
Comparison Between Synchronous and Asynchronous Implementation of Parallel
Genetic Programming

Shisanu Tongchim Prabhas Chongstitvatana
Department of Computer Engineering Department of Computer Engineering

Chulalongkorn University Chulalongkorn University
Bangkok 10330, Thailand Bangkok 10330, Thailand
g41stc@cp.eng.chula.ac.th prabhas@chula.ac.th

Abstract
An evolutionary method such as Genetic Program-

ming (GP) can be used to solve a large number of com-
plex problems in various application domains. However,
one obvious shortcoming of GP is that it usually uses
a substantial amount of processing time to arrive at a
solution. In this paper, we present the parallel imple-
mentations that can reduce the processing time by using
a coarse-grained model for parallelization and an asyn-
chronous migration. The problem chosen to examine the
parallel GP is a mobile robot navigation problem. The
experimental results show that superlinear speedup of
GP can be achieved.

1 Introduction

Genetic Programming was successfully used to per-
form automatic generation of mobile robot programs [1].
The use of the perturbation to improve robustness of the
robot programs was proposed. Each robot program was
evaluated under many environments that were different
from the original one. As a result, the substantial pro-
cessing time was required to evaluate the fitness of the
robot programs.

To reduce the computational time, this study pro-
posed two parallel implementations. Asynchronous and
synchronous parallelization approaches were examined.
We also compared the quality of the solutions generated
from the serial and parallel GP.

The earlier work of parallel GP was implemented on
a network of transputers by Koza and Andre [2]. Their
result showed that the parallel speedup was greater than
linear. Dracopoulos and Kent [3] proposed the use of the
Bulk Synchronous Parallel Programming (BSP) model
to parallelize genetic programming. Two approaches of
parallel GP were examined on a cluster of Sun worksta-
tions. The first was based on a master-slave model while
the second was based on a coarse-grained model. The
results showed that the achieved speedup was close to
linear. A recent paper by Punch [4] presented the em-

pirical study about some problem-specific factors which
affect the effectiveness of parallel GP. Punch concluded
that the achieved performance of parallel GP by using a
coarse-grained model may vary according to the nature
of problems.

The remaining sections are organized as follows: The
next section is a description of the mobile robot naviga-
tion problem. Section 3 describes a problem represen-
tation in the serial GP. Section 4 shows the parallel so-
lutions. Section 5 presents the experimental results and
discussion. Finally, section 6 provides the conclusions of
this work.

2 Mobile Robot Navigation Problem

Our previous work [1], GP was used to generate a
robot control program for the mobile robot navigation
problem. The task was to control a mobile robot from
a starting point to a target point in a simulated envi-
ronment. The environment was filled with the obstacles
which had several geometrical shapes.

The aim of the work was to generate robust control
programs. In the evolution process, each individual was
evaluated under many environments that were different
from the original one. The result showed that the ro-
bustness of the robot programs was improved by such
an approach.

3 Serial Algorithm

The terminal set is composed of three primitive move-
ment controls {move, left, right} and one sensor in-
formation {isnearer}. The function set is composed of
three functions {if-and,if-or,if-not}. The GP pa-
rameters are shown in Table 1.

The fitness function is a sum of the fitness value in
each environment which is based on the distance of the
final position and the number of moves.

In the evolution process, the percent of disturbance
is 20% and the number of training environments is 8.



Table 1: GP parameters

Total population 6000
Crossover probability 0.9
Mutation probability 0.1
Reproduction 5% of Total population
Maximum generation 200

4 Parallel Genetic Programming

In a coarse-grained model, the population is divided
into subpopulations and are maintained by different pro-
cessors. The model is also known as Island model and
the subpopulation is called deme [2].

Some works in parallelization of GA and GP using a
coarse-grained model [2, 5] show that the results can
achieve superlinear speedup1. This is caused by two
factors; the speedup from the populations distributed
across different processors and the speedup obtained by
increasing the probability in finding the correct solution,
as the number of populations is increased.

In applying the parallel approach to the previous work
[1] by using a conventional coarse-grained model, the re-
sult achieves only linear speedup [6] since the amount
of work is fixed – the algorithm is terminated when it
reaches the maximum generation. Hence, the parallel
algorithm does not exploit the probabilistic advantage
that the answer may be obtained before the maximum
generation. We reduce redundant jobs by dividing the
environments among the processing nodes. After a spe-
cific number of generations, every subpopulations are mi-
grated between processors using a fully connected topol-
ogy. However, this scheme leads to the reduction of ro-
bustness since each individual has a shorter period in
each training environment. To mend this problem, we
increase the number of environments in each node. How-
ever, the number of environments per node should be
less than the number of environments per node in the
general coarse-grained model.

We implement our parallel algorithm on a dedicated
cluster of PC workstations with 350 MHz Pentium II pro-
cessors, each with 32 Mb of RAM, and running Linux as
an operating system. These machines are connected via
10 Mbs ethernet cabling. We extend the program used
in [1] to run under a clustered computer by using MPI
as a message passing library.

Several trials are examined to find an appropriate
value for the number of environments per node (see Ta-
ble 2). The migration is carried out as follows: each

1Superlinear speedup means that speedup is greater than the
number of processors used.

Table 2: Experimental Parameters

Num. of Processors
1 2 4 6 10

Pop. size ∗ 6000 3000 1500 1000 600
Environments ∗ 8 7 4 3 2
Migration interval NA 100 50 34 20
∗ per node

procedure Migration
begin

barrier1 wait all nodes ready
for i = 1 to n
begin

if (my process id = i)
broadcast send

else
begin

broadcast receive
end
barrier2 wait for the next broadcast

end
end

Figure 1: The migration process

node broadcasts its subpopulation to all other nodes by
MPI Bcast function, this is repeated for every node. The
top 5% of individuals from each subpopulation are ex-
changed during the migration. Pseudo-code for the mi-
gration is shown in figure 1. The detail will be discussed
in the timing analysis section.

The total population is hold constantly for the task
and is divided equally among workstations. The number
of selected individuals, crossover operation, mutation op-
eration, reproduction are a percentage of the amount of
the total population. The parallel efficiency is measured
by varying a number of nodes and the results are aver-
aged over 20 runs for each number of nodes.

In the first implementation, the migration between
subpopulations is synchronized. Each node is blocked
by MPI Barrier function until all subpopulations evolve
to the same number of generations. However, the syn-
chronizing migration results in uneven work loads among
the processors since the time required to complete the
evaluation varies, with the least effective programs tak-
ing the longest period and the best programs taking the
shortest period.



40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

1 node
2 nodes (Syn)

2 nodes (Asyn)
4 nodes (Syn)

4 nodes (Asyn)
6 nodes (Syn)

6 nodes (Asyn)
10 nodes (Syn)

10 nodes (Asyn)

Disturbance (%)

R
ob

us
tn

es
s 

(%
)

Figure 2: Robustness

In the second implementation, we attempt to fur-
ther improve the speedup of the parallel algorithm by
the asynchronous migration. When the fastest node
reaches predetermined generation numbers, the migra-
tion request is sent to all subpopulations. The migration
takes place at the end of the current generation. In this
state, if any populations are still in the fitness evaluation
phase, the other nodes must wait. The waiting time will
be at most less than one generation.

5 Results and Discussion
5.1 Speedup

To make an adequate comparison between the serial
algorithm and parallel algorithm, Cantú-Paz [7] suggests
that the two must give the same quality of the solution.
In this paper, we define the robustness of the gener-
ated program from the serial algorithm as a baseline.
In addition, if the generated program from the paral-
lel algorithm gives the same robustness as the program
from the serial algorithm, the equal amount of work to
achieve the same quality of the answer is done. From
the robustness graph in figure 2, the generated program
from the parallel GP is better than the serial GP. Hence,
the amount of work from the parallel algorithm is not
less than the serial algorithm.

The parallel speedup is defined as the ratio of the
serial execution time to the parallel execution time.

Speedup =
Serial time

Parallel time
(1)

Figure 3 illustrates the speedup observed on the two
implementations as a function of the number of pro-
cessors used. The performance is less than we ex-
pect, although both implementations exhibit superlinear
speedup. The speedup curves taper off for 10 processors
and the performance of the asynchronous implementa-
tion is slightly better than the performance of the syn-
chronous implementation. In order to discern the cause

1

4

7

10

13

16

19

22

25

1 2 3 4 5 6 7 8 9 10

Ideal
Synchronous

Asynchronous

Number of Processors

Sp
ee

du
p

Figure 3: Speedup

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 (Syn) 2 (Asyn) 4 (Syn) 4 (Asyn) 6 (Syn) 6 (Asyn) 10 (Syn) 10 (Asyn)

Number of Processors

P
er

ce
nt

Communication Computation

Figure 4: Percentage of time spent in computation and
communication

of this result, the timing analysis is performed in the
next section.

5.2 Timing Analysis

Figure 4 shows the relative time spent in each section
of the implementations. The communication overhead –
the sum of the barrier time and broadcast time – goes up
considerably as the number of processors increases. The
asynchronous implementation does not help much on re-
ducing the communication overhead at large numbers
of processors. Thus, we investigate the further detailed
analysis of the communication overhead.

Figure 5 shows the absolute time spent in major func-
tions of the communication. The time spent in barriers
indicates the time spent on waiting for all processes to
reach the same point. From pseudo-code of the migra-
tion in figure 1, the barrier time consists of the time
spent to wait for all nodes to be ready for the migration
and the next broadcast.

In the synchronous implementation, the time spent in
barriers reduces as the number of processors increases.
This is because the barrier time depends on the variation



0

200

400

600

800

1000

1200

1400

2 (Syn) 2 (Asyn) 4 (Syn) 4 (Asyn) 6 (Syn) 6 (Asyn) 10 (Syn) 10 (Asyn)

Number of Processors

T
im

e 
in

 s
ec

on
ds

MPI_Bcast MPI_Barrier

Figure 5: Absolute time spent in communication

of the computation time of each node. As the number
of nodes is increased, the computation time per node is
decreased. Hence, the barrier time is reduced.

In contrast, the barrier time in the asynchronous im-
plementation increases as the number of processors in-
creases. This is due to the fact that the time spent in the
second barrier (waiting for the next broadcast) increases
with the number of nodes. However, the asynchronous
implementation eliminates the first barrier therefore it
reduces the total time in the barriers compared to the
synchronous implementation.

The absolute time spent in a broadcast increases con-
siderably – greater than linear. From the inspection in
the trace information by using a visualization tool, we
found that the transmission of the broadcast functions
in the implementation of MPI that we use may be exe-
cuted more than once, especially for a large number of
processors.

After obtaining some timing analyses, the results re-
veal the cause of the problem. The performance degra-
dation in 10 processors is caused by the excessive com-
munication time due to the broadcast function. Al-
though the asynchronous migration reduces the barrier
time effectively compared to the synchronous migration,
the increase in the communication time in 10 processors
obliterates this advantage. In case of the small number
of processors (2,4,6), the gain from the asynchronous mi-
gration is considerable as the evolution proceeds at the
speed of the fastest node.

As the size of the work increases (i.e., the number
of training environments increases), the serial and par-
allel computation time will be increased when the time
spent in the communication is constant. If the ratio
of the computation/communication can be kept large
(large work load), then one can expect that the parallel
performance will be improved.

6 Conclusions

The result presented in this paper shows a success
of speeding up the Genetic Programming process by
means of parallel processing. The parallel implemen-
tations of Genetic Programming successfully exploit the
computing resource of a dedicated cluster of PC work-
stations. Superlinear speedup of GP can be acquired by
improving a coarse-grained model for parallelization as
less computational work needs to be done. Furthermore,
the timing analyses indicate the scalability of the paral-
lel approaches, as the size of the problem increases, the
speedup will be improved.

References

[1] Chongstitvatana P (1998), Improving robustness of
robot programs generated by genetic programming
for dynamic environments. Proc. of IEEE Asia Pa-
cific Conference on Circuits and Systems, p.523–526

[2] Koza JR, Andre D (1995), Parallel genetic program-
ming on a network of transputers. Proc. of the Work-
shop on Genetic Programming: From Theory to
Real-World Applications, University of Rochester,
National Resource Laboratory for the Study of Brain
and Behavior, Technical Report 95-2, p.111-120

[3] Dracopoulos DC, Kent S (1996), Bulk synchronous
parallelisation of genetic programming. Proc. of the
Third International Workshop on Applied Parallel
Computing in Industrial Problems and Optimization
(PARA ’96), Springer Verlag, Berlin

[4] Punch B (1998), How effective are multiple poplu-
lations in genetic programming. Proc. of the Third
Annual Conference in Genetic Programming, pp.308-
313

[5] Lin S-C, Punch WF, Goodman ED (1994), Coarse-
grain parallel genetic algorithms: Categorization and
new approach. Proc. of the Sixth IEEE SPDP, pp.28-
37

[6] Tongchim S, Chongstitvatana P (1999), Speedup Im-
provement on Automatic Robot Programming by
Parallel Genetic Programming. Proc. of 1999 IEEE
International Symposium on Intelligent Signal Pro-
cessing and Communication Systems (ISPACS’99),
Phuket, Thailand

[7] Cantú-Paz E (1999), Designing efficient and accurate
parallel genetic algorithms. PhD thesis, University of
Illinois at Urbana-Champaign


