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This paper proposes a method to improve robustness of the robot programs generated
by genetic programming. The main idea is to inject perturbation into the simulation
during the evolution of the solutions. The resulting robot programs are more robust
because they have been evolved to tolerate the changes in their environment. We set out
to test this idea using the problem of navigating a mobile robot from a starting point
to a target in an unknown cluttered environment. The result of the experiments shows
the e�ectiveness of this scheme. The analysis of the result shows that the robustness
depends on the `experience' that a robot program acquired during evolution. To improve
robustness, the size of the set of `experience' should be increased and/or the amount of
reusing the `experience' should be increased.

1. Introduction

Our main interest is in the automatic generation of robot programs: given a task

description and a particular environment, generate a robot program to perform the

task. Genetic Programming (GP) [1] can be used to solve this problem. GP can be

regarded as a population based search technique which represents candidate solu-

tions as robot programs. The candidate solutions are said to be evolved until the

solution is found. GP uses natural-inspired operators such as selection, reproduc-

tion, crossover and mutation operated on candidate solutions to perform the search.

It searches a large space before it �nds a solution. Therefore, for practical reason,

the search is performed in a simulation in which the speed of the robot is not a

limiting factor.

Even in the simulated world, the robot programs work successfully only in a

particular environment which they were evolved on. They may not work even in

that environment if it is slightly changed. The robot programs generated by GP are

found to be `brittle' or lack of robustness [2, 3]. That is, they fail to work even when

there is a small change in the operational environment. This situation is common

when robots work in the real world. The condition for operating a robot program in

the real world must be exactly the same as in the simulation, even a small deviation
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can lead to failure. The accuracy of the world model is an important factor for

success. This can be a problem when we transfer robot programs from simulated

world to the real world because simulation cannot model the real world exactly.

The problem of transferring the result from the simulated world to the real world

has been widely recognised [5, 6, 7]. Improving the robustness of robot programs is

essential.

This paper proposes the use of perturbation to improve robustness of the robot

programs. The main idea is to inject perturbation into the simulation during evolu-

tion of the solutions. The evolution process is carried out such that each individual

is evaluated under multiple environments that are variant of the original. The re-

sulting robot programs are more robust because they have been evolved to tolerate

the changes in their environment. We set out to test this idea using the problem of

navigating a mobile in an unknown cluttered environment. We conduct the exper-

iment with a large number of runs and collect statistical data of robot behaviors.

Our analysis is based on the notion of `trace'. A trace is a record of sequence of

robot's primitive actions during execution in an environment. A set of trace in

which the robot generates in the training period is called robot's `experience'. We

found two factors a�ecting robustness: the size of the set of experience and the

amount of reusing the experience during execution of the task.

The rest of this paper is organized as follows. Section 2 reviews previous work.

Section 3 introduces the problems and the experimental set-up. Section 4 elaborates

how to improve robustness. The analysis is done in Section 5. Section 6 concludes

the paper and discusses future work.

2. Related Work

In this section we discuss some of previous works that demonstrate the use of GP

to generate robot programs, the robustness of those programs and the attempt to

promote the robustness.

In Chongstitvatana and Polvichai [9], GP is used to generate robot programs

that control a real robot arm reaching for a target by visual feedback from the

real world. The robot programs are evolved in the simulation. Then the robot

programs are transferred to perform a task in the real world. The result shows

that small changes in the real world such as an obstacle is moved from its position

or the robot misses a step due to random noise can lead to failure even though

that robot program performs successfully in the simulation. In most cases, the

evolutionary process capitalizes on the deterministic, repeatable nature of �tness

tests. The individual is repeatedly evaluated in a certain environment. The solution

only captures particular characteristics of that environment.

Many approaches have been proposed to increase robustness of the evolved pro-

gram. Reynolds [3] used noise to promote robustness in the obstacle avoidance

problem. The noise consists of errors in the robot's input sensors and the out-

put actuators. In his work, Reynolds could not evolve robust controller programs.

Later, Reynolds [4] changed from using a variable sensor placement to a �xed sen-
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sor placement to reduce the complexity of the problem. Interestingly, it was this

modi�cation that produced more robust solutions. He concludes that GP is capable

of evolving robust solutions, and that noise discourages brittle solutions. Another

approach to cope with changes is co-evolution. Browne [10] used co-evolution tech-

nique to evolve vision-based obstacle avoidance agents. Ito, Iba and Kimura [11]

found that the redundancy of program was e�ective for generating robust robot

programs in a box moving problem. Prateeptongkum and Chongstitvatana [12]

examined robustness improvement of robot programs by function set tuning.

To cope with the real world, many researchers suggest the use of physical robots

to learn in the actual environment of the tasks [7, 8, 13, 14, 15]. The robot will

learn by trial and error. This approach is suitable for many learning tasks such

as learning the association between sensing and e�ectors. However, the attempt to

use GP as the learning method using this approach is likely to take too much time

because of the speed limit of a physical robot. The work in [9] shows that for a

visual-reaching task, it will take 2,000 hours with their equipment to learn the task.

It is possible to reduce the time by running GP in simulation that samples data

from the real world [16, 17, 18].

3. Evolving Robot Programs

This section describes the experiment for generating robot programs by GP under

the simulation without perturbation. Then in the next section, we introduce the

perturbation to improve the robustness of the solutions.

3.1. Experimental set-up

Our problem is to �nd a robot program that control a robot to navigate in a cluttered

environment from the starting point to the target. The size of the environment as

shown in Figure 1 is 500 � 750 units. There are many obstacles distributed in this

environment. The obstacles have several geometrical shapes, each has the average

size of 15 � 20 units. The total area of all obstacles is about 20% of the whole

area. The starting point and the target are �xed in the position as shown. The

obstacles are randomly but carefully placed such that they stay some distance from

the starting point and the target to make sure the robot has room to move. The

mobile robot has a round shape with the radius 5 units. It can move forward, turn

left and turn right. There are sensors for detection the collision with the obstacle,

and two sensors to determine a general direction of the target, one on each side of

the robot's body.

The terminal set in our experiment is f forward, turnLeft, turnRight,

smellLeft, smellRight g. Each of them activates the robot's primitive action.

All terminals return the value after execution. The forward moves the robot in

forward direction by 1 unit, return 1 if it can move successfully and return 0 when

it crashes some obstacles or walls. The turnLeft and turnRight change the robot

direction by 22:5� of its previous direction while maintain the position, both of these
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return 1. The smellLeft and smellRight determine whether or not there is the

target on its side, return value 1 if there is the target and 0 otherwise. The function

set is f IF-AND, IF-OR, IF-NOT g with the arity 4, 4 and 3 respectively. This is

the basic control ow function.

Fig. 1. The environment in our experiment.

The �tness measurement is based on the distance of the robot's �nal position

from the target and the number of its primitive actions. It is measured after a

robot program had terminated its execution; when the robot reach the target or it

executes more than 5,000 terminals. The �tness function is

f = 10; 000� distance+ action (1)

where distance is Euclidean distance of the �nal position from the target, action

is the number of executed terminals. The smaller value of �tness is better. The

parameters for GP runs are shown in Table 1. Note that we do not use mutation

operator in this experiment. Our crossover operator does not limit the height of

the o�spring.

3.2. Robustness testing

The robustness of a robot program is de�ned as an ability of the robot program to

perform successfully in the unseen environment. In order to measure the robustness

of a robot program, we create a number of testing environments by perturbing

an original environment. From an original environment, we randomly select the

obstacle and move it from its original position by 5 units in a random direction.

The number of obstacles that is moved divided by the total number of obstacles is
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Table 1. Parameters of GP runs in the experiments.

Population 1,000 programs
Initial size of an individual 110 symbols
Maximum generation 125
Reproduction rate 10%
Crossover rate 90%
Mutation rate 0% (do not use)
Number of repeated run 20 runs

called the percent of disturbance, d.

d =
number of obstacles that is moved

total number of obstacles
(2)

We create 10,000 testing environments and divide them into 10 groups, each

has di�erent d, call dTest, that varies from 10% to 100% (each group has 1,000

environments). We then select the best individual from the maximum generation,

and evaluate it under these groups of environment. The robustness is measured in

each group of environment as the percent of number of environment that the robot

program can control robot to the target successfully, denoted as R(dTest).

4. Robustness Improvement

In the evolutionary process, an individual is evaluated in one static environment.

To improve robustness we introduce perturbation during evolution of the solutions.

Perturbation can be introduced into the environment by creating multiple training

environments and by changing the percent of disturbance in creating those environ-

ments. A number of training environments are created from one original environ-

ment using perturbation similar to the way the tested environments are created. To

evolve a robot program, each individual is evaluated under multiple environments.

The experiments were performed by varying perturbation in two ways:

(i) varying the number of environment during training, keeping the percent of

disturbance dTrain constant,

(ii) varying the percent of disturbance dTrain during training, keeping the number

of environment constant.

The �tness of each individual is evaluated by totaling all the �tness value fi, where

fi is the �tness under the environment i. An individual that works successfully in

more environments will have a higher chance to breed to the next-generation.

4.1. Varying the number of environment

We use the percent of disturbance dTrain = 10% to create these new environments.

We set up 7 di�erent experiments that di�er in the number of training environments

n, n = 1, 5, 10, 15, 20, 30 and 50.
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4.2. Varying the percent of disturbance dTrain

The number of environment n is set to 10. In each experiment, the evolution

is performed by evaluating each individual under 10 training environments. The

percent of disturbance dTrain is varied 10%, 30% and 50%.

4.3. Result

We repeat each experiment 20 times with the di�erent initial random population in

each run to get reliable statistics. The robustness in each experiment is computed

by averaging the robustness of the solution from every run. Figure 2 and 3 plot

robustness against dTest. Each line represents how the best robot program per-

forms in the unseen environments. The larger dTest means the more di�erent the

environment is from the original. Note that at point dTest = 0%, the robustness of

all experiments is 100%. Figure 2 shows the robustness result of the experiment 4.1

and Figure 3 shows the result of the experiment 4.2. In Figure 2, the line Train1

represents the robustness of the robot program that has been evolved without per-

turbation. Figure 2 shows the robustness increased with the number of training

environments, for example at n = 50 (Train50), R is higher than n = 10 (Train10)

for all dTest. Figure 3 shows the robustness increased with dTrain, for example

at dTrain = 50%, R is higher than dTrain = 10% for all dTest. From this result,

it is clear that introducing perturbation during the evolution of the solutions can

improve the robustness of the solutions.
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Fig. 2. The robustness of robot programs by varying the number of environments.
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Fig. 3. The robustness of robot programs by varying the percent of disturbance dTrain.

5. Analysis of Robustness

In this section, we investigate the cause of improvement of robustness by using the

statistics from the experiments. Our analysis is based on the notion of `trace'.

5.1. Trace

An individual (a robot program) can be represented in a tree form (Figure 4).

A robot program is evaluated by running the program in the simulation. The

evaluation starts from the root node and traverses the tree until reaching the leaf

node. This process is repeated until the termination criteria is met. The execution of

a robot program produces a number of sequences of actions. We de�ne the sequence

of actions occurs from evaluating a robot program once from the root node to the

leaf node as a `trace'. This trace can be regarded as a `learned' response of a robot

program to a particular situation. Evaluating a robot program until it terminates

will generate a number of traces.

smellLeft forward turnLeft

smellRight forward turnRight

����� EE
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IF-NOT

(((((((((((
�������
"""
XXXXXXX

IF-AND

Fig. 4. An robot program represented as a tree.
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5.2. Analysis of traces

The traces of solutions for all runs in both training and testing phases were collected.

We de�ne a set L as a collection traces of robot programs that have been evolved

under a number of environments during training phase. A set L can be regarded

as a robot's `experience' or the response to the di�erent situation that robot has

learned. Let Ti be the set of all traces of a robot program in the environment i. Let

L be the set of all traces Ti in all training environments. We hypothesise that the

trace of a robust solution contains a subset of L. By training in many environments,

the robot program encodes `learned' behaviours and hence is able to act properly

in a new environment to achieve its goal.

L = T1 [ T2 [ : : : Tn (3)

We de�ne a set Ai, a collection of traces when the robot program is executed

in the testing environment i. When executing a robot program in an unseen envi-

ronment, the robot uses its acquired experience. This notion can be captured with

the intersection between L and Ai. The amount of the reuse of the experience of a

robot program when executing in i th environment, Si is de�ned as

Si =
j L \ Ai j

j Ai j
� 100% (4)

where j * j denotes the cardinality of the set or the number of elements in the set.

The value which we are interested in is the average size of L. We compute

the average of Si for all testing environments. S for an individual that performed

successfully is denoted by SSucc, S for the individual that failed is denoted by

SFail. Table 2 shows the result of the experiment 4.1. Table 3 shows the result of

the experiment 4.2. It can be seen that SAll and j L j are larger after increasing the

perturbation level during training. This fact can be observed in Table 2, SAll and

j L j are increased with the number of training environment and in Table 3, SAll
and j L j are increased with dTrain. The robustness is improved as a result. Also

from Table 2 and 3, the successful individual has a higher S than the unsuccessful

individual, SSucc > SFail in all settings. Figure 5 shows the relationship between

robustness R(dTest) and SAll. Figure 6 shows the relationship between SAll and

j L j. The linear correlation coe�cient, r, of each curve is shown in the graphs.

The conclusion can be made that R / SAll. A robust solution has a larger set of

`experience' and also reuses them more.

6. Conclusion

This work demonstrates that the robustness of robot programs generated by genetic

programming is improved by using perturbation during evolution. Perturbation

can be introduced by using multiple training environments and by increasing the

perturbation level in each training environment. A solution is robust because it



Using Perturbation to Improve Robustness of Solution Generated by Genetic Programming 9

Table 2. Analysis of robustness when varying the number of training environments.

Exp. at dTest = 10% at dTest = 30% j L j
Result R(dTest) SAll SSucc SFall R(dTest) SAll SSucc SFall

Train1 65.19 72.23 83.17 52.61 42.90 55.35 64.19 48.71 24
Train5 65.11 74.77 87.42 52.99 42.15 58.57 69.09 50.88 26
Train10 74.41 82.06 90.77 59.00 49.45 67.75 78.16 57.76 36
Train15 80.17 88.86 93.64 71.26 60.25 80.09 86.29 70.80 38
Train20 82.84 89.89 93.71 72.35 65.85 81.22 85.44 74.21 50
Train30 89.24 95.37 97.09 82.18 75.86 90.86 93.72 82.17 63
Train50 92.52 97.51 98.20 89.59 80.95 94.27 95.85 87.77 96

Table 3. Analysis of robustness when varying the percent of disturbance dTrain.

dTrain at dTest = 10% at dTest = 30% j L j
R(dTest) SAll SSucc SFall R(dTest) SAll SSucc SFall

10% 74.41 82.06 90.77 59.00 49.45 67.75 78.16 57.76 36
30% 80.37 92.63 94.98 83.81 66.31 87.70 90.33 82.55 103
50% 83.58 93.40 95.59 82.93 70.22 88.86 91.69 82.37 90
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Fig. 5. Relationship of robustness and SAll of all experiments.

The correlation coe�cients r = 0.9719 for dTest = 10%, r = 0.9721 for dTest = 30%
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Fig. 6. Relationship of SAll and j L j of all experiments.

The correlation coe�cients r = 0.7962 for dTest = 10%, r = 0.8255 for dTest = 30%

encodes the learned behaviour from the training hence it can act e�ectively in

many environments. Robustness is increased because of the larger size of the robot's

experience and the ability of reusing its experience in an unseen environment.

The analysis of robustness gives many insights on the behavior of GP generated

robot programs and on �nding more robustness improvement techniques. It is

noteworthy to observe that many previous work on genetic programming for robot

learning are performed with a static environment. The dynamic aspect of the

environment is considered a disadvantage that must be dealt with. This work

actually exploits this dynamic aspect of the environment and uses it to improve

the quality of the solution. Our current activity is concentrated on validating this

scheme with the real robot performing in the real world.
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