tion is technology independent. It can be further op-
timized and bene�ts from exising synthesis and opti-
mization techniques which work with �nite state ma-
chines. The resulting state transition diagram can be
implemented in any Programmable Logic Device us-
ing vendors's CAD tools. The technology-based rep-
resentation, in this experiment, is a registered PAL
device. The result shows, however, that the state-
based approach requires greater e�ort than that of
technology-based approach when we permit the same
number of maximum states in state machines. The
reason is given in terms of the size of GA search
space.

1 Introduction

1.1 Genetic Algorithm (GA)

GA [1] is a powerful search and optimization pro-
cedure. GA mimics the natural evolution mecha-
nisms. Searching is performed by creating a popu-
lation. An individual represents one possible solu-
tion. Naturally, the o�springs are produced employ-
ing standard genetic operators, namely reproduction,
crossover and mutation. The selection scheme is em-
ployed to select the survivors to the next generation
according to their �tness values de�ned by users. The
GA process starts with random population and re-
peats until the terminated condition is met. (the op-
timal solution is found or reachs the maximum num-
ber of generation)

1.2 Programmable Logic Device
(PLD)

PLD is one type of Programmable Integrated Cir-
cuits. The digital circuit that has a capability of
restructuring itself. There are several numbers of
PLDs such as PROM, EPROM, PAL, PLA, GAL
and FPGA. Their programmable bits are called ar-
chitecture bits [2]. The architecture bits specify the
boolean functions of the logic cells and their inter-
connections.

1.3 Evolvable Hardware (EHW)

EHW [2, 3] is the hardware that can adapt itself
to operate in the dynamic environment. The adapta-
tion can be achieved by evolutionary techniques. The
basic idea of EHW is to evolve the architecture bits
by GA. The individual represents the architecture
bits. Then, GA is performed. The implementations
of EHW from di�erent reserch groups [2, 4, 5, 6]
are various. But the similarity of various EHW are
recon�gurable hardware, evolution and adaptation.
The recent classi�cation of EHW is de�ned in [7].

1.4 Previous Work

This paper is the extension of our previous work
[8], which attempts to synthesize sequential circuit
of which the behavior description is in the form of
partial input/output sequence. There are two re-
lated works, [9] and [10]. Fogel evolved the state
machine that can predict the next output symbols
from one given input/output symbol sequence us-
ing his famous technique, Evolutionary Programming
(EP) [9]. However, his technique is not e�cient
enough. Fogel also showed the sequence of prime-
ness (0110101000101.. . ) can not be represented by
a �nite state machine. Higuchi evolved the architec-

1



ture bits of GAL from a given input/output sequence
using GA. In Higuchi's work, the input/output se-
quence is generated by feeding random input se-
quence to a given state diagram and gets correspond-
ing output sequence. The existent optimal solution
can be reached in reasonable time. Certainly, some
optimal solutions are wrong. They perform correctly
on a given input/output sequence but they are not
equivalent to the given state diagram.

In [8] 1 , our work extended Higuchi's. Various
circuits and input/output sequence length were ex-
perimented. The search for a suitable circuit is per-
formed in the technology dependent manner. The
GAL structure, which is a registered PAL device, is
used as the target technology. We synthesize only
the state transition circuit because the part of cir-
cuit that produces output is synthesized later by a
conventional method. We are able to calulate the
appropriate length of an input/output sequence by
making an analogy of a traversing through all paths
in a state transition diagram to rolling a dice un-
til all faces appeared (this problem is called waiting
times in sampling. The appropriate length, denoted
by upperbound length, L, can be computed by this
formula:

L = E(S) �E(I);E(n) = n(
1

1
+

1

2
+ : : :+

1

n
) (1)

where

S is the maximum number of states in the
destination hardware

I is the number of input patterns

This work studies an alternative technology depen-
dent synthesis. We propose a technology independent
approach which synthesize a state diagram instead
of architecture bits. This approach is advantageous
because many analysis and optimization techniques
work with state diagrams. For example, the result-
ing diagram can be further optimized by using CAD
tools. It is also possible to implement the �nal circuit
using another technology such as FPGA.

2 The Experiment

We want to compare the results of technology-based
synthesis from our previous work [8] with the re-
sults of state-based synthesis in terms of the compu-
tational e�ort. The computational e�ort is de�ned

1As this work refers frequently to [8] which contains de-
tailed description of the problem, we made it to be available at
http://www.cp.eng.chula.ac.th/faculty/pjw/papers/manovit.pdf

by Koza [11] and modi�ed in [8] as the number of
individuals needed to be produced to yield a correct
solution with a satisfactorily high probability, which
is 0.99 in this experiment.

The implementation of this work is almost inden-
tical to the previous work except that desired solu-
tion is in di�erent representation. In the previous
work, an individual represents a wiring status on the
GAL structure. On the contrary, in this work, an
individual represents a state transition table which
is mapped into a bit string by concatenation of all
rows. The details of genetic process are the same as
in the previous work, which can be summarized as:

1. Select the best 10 individuals from the preced-
ing population by the rank-space method (i.e.,
�tness evaluation takes both quality rank and
diversity rank in account)

2. All possible amoung the individuals pairs in 1 are
employed to produce new o�springs by uniform
crossover.

3. Each individual in 1 is duplicated with a 5 bits
mutated (ipped) and added to the current pop-
ulation.

4. The above steps are repeated until a solution is
found or the last permitted generation, 50000, is
reached.

For a comparison purpose, both the GAL struc-
ture and the state transition diagram are chosen to
represent FSMs with the same maximum number of
states, which is 16 in this experiment. We consider
only circuits in Mealy's model. Selected circuits hav-
ing less than 16 states are listed below:

1. Frequency Divider :- give an alternate output
with the period of 8

2. Odd Parity Detector :- give an output \1" when
the number of \1" in inputs is odd

3. Modulo-5 Detector :- give an output \1" when
the current input is the 5nth \1"; n 2 I+

4. Serial Adder :- give the sum of 2 inputs, inputs
are feeded from LSB to MSB

The experiment is done using 5 di�erent in-
put/output sequences of the upperbound length for
each circuit and running 50 times for one sequence,
totally 250 runs for each circuit. The computational
e�ort is computed from all running results.



3 The Result and Conclusion

Although the state transition diagram representation
is advantageous as mentioned in the introduction,
Table 1 shows that the representation in the GAL
structure is preferable when the computational e�ort
is concerned. The reason why GAL representation
requires less e�ort can be explained by the calcula-
tion of the size of its search space. The search space
size for the GAL structure, denoted by SS

GAL
, and

that for the state transition diagram, SS
STD

, are cal-
culated from:

SSGAL = 316�(s+i) (2)

SSSTD = 2S�I�s (3)

where

s is the number of bits that represents a state symbol

S is the maximum number of states, which is 2s

i is the number of bits that represents an input sym-
bol

I is the number of input patterns, which is 2i

16 is the number of product terms in the GAL struc-
ture

S � I � s is the number of bits in a state transition
table

Table 1 shows that the search spaces of the GAL
representation are smaller than those of the state
transition diagram representation except for the fre-
quency divider. Therefore, it requires less e�ort to
explore individuals in the search space. In the GAL
representation, we also calculate the ratio of search
space size to e�ort which could help determining
the e�ciency of the search using each representa-
tion. The Space/E�ort ratios are comparable for
both representations. It is notable that in the synthe-
sis of serial adder using the state transition diagram
representation, the ratio is very high compared to
that of the GAL representation . It is possible the
state-based approach performs e�ectively in the large
search space.

References

[1] D. E. Goldberg. Genetic Algorithm in search,
optimization and machine learning. Addison-
Wesley, 1989.

[2] T. Higuchi, T. Niwa, T. Tanaka, H. Iba,
H. de Garis, and T. Furuya. Evolving hardware
with genetic learning: A �rst step towards build-
ing a darwin machine. In Proc. of Int. Conf.
on Simulation of Adaptive Behavior (SAB'92),
1992.

[3] D. Mange and M. Tomassini. Bio-inspired Com-
puting Machines, towards novel computational
architectures. Presses Polytechniques et Univer-
sitaires Romandes, 1998.

[4] J. R. Koza, F. H. BennettIII, D. Andre, M. A.
Keane, and F. Dunlap. Automated synthesis of
analog electronical circuits by means of genetic
programming. In IEEE Transactions on Evo-
lutionary Computation, volume 1 No. 2, pages
109{128, 1997.

[5] A. Thompson. An evolved circuit, intrinsic in
silicon, entwined with physics. In Proc. of Int.
Conf. on Evolvable Systems (ICES'96), 1996.

[6] M. Sipper, M. Goeke, D. Mange, A. Stau�er,
E. Sanchez, and M. Tomassini. The �rey ma-
chine: Online evolware. In Proc. of Int. Conf.
on Evolutionary Computation (ICEC'97), pages
181{186, 1997.

[7] M. Sipper, E. Shanchez, D. Mange,
M. Tomassini, A. Perez-Uribe, and A. Stau�er.
A phylogenetic, ontogenetic, and epigenetic
view of bio-inspired hardware systems. In IEEE
Transactions on Evolutionary Computation,
volume 1 No. 2, pages 83{97, 1997.

[8] C. Manovit, C. Aporntewan, and P. Chongstit-
vatana. Synthesis of synchrounous sequen-
tial logic circuits from partial input/output se-
quence. In Proc. of Int. Conf. on Evolvable Sys-
tems (ICES'98), pages 98{105, 1998.

[9] D. B. Fogel. Evolutionary Computation, pages
75{84. IEEE Press, 1995.

[10] T. Higuchi, T. Niwa, T. Tanaka, H. Iba, and
T. Furuya. A parallel architecture for ge-
netic based evolvable hardware. In Proc. of
Int. Joint Conf. on Arti�cial Intelligence (IJ-
CAI'93), Workshop on Parallel Processing for
Arti�cial Intelligence, pages 46{52, 1993.

[11] J. R. Koza. Genetic Programming II: Automatic
discovery of reusable programs, pages 99{106.
MIT Press, Cambridge, MA, 1994.



Circuit E�ort Search Space Size Log(Space/E�ort)
GAL STD GAL STD GAL STD

Frequency divider 8 440 220 316�4 24�16 27.9 16.9

Odd parity detector 1,760 4,070 316�(4+1) 24�16�2 34.9 34.9
Modulo-5 detector 7,018,000 44,701,140 316�(4+1) 24�16�2 31.3 30.9

Serial adder 26,730 643,610 316�(4+2) 24�16�4 41.4 71.3

Table 1: Comparison of E�ort, Search Space Size and Space/E�ort Ratio


