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Abstract: In this paper a new algorithm called Dynamic Ant is introduced. It was a 
combination of Ant Colony Optimization techniques and Dynamic Niche Sharing 
scheme. The interesting point of this algorithm is that it is simple to be implemented 
and could be well matched with existing design algorithms by adding the heuristic 
weights to speed up the algorithm. The algorithm uses the problem state structure as 
in reinforcement-learning algorithm, but the storage explosion is prevented by mean 
of the pheromone trail. This algorithm was investigated by data path design problem 
of High-Level Synthesis of which has a large number of design steps and design 
techniques.
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1. Introduction
In hardware synthesis usually the algorithm or 
behavior of the target system will be described in 
high-level language as VHDL or Verilog. This 
description will be transformed to control data flow 
graph (CDFG). Then a batch of algorithms will 
transfer this CDFG in to register-transfer level, 
consisted of data path and control unit. This 
process, as explain in [4], is called High-Level 
Synthesis. In this paper we propose an algorithm to 
synthesis the data path. This problem is known to 
be an NP-Hard problem as state in [4], [10], [24].

Pierre G. Paulin and John P. Knight published their 
well-known heuristic algorithm, the Force-Directed 
Scheduling [5]. This algorithm was refined later by 
W. F. J. Verhaegh et al. in [6]. C. H. Gebotys et al. 
studied the optimum solution by using integer 
linear programming algorithm [10] and these 
optimum solutions were widely used as a target 
reference.

There were many works that use Genetic Algorithm 
to solve the High-Level Synthesis problem. Marc J. 
M. Heijligers et al. studied how to adapt this 
technique and reported in [11], [12], [13]. 
Muhammad Khan Dhodhi et al. in [14], [15], [16], 
[17], [18] reported the successful of this technique 
especially in [18]. John P. Knight et al. were 
interested in this algorithm and implemented a very 
efficient algorithm [7], [8], [9]. The main 
contribution of these people, who adopt the Genetic 
Algorithm to High-Level synthesis, is to find a 
technique to encode or decode the chromosome 

with feasible solution, which prevent the GA from 
wasting the computation capability in evaluating 
the infeasible solutions.

2. ACO Algorithms
In this section, we give an overview and the 
development of the Ant Algorithms. Ant 
Algorithms are recently developed, mostly by 
Marco Dorigo et al. as in [20], [21], [22] to solved 
traveling salesman problem and later expand to 
another problem. The algorithms are based on the 
natural behavior of ant colony, which use 
pheromone as their communication media. This 
pheromone is left along the way as a trail to 
communicate with each other. While traveling, ants 
will use the information (pheromone) which left 
along the way as their guidance. Ant Colony 
Optimization (ACO) algorithms simulate this 
behavior by update the pheromone level based on 
the positive feed back from the quality of the 
solution, and make decisions based on these 
pheromone levels. These algorithms usually are the 
iterative algorithms. In each iteration ants will try 
search for the solution by state transition rule. After 
they finished the tours for the solutions, the quality 
of these solutions will be weight as a pheromone 
level to be laid in the trials, which called 
pheromone update rule. These two rules play an 
important role for ACO algorithms.

Ant System [20] is the first algorithm introduced. 
The state transition rule of this algorithm is to 
choose by probabilistic proportional of the 
pheromone level and the heuristic weight of all the 
possible choices. All ants are allowed to update 
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their trails. Ant-Q [21] and Ant Colony System 
(ACS) [22] are very similar algorithm. Ant-Q 
algorithm was inspired by Q-learning, a type of 
Reinforcement Learning algorithm [25]. The ACS 
is almost the same as Ant-Q but has less 
computation. Their state transition rules are almost 
the same as in the Ant System algorithm, except 
that they are heavily biased by the maximum 
pheromone level and heuristic weight. For the 
pheromone update rule only the best solution is 
allowed to increase the pheromone level, but every 
ant will decrease the pheromone level as it travels. 
This is done in order to prevent another ant from 
taking the same route. The main difference of 
MAX-MIN  Ant System [23] from ACS is that the 
pheromone level is controlled in a limited range. As 
we can see that the improvement of the algorithm is 
to prevent ants from following the same route or 
search stagnation or premature convergence in 
genetic algorithm.

3. Dynamic Ant Algorithm
In this research we are interested in finding an
algorithm that can be matched well with the human
design process. So our experience with the design
problem can be used as a heuristic to guide the
design algorithm.

Normally when we face a design problem, we will
look for some of the possible way and make a
decision and then repeat the process until we get a
complete design. After that we will make a
refinement by changing some of the decision we
have made until we get a satisfactory solution.
Sometimes with a prior experience we can make a
short cut or select a choice that gets to the complete
design quicker. From the human design process, we
formulate it in to an algorithm. Before we explain
the algorithm, let us define some terms first.

Figure 1: Decision Graph and Decision Path

Decision Path is a record of the decisions, which
were made for a design. Each node of a path
represents a design problem state. The first node of
the decision path is the starting point of the design
process. From the first node a designer makes a
decision in selecting a choice from all of the
possible ways. After that the designer will reach to

another state (node) in the design problem. This
process is repeated until the designer gets a
complete design or gets to the dead end.

Decision Graph is a structure that represents a
decision space for a design problem. Each node
represents a design problem state. Each arc
represents a choice that must have been made to get
to the next node or the next state. It is the same as
decision tree but in this case the different sequence
of decision can get to the same state or the same
node. Or each node can have more than one in
degree. There is one root node, which represents the
initial state of the design problem. A path from the
root node to a leaf node is called a decision path.

Construction of a decision path is a process that a
sequence of selection is made. This process begins
from the first node, which is an initial design state.
Then the possible choices are listed and each
possible choice is assigned with a heuristic weight
and a pheromone weight as in the Ant algorithm. A
choice is selected according to the state transition
rule, which will be described next, and then the
algorithm gets to the new state of the design
problem. This process continues until the design is
completed. While constructing the decision path the
decision graph is also updated.

State transition rule is the rules that will be
applied in order to advance from one design step to
the next step by selecting a choice from the possible
weighted choice list. If all of the choices were
selected (by previous ants), then a choice will be
randomly selected by the biases from pheromone
level. This is diverted from another ACO, in ACO
the selection will be based on a linear combination
of heuristic weights and pheromone levels but in
Dynamic Ant the heuristic weights are used until all
choices are selected then the pheromone levels are
considered. The advantage of our method is that the
determinations of heuristic weights are independent
to pheromone levels.

Pheromone updating rule is the rule for
calculating the new level of pheromone. In this
algorithm we use the technique which was modified
from MAX-MIN  Ant System [23]. The pheromone
level is used to prevent the algorithm from storage
explosion. When a path is selected the pheromone
is set to a fixed value. Each iteration, every arc in
the graph is decreased to evaporate the pheromone.
Hence, the number of nodes in the decision graph is
bounded.

Path exploration  is a process to initialize new
paths from the interesting path. The process begins
by selecting a random exploration point in the path.
Then a path from the root to the exploration point is
copied for a new ant as an initial path.
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Now we introduce the steps of the Dynamic Ant
Algorithm. We call this Dynamic Ant because some
of techniques were borrowed from Dynamic Niche
Sharing as in [19].
1. Initialize path of each ant by an initial design

state.
2. For each ant constructs a decision path by

mean of state transition rules.
3. Evaluate the cost function of each path, if the

target cost is found then terminate.
4. Decrease the pheromone level of every arc in

the graph to simulate the pheromone
evaporation.

5. Use Dynamic Niche Sharing process to find the
peaks (local minimum cost of the near by
solution).

6. For each peak, updates pheromone level
according to pheromone updating rule.

7. Remove all the arcs, which has zero level of
pheromone.

8. Remove all the nodes, which does not have
input arc.

9. Initialize path of each ant in the next iteration
by path exploration.

10. Go to step 2.

Adjusting the pheromone level in step 4 and
removing some arcs and nodes in step 7 and 8
prevent the algorithm from storage explosion which
occurs in reinforcement learning [25]. In step 5 the
dynamic niche algorithm as in [19] is used to
overcome the premature convergence problem and
to explore the search space. To initialize a path for
each ant in step 9, each new initial path will be
generated by path exploration of a randomly
selected peak.

The state transition rule in our algorithm is different
from other ACO as it constructs a decision path.
This is well matched with the path initialization in
step 9. So in this algorithm the Q0 parameter which
can be found in normal state transition rule was
eliminated.

4. Problem
We select Differential Equation Solver as our 
problem for testing this algorithm. It was used as an 
example in various literatures [1], [2], [5], [18]. 
Input to the algorithm was a CDFG that will 
numerically solve the equation y'' + 3xy' + 3y = 0. 
In this experiment, we use the target architecture as 
in [2], which are combinational functional units 
(except the pipeline functional unit), distributed 
registers, multiplexers or unidirectional buses. All 
registers use the same clock edge.  We also put the 
constraint that each register and functional unit has 
only one bus per input as in [10]. A wire, 
connecting from an output to input, will be counted 
as a bus, because it also has to be routed in a 
channel [1]. For loop registers, we ensure that the 

input loop registers will be valid until their last use. 
The output loop registers will valid until the end of 
the loop. The input loop register is the same register 
as the output loop register for the same variable.

As in [10], we use the cycle time cost equal to 50
and the cost of each hardware unit as in Table 1.

Table 1: Cost of hardware unit

Hardware Unit Cost
Single cycle multiplier 250
Two cycle multiplier 250
Pipeline multiplier 250
Single cycle ALU (+, -, <) 250
Single cycle adder 50
Single cycle subtractor 50
Single cycle comparator 50
Register 15
Bus 100

5. Experiment
There are two major parts of the system that we
have to implement. First part is the Dynamic Ant
algorithm, which make decisions for the second
part, the design algorithm.

Figure 2: The interaction of Dynamic Ant
and design algorithm.

In implementing the Dynamic Ant algorithm we
have to design the structure, which will keep a
problem state. The structure that we choose is a
table that is indexed by operation number to
assigned time step, assigned functional unit,
assigned register number, assigned input and output
buses. The structures of graph and path also have to
be implemented to keep track of decision graph and
decision paths.

For the design algorithm we follow the following
step:

Dynamic
Ant
algorithm

Design
algorithm

Update problem
state
List of possible
choices and
heuristic weight

Make a
selection
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1. Allocation of Functional units (assigned
operation to the functional unit in the library).

2. Scheduling (Mobility scheduling, each
operation bound by ASAP and ALAP time
step).

3. Reallocation (allocate enough function unit for
all of the time steps).

4. Functional unit assignment.
5. Register assignment.
6. Bus assignment.

These are the normal techniques as can be found in
various literatures as [1], [2], [3]. Most of them are
a heuristic algorithm and can not guarantee the
optimum solution. Combining many of them
together is unlikely to get the optimum solution.
We had modified them to match with the Dynamic
Ant algorithm. Whenever a decision has to be made
and there is not enough information, the design
algorithm will list the possible choices with the
heuristic weights and let Dynamic Ant select one of
them.

The target cost that we use to measure as a success
in experiment was taken from [18]. But the
solutions in that literature did not report number of
bus required. We ran our algorithm and checked for
the solution that we think is the optimum or the
closest one and use it as a target.

The experiment was carried out with the parameter
list in Table 2.

Table 2: Parameter list

Number of ant per iteration
(except for 4 cycle 50 ants were used)

100

Pheromone level
(if the path was selected)

4

Pheromone evaporation rate
(per iteration)

1

Number of run
(per experiment)

100

We had run the 4 experiments as follow:
1. 4 time steps with single cycle adder, single 

cycle subtractor, single cycle comparator and 
single cycle multiplier.

2. 7 time steps with single cycle adder, single 
cycle subtractor, single cycle comparator and 
two cycles multiplier.

3. 7 time steps with single cycle ALU and 
pipeline multiplier.

4. 6 time steps with single cycle ALU and 
pipeline multiplier.

 To verify the usefulness of adding heuristic, we ran 
each experiment with and without heuristic to 
compare the result. The heuristics, which we were 
added to the algorithm are:

1. Prefer the cycle that has less operation and less 
data transfer.

2. Prefer the register that connects to the same 
functional unit output.

3. Prefer the bus that connects to the same 
functional unit output.

As one may notice that some of these heuristics 
were inspired by [5]. In the Dynamic Niche 
selection, if two solutions have the same set of 
functional units and scheduling or have a few of 
difference in scheduling, then both of them will be 
classified in to the same niche.

6. Result
The experiments were carried out on a personal 
computer with Pentium II processor running at 350 
MHz and 128 Mbytes of memory. The execution 
time is approximately a second per iteration.

Figure 3: Cost and iteration of a run with
heuristic added.

Two of the runs are shown in Figure 3, one for the 
successful run and another for the unsuccessful run.  
These two solutions were from the design with 7 
cycles using pipeline multiplier. For the successful 
run, the cost is 1525, which consists of 250(1ALU) 
+ 250(1 pipeline mul) + (5*15)(5 regs) + (6*100)(6 
buses) + (7*50)(7 cycles). In case of unsuccessful 
run, which there is only one for this problem, the 
cost is 1675, which consists of 250(1ALU) + 
(2*250)(2 pipeline mul) + (5*15)(5 regs) + (5*100)
(5 buses) + (7*50)(7 cycles). The unsuccessful 
solution has one more multiplier, but one less bus. 
The data path of the successful run is shown in 
Figure 5.

Figure 4 shows the solution for the 4 cycles design 
problem. This is the ASAP scheduling, as one may 
expect this solution requires more functional unit 
and more bus. In this data path the cost is 1725, 
which consists of 50(1 adder) + 50(1 subtractor) + 
50 (1 comparator) + (2*250)(2 mul) + (5*15)(5 
regs) + (8*100)(8 buses) + (4*50)(4 cycles). From 
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Table 3 this is the easiest problem. All of the runs 
obtained the target solution even with only 50 ants.

Figure 6 shows the solution for 7 cycles with multi-
cycle multiplier the cost is 1775, which consists of 
50(1 adder) + 50(1 subtractor) + 50 (1 comparator) 
+ (2*250)(2 mul) + (5*15)(5 regs) + (7*100)(7 
buses) + (7*50)(7 cycles). From the result in Table 
3 this is the hardest problem, since in this problem 
the algorithm has the least percentage of success.

Figure 7 shows the solution for 7 cycles with 
pipeline multiplier the cost is 1725, which consists
of 250(1 ALU) + (2*250)(2 mul) + (5*15)(5 regs) + 
(6*100)(6 buses) + (7*50)(7 cycles).

From the result in Table 3, the Dynamic Ant can 
find the target solution in most of the runs. These 
are the same solutions as found in [18] except that 
this algorithm also assigned buses for the data path. 
If we compare the results in the column that used 
heuristic and the column that did not use heuristic, 
we can conclude that the algorithm can find the 
solution faster with heuristic. In all problems, the 
algorithm with heuristic obtains the target solution 
more than the algorithm without heuristic. In case 
of the number of iterations the algorithm also 
performs better than the one without. Usually the 
run that can not find the target solution reported the 
solution that is closed to the target solution.

7. Conclusion
It is important to find a data structure to represent 
state of the design problem. Then the structure of 
graph and path have to be built, someone may 
found it a complicate structure. In Genetic 
Algorithm we have to find good encoding of the 
solutions and the proper genetic operators. These 
steps sometimes are not trivial, because improper 
encoding method may lead to infeasible solution 
(which we have to recognize them) and to 
inefficient mapping (many to one). Many people 
who adopted the Genetic Algorithm have to find the 
new encoding and new genetic operators as [9], 
[13], [18].

By comparing the implementation of Dynamic Ant
Algorithm and Genetic Algorithm we conclude that
Dynamic Ant is easier if you can not find the
suitable encoding and genetic operators. The
interesting point is that it is easy to add heuristics
(may be from old design algorithm). One even can
combine more than one approach in this algorithm.
As John P. Knight stated in his paper [9] that we
need a reasonable solution in a reasonable time.
This may be a good solution even though it is a
stochastic algorithm, which can not guarantee the
time and optimality of the solution.
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Table 3: Comparison between the design with and without heuristic guide

Design 4 cycles single 7cycles multi 7 cycles pipe 6 cycles pipe
Heuristic With W/o With W/o With W/o With W/o
%success 100.00 100.00 84.00 76.00 99.00 88.00 92.00 86.00
Mean* 4.05 7.23 27.92 30.62 14.46 18.93 24.96 31.14
Standard deviation* 3.31 7.55 25.51 25.26 18.24 20.78 23.04 23.55

* Iteration mean and standard deviation of success runs only.
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Figure 4: The solution of 4 cycles (single
cycle multiplier)

Figure 5: The solution of 7cycles (pipeline
multiplier)

Figure 6: The solution of 7 cycles  (two
cycles multiplier)

Figure 7: The solution of 6 cycles (pipeline
multiplier)
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