
Speedup Improvement on Automatic Robot Programming by
Parallel Genetic Programming

Shisanu Tongchim and Prabhas Chongstitvatana
Department of Computer Engineering, Faculty of Engineering,

Chulalongkorn University, Bangkok 10330, Thailand
Tel: (662) 218-6982, Fax: (662) 218-6955

E-mail: prabhas@chula.ac.th

Abstract
Genetic Programming has been successfully used to per-

form automatic generation of robot programs. However, to
improve robustness of the generated robot programs, each can-
didate solution was evaluated under many environments which
required the substantial processing time. This study proposed
a parallel implementation to reduce the execution time. By
using a coarse-grained model for parallelization, called Island
Model, a near linear speedup was achieved with small com-
munication overhead. In addition, the barrier synchronization
was identified to be the primary source of the overhead.

1. Introduction
Genetic Programming (GP) [1] is an effective search algo-

rithm which automatically generates programs to perform a
given task. The major behavior of genetic programming is
adopted from Genetic Algorithm (GA) [2]. The obvious dis-
tinction between genetic programming and genetic algorithm
is the representation of the population of candidate solutions.
In genetic programming, each individual in the population is a
program which often appears in a tree structure, rather than a
fixed-length string used in genetic algorithm.

In recent years, GP has been accepted as a promising
method to undertake a large number of complex problems in
various application domains. As there is an increase in the use
of this method, the need for speeding up the GP process by
means of parallel processing becomes important [3].

Parallel GP was earlier implemented on a network of trans-
puters by Koza and Andre [4]. A related work in parallel GP
implemented on a cluster of workstations used a master-slave
model [5]. However, there is little research on parallel GP. In
contrast, a lot of studies on parallel GA in various architectures
were conducted, as shown in [6]. The reason for lack of studies
may come from the problem-dependent of GP – the effective-
ness of parallel GP varies according to the nature of problems
[7]. We want to study the behavior of parallel GP on a real-
istic problem in contrast to some synthetic problems. Toward
this goal, we implemented a parallel version of the previous
work on GP [8] using a coarse-grained parallelization. The
implementation was carried out on a dedicated cluster of PC
workstations. The results showed that the speedup factor was
close to linear. The quality of the solutions generated from the
serial and parallel GP were also compared

The remaining sections are organized as follows: The next
section is a brief introduction about genetic programming.

Section 3 is a description of the obstacle avoidance problem.
Section 4 describes a problem representation in the serial GP.
Section 5 shows the parallel solution. Section 6 presents the
research findings. Finally, section 7 provides the conclusions
of this work.

2. Genetic Programming
The algorithm starts with the initialpopulationof randomly

generated programs. The programs in the population are ex-
pressed as parse trees, which are composed offunctionsand
terminalsappropriate to the given problem. After the algo-
rithm creates the population, each individual in the population
is ranked by means of afitness function– a function which re-
turns the fitness value according to the quality of the solution.
Then the new population is created by applying the genetic
operators such ascrossover, reproductionandmutationon the
individuals which are chosen with probabilities based on the
fitness values. Then, the algorithm replaces the old popula-
tion with the new population and iterates by using the new
population. One cycle of these procedures is referred to as a
generation. This continues until the fitness value indicates that
the goal is achieved or an iteration limit is reached.

3. The Obstacle Avoidance Task
Our previous work [8], GP was used to generate a robot

control program for the obstacle avoidance task. The task is
to control a mobile robot from a starting point to a target point
in the simulated environment. The mobile robot has a round
shape with the ability to move forward, turn left and turn right.
The robot has sensors for detecting the collision of the obstacle
and indicating whether the robot is nearer to the target com-
pared to its previous position. The size of the simulated envi-
ronment is 600x400 units. The environment is filled with the
obstacles which have several geometrical shapes (see Fig. 1).

The aim of the work is to generaterobustcontrol programs.
The perturbation of the training environments was proposed in
order to improve the robustness of the robot program. In the
evolution process, each individual was evaluated under many
environments that were different from the original one. The
result showed that the robustness of the robot programs was
improved by such an approach. However, the considerable
execution time is required to evaluate the fitness of the popu-
lation of the robot programs.

4. Serial Algorithm



Starting
Point

Target

Movement Path

Obstacle

Fig. 1 Simulated Environment

The terminal set is composed of three primitive movement
controls {move, left, right } and one sensor informa-
tion { isnearer }. The function set is composed of three
functions {if-and, if-or, if-not } with 4, 4 and 3
arguments respectively. Themove command moves the robot
forward by 1 unit and returns 1 if the robot hits an obstacle and
0 if it does not hit any obstacles. Theleft andright com-
mand change the robot direction by 22.5◦ of its previous direc-
tion. Theisnearer indicates whether the robot is close to
the target in the previous move. The GP parameters are shown
in Table 1.

In the fitness evaluation, each robot program is executed in
a specific number of environments that are different from the
initial environment. The execution in each environment con-
tinues until either the robot achieves the target point or reaches
an iteration limit when the robot executes 10,000 terminals.
The fitness function is a sum of the fitness value in each en-
vironment which is based on the distance of the final position
and the number of moves. This fitness measurement scheme
indicates that the smaller the value is, the more efficient the
program will be.

f =
n∑
i=1

(10000× di +mi) (1)

where,

n is the number of environments
di is the distance of the final position from the target

position under the environmenti
mi is the number of moves under the environmenti

As mentioned earlier, the fitness evaluation is carried out
under several environments that are changed only slightly
from the original one. We randomly select the obstacle and
move it from its original position by 5 units in a random direc-
tion. The difference between each environment and the origi-

Table 1 GP parameters

Total population 6000
Crossover probability 0.9
Mutation probability 0.1
Selected individual 5% of Total population
Migration size 10
Maximum generation 200

nal environment is defined as the percent of disturbance (D).

D =
Nm
No
× 100 (2)

where,

Nm is the number of obstacles that are moved
No is the total number of obstacles

In the evolution process, the percent of disturbance is 20%
and the number of training environments is 5.

5. Parallel Genetic Programming
Coarse-grained parallelization

In a general coarse-grained parallelization, the population is
divided into a few large subpopulations and these subpopula-
tions are maintained by different processors. When the algo-
rithm starts, all processors create their own random subpop-
ulations with different random seeds. Each processor is re-
sponsible for selecting and mating in its own subpopulation.
Every predetermined interval, some selected individuals are
exchanged via a migration operator. The model is also known
asIsland modeland the subpopulation is calleddeme[4].
Implementation

We implement our parallel algorithm on the dedicated clus-
ter of PC workstations with 133 MHz Pentium processors,



6

3

4

5

7

8

1

2

Deme

Migration
direction

Fig. 2 Topology

each with 32 Mb of RAM, and running Linux as an operat-
ing system. These machines are connected via 10 Mbs ether-
net cabling. We extend the program used in [8] to run under a
clustered computer by using MPI as a message passing library.
The connection is a ring topology (See Fig. 2). By synchroniz-
ing migration, the communication is separated into two steps.
First, the nodes with odd number send the population to an-
other even number. Then, the nodes with even number send
the population to another odd number in the same direction.

6. Results and Discussion
The parallel efficiency is measured by varying the number

of nodes and the results are averaged over 20 runs for each
number of nodes. The total population is held constantly for
the task and is divided equally among workstations. The num-
ber of selected individuals, crossover operation, mutation op-
eration, reproduction is a percentage of the amount of total
population.

The widely used performance evaluation of the parallel al-
gorithm is the parallel speedup. However, in the field of paral-
lel GA, there are some controversies about the speedup mea-
surement, especially in the coarse-grained model [7,9]. This
is due to the fact that the serial GA and parallel GA are not
the same algorithm since the coarse-grained model changes
the behavior of the traditional GA. To make an adequate com-
parison between the serial algorithm and parallel algorithm,
E.Cantú-Paz [9] suggests that the two must give the same qual-
ity of the solution. In this paper, the quality of the solution
is defined in terms ofrobustness. The following section de-
scribes the robustness in more details.
Robustness

The robustness (R) is the percent of the success of a robot
program in the unseen environments.

R =
Ns
Nt
× 100 (3)

where,

Ns is the number of success runs
Nt is the number of total runs

The robustness is averaged from the best individual from
20 runs in each algorithm, measured under 1000 new testing

environments and the percent of disturbance is varied from 0–
100%. From the robustness graph (see Fig. 3), the robustness
of the programs generated from the parallel GP is similar to
the serial GP.
Speedup

The parallel speedup (Sp) is defined as the ratio of the serial
execution time (Ts) to the parallel execution time (Tn) on n
processors.

Sp =
Ts
Tn

(4)

The achieved speedup is depicted in Fig. 4. The graph
shows that a near linear speedup can be acquired with a small
degradation in the speedup as the number of processors in-
creases.
Communication overhead

In this section, we investigate the source of the communi-
cation overhead to discern the cause of the small degradation
in the speedup. Figure 5 shows the absolute time spent in the
communication overhead. The communication overhead is the
sum of the communication time and the barrier time.

The communication time is the sum of the time spent on
sending and on receiving the information among the proces-
sors. From the graph shows that the communication time in-
creases consistently as the number of processors increases.

The barrier time is caused from uneven work loads among
the processors. Due to the fact that the robot performs the
task until either the robot achieves the target point or reaches
an iteration limit, the time required to complete the evaluation
varies, with the least effective programs taking the longest pe-
riod and the best programs taking the shortest period. The bar-
rier time is the primary source of the overhead. The cause of
the variation of the barrier time is due to the different random
seeds in each number of processors.

The percentage of the time spent in the communication
overhead is illustrated in Fig. 6. The relative time spent in the
communication overhead increases slightly as the number of
processors increases. Although the additional processors may
not increase the absolute time (e.g. in 8 and 10 processors),
this still increases the relative time due to the reduction of the
computational time by the benefit of additional processors. In
case of a small number of processors, the achieved speedup is
close to the number of processors used since the percentage of
time spent in the communication overhead is relatively small.

7. Conclusions
This paper proposed a success of speeding up the genetic

programming process by means of parallel processing. The
parallel implementation was done on a clustered computer by
using a coarse-grained model. The study compared the per-
formance of the serial GP and the coarse-grained parallel GP
with varying the number of processing nodes. Performance
analysis of the parallel algorithm was measured in terms of
the parallel speedup.

The experimental results showed that the speedup was close
to linear and the solutions from both methods had the similar
quality. Furthermore, the overhead due to the communication



0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

1 node
2 nodes
4 nodes
6 nodes
8 nodes

10 nodes

R
ob

us
tn

es
s 

(%
)

Disturbance (%)

Fig. 3 Robustness

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10

Speedup
Ideal

Sp
ee

du
p

Number of processing node

Fig. 4 Speedup

0

50

100

150

200

250

300

350

400

450

2 4 6 8 10

Number of Processors

T
im

e 
in

 s
ec

on
ds

Barrier
Communication

Fig. 5 Absolute time spent in the communication overhead

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

2 4 6 8 10

Number of Processors

P
er

ce
nt

Fig. 6: Percentage of time spent in the communication over-
head

among the processing nodes was small and slightly increased
toward the increment of processors.

References
[1] J.R.Koza, “Genetic Programming,” MIT Press, Cam-
bridge, Massachusetts, 1992.
[2] D.E.Goldberg, “Genetic Algorithm in Search, Optimiza-
tion, and Machine Learning,” Addison-Wesley, 1989.
[3] H.Juillé and J.B.Pollack, “Parallel Genetic Programming
on Fine-Grained SIMD Architectures,” Working Notes of the
1995 AAAI Fall Symposium on Genetic Programming, Cam-
bridge, Massachusets, 1995.
[4] J.R.Koza and D.Andre, “Parallel genetic programming on a
network of transputers,” The Workshop on Genetic Program-
ming: From Theory to Real-World Applications, University
of Rochester, National Resource Laboratory for the Study of
Brain and Behavior, Technical Report 95-2, pp. 111–120,
1995.
[5] D.Dracopoulos and S.Kent, “Speeding up genetic pro-
gramming: A parallel BSP implementation,” The First Annual
Conference in Genetic Programming, MIT Press, Cambridge,
Massachusets, 1996.
[6] E.Cantú-Paz, “A survey of parallel genetic algorithms,”
Calculateurs Paralleles, Reseaux et Systems Repartis, vol. 10,
no. 2, pp. 141–171, 1998.
[7] B.Punch, “How effective are multiple poplulations in ge-
netic programming,” The Third Annual Conference in Genetic
Programming, pp. 308–313, 1998.
[8] P.Chongstitvatana, “Improving robustness of robot pro-
grams generated by genetic programming for dynamic envi-
ronments,” IEEE Asia Pacific Conference on Circuits and Sys-
tems, pp. 523–526, 1998.
[9] E.Cantú-Paz, “Designing Efficient and Accurate Paral-
lel Genetic Algorithms,” PhD thesis, University of Illinois at
Urbana-Champaign, 1999.


