
Asynchronous Migration in Parallel

Genetic Programming

Shisanu Tongchim and Prabhas Chongstitvatana

Department of Computer Engineering, Faculty of Engineering, Chulalongkorn
University, Bangkok 10330, Thailand Tel: (662) 218-6982 Fax: (662) 218-6955

g41stc@cp.eng.chula.ac.th

prabhas@chula.ac.th

Genetic Programming (GP) was used to generate robot control programs for
an obstacle avoidance task [1]. The task was to control an autonomous mobile
robot from a starting point to a target point in a simulated environment. The
environment was filled with the obstacles which had several geometrical shapes.
In order to improve the robustness of the program, each program was evalu-
ated under many environments. As a result, the substantial processing time was
required to evaluate the fitness of the population of the robot programs.

To reduce the processing time, this present study introduced a parallel imple-
mentation. In applying the parallel approach to the algorithm program by using
a conventional coarse-grained model, the result achieved only linear speedup
since the amount of work was fixed – the algorithm was terminated when it
reached the maximum generation. Hence, the parallel algorithm did not exploit
the probabilistic advantage that the answer may be obtained before the maxi-
mum generation.

We tried in this present study another method to further improve the speedup
by dividing the environments among the processing nodes. After a specific num-
ber of generations, every subpopulation was migrated between processors using
a fully connected topology. The parallel algorithm was implemented on the dedi-
cated cluster of PC workstations with 350 MHz Pentium II processors, each with
32 Mb of RAM, and running Linux as an operating system. These machines were
connected via 10 Mbs ethernet cabling. We extended the program used in [1] to
run under the clustered computer by using MPI as a message passing library.

In the first stage of the implementation, the migration was synchronized. The
synchronizing migration resulted in uneven work loads among the processors.
This was due to the fact that the robot performed the task until either the robot
achieved the target point or reached an iteration limit. Hence, this migration
scheme caused the evolution to wait for the slowest node.

In the second stage of the implementation, we attempted to further improve
the speedup of the parallel algorithm by the asynchronous migration. When the
fastest node reached predetermined generation numbers, the migration request
was sent to all subpopulations. Therefore, this scheme caused the evolution of
all subpopulations to proceed according to the fastest node.

The widely used performance evaluation of the parallel algorithm is the par-
allel speedup. To make an adequate comparison between the serial algorithm
and parallel algorithm, E. Cantú-Paz [2] suggested that the two must give the



same quality of the solution. In this paper, the quality of the solution is de-
fined in terms of the robustness. The robustness of the generated programs from
the parallel algorithm was demonstrated to be better than the serial algorithm.
Consequently, the amount of work from the parallel algorithm in this experiment
was not less than the serial algorithm.

Figure 1 illustrates the speedup observed on the two implementations as a
function of the number of processors used. Both implementations exhibit super-
linear speedup. The speedup curves taper off for 10 processors and the perfor-
mance of the asynchronous implementation is slightly better than the perfor-
mance of the synchronous implementation.

1

4

7

10

13

16

19

22

25

1 2 3 4 5 6 7 8 9 10

Ideal
Synchronous

Asynchronous

Number of Processors

Sp
ee

du
p

Fig. 1. Speedup

After obtaining some timing analyses, the results reveal the cause of the prob-
lem. The performance degradation in 10 processors is caused by the excessive
communication time due to the broadcast function. Although the asynchronous
migration reduces the barrier time effectively compared to the synchronous mi-
gration, the increase in the broadcast time in 10 processors obliterates this ad-
vantage. However, in case of a small number of processors (2,4,6), the reduction
of the communication overhead from the asynchronous migration compared with
the synchronous migration is considerable – i.e. the reduction in 2,4,6 nodes is
96.09%, 84.44% and 62.42% respectively. In terms of the wall-clock time, the
asynchronous implementation in this work using 10 nodes is 21 times faster
than the serial algorithm.

References

1. Chongstitvatana, P.: Improving Robustness of Robot Programs Generated by Ge-
netic Programming for Dynamic Environments. In: Proc. of IEEE Asia-Pacific Con-
ference on Circuits and Systems. (1998) 523–526

2. Cantú-Paz, E.: Designing Efficient and Accurate Parallel Genetic Algorithms. PhD
thesis, University of Illinois at Urbana-Champaign (1999)


