Parallel Genetic Algorithm for Finite-State Machine Synthesis from
Input/Output Sequences

Shisanu Tongchim
Department of Computer Engineering
Chulalongkorn University
Bangkok 10330, Thailand
g4lstc@cp.eng.chula.ac.th

Abstract

This work investigates the use of a paral-
lel implementation to reduce the processing
time required by Genetic Algorithm (GA).
The concept of a coarse-grained model for
parallelization is used to distribute the task
on a cluster of workstations. The problem
chosen to examine the parallel implementa-
tion is the finite-state machine synthesis from
input/output sequences. The performance
of the parallel algorithm was measured by
recording the wall-clock time. The reduction
of the execution time from the use of multiple
processors was calculated in terms of relative
time. The results show that the achieved rel-
ative time is linear and in some case is greater
than linear while the solution quality is main-
tained.

1 INTRODUCTION

Genetic Algorithm (GA) was used to solve the prob-
lem of finite-state machine (FSM) synthesis from in-
put/output sequences (Chongstitvatana, 1999). The
main idea was to synthesize the target FSM from par-
tial input/output sequences, not from a behavioral de-
scription. The result of synthesis was the FSM which
produced the correct output sequences according to
the given input/output sequences. Several circuits
were chosen to examine the FSM synthesis.

In the previous work, the synthesizer used a small pop-
ulation and a large number of generations. The diver-
sity was maintained in the selection process to prevent
premature convergence. The selection algorithm was
slightly adapted from (Winston, 1992). However, this
selection scheme is very time-consuming since the run-

Prabhas Chongstitvatana
Department of Computer Engineering
Chulalongkorn University
Bangkok 10330, Thailand
prabhas@chula.ac.th

ning time is O(n?logn);* where n is the number of
individuals. In addition, GA required a large number
of generations to synthesize a large circuit. Due to the
cost of the selection method which required sorting
and a large number of generations, GA took several
hours, sometime days to find the target FSM.

Since GA evaluates a population of candidate solutions
in each iteration which can be viewed as a parallel pro-
cess, it is easy to distribute the task of serial GA among
the multiple processors. To date many proposals on
parallel implementations in various architectures have
been examined, as was shown by (Canti-Paz, 1998).

The present study introduces a parallel implementa-
tion to reduce the processing time of the previous work
(Chongstitvatana, 1999). The goal is to use the ben-
efit of multiple processors by using a coarse-grained
model for parallelization. Two circuits were chosen to
compare the parallel performance. The first circuit is
reversible 8-counter which represents a large circuit.
The second circuit is 0101 detector which represents a
small circuit.

The remaining sections are organized as follows: The
next section is a description of the previous work. Sec-
tion 3 shows the parallel solution. Section 4 presents
the research findings. Finally, section 5 provides the
conclusions of this work.

2 PREVIOUS WORK

The idea of the FSM synthesis used in the previous
work is depicted in figure 1. By observing the partial
input/output sequences of the target FSM, the syn-
thesizer eventually evolves into the target FSM.

In the prior work in FSM synthesis by GA (Manovit,
1998), the results were classified into two categories;
complete solution and incomplete solution. A com-

*This was revised after the article was published.

Input Sequences FSM Output Sequences

Synthesizer

Figure 1: FSM Synthesis

plete solution performs correctly for all possible in-
put/output sequences, whereas an incomplete solution
operates correctly for input/output sequences used in
the evolution process. In order to increase the percent-
age of complete solutions, the work (Chongstitvatana,
1999) proposed the use of multiple sequences in the
fitness evaluation to improve the correctness of the re-
sults.

As mentioned earlier, the evolution process used a
small population which was not suitable for dividing
the population among the processors. Therefore, this
work used the fixed population size on each proces-
sor. The population size on each processor was not
determined by dividing the total population size by
the number of processors used, as usually found in a
conventional coarse-grained model. There is a related
work which reported the comparison between the dis-
tributed population and the fixed population on each
processor, called scaled parallel GA (Corcoran, 1994).

3 PARALLEL GENETIC
ALGORITHM

In the first stage of the implementation, the population
size was set at 400, as was used in the previous work
(Chongstitvatana, 1999). The execution time is re-
duced due to the probabilistic advantage in the larger
population size. In the second stage of the implemen-
tation, we reduced the population size from 400 to 200
and 100. The decrease of the population size helped
to further reduce the execution time.

The experiment was implemented on a dedicated clus-
ter of PC workstations with 350 MHz PentiumII pro-
cessors, each with 32 Mb of RAM, and running Linux
as an operating system. These machines were con-
nected via 10 Mbps ethernet cabling. The program
used in (Chongstitvatana, 1999) was extended to run
under a clustered computer by using MPI as a message
passing library.

All tests were set up to perform 10 runs. The mi-
gration between subpopulations was synchronized, and
the top 5 of individuals from each subpopulation were

exchanged. The migration interval was set to 10 gener-
ations. The topology used in the migration was a ring
topology. Some selected individuals were exchanged
between neighbors in the ring.

The crossover rate was 50% and the mutation rate was
25%. After creating the new population by crossover
and mutation, the migrants were added to the new
population. The remaining population was created by
the reproduction.

The parameters of the circuits used in the experiment
were similar to the previous work (Chongstitvatana,
1999). The number of input/output sequences was
100 for the experiment. This ensured that all obtained
solutions were correct.

4 RESULTS AND DISCUSSION

To make a comparison between the serial algorithm
and parallel algorithm, the quality of the solutions
must be compared along with the parallel perfor-
mance. Due to the fact that all obtained solutions
are correct, the correctness of the solutions cannot be
used as the quality of the solutions. The number of
runs yielding solutions was used to compare the qual-
ity of the solutions instead. Table 1 shows the number
of runs yielding solutions of the reversible 8-counter
circuit. Table 2 shows the number of runs yielding so-
lutions of the 0101 detector circuit. In the serial algo-
rithm, the number of runs yielding solutions decreases
as the size of the population reduces. In the parallel
algorithm, the number of runs yielding solutions in the
0101 detector synthesis is not impacted by the reduc-
tion of the population size, whereas the number of runs
yielding solutions in the reversible 8-counter synthesis
decreases as the size of the population reduces.

The average execution time of the runs yielding solu-
tions is shown in two graphs. The reversible 8-counter
synthesis time is depicted in figure 2, and the 0101
detector synthesis time is illustrated in figure 3. The
execution time of the parallel algorithm decreases as
the number of processors increases.

The graph of the number of generations and the ex-
ecution time of the runs yielding solutions for the re-
versible 8-counter synthesis is illustrated in figure 4.
The graph of the number of generations and the exe-
cution time of the runs yielding solutions for the 0101
detector synthesis is shown in figure 5. The execution
time increases linearly as the number of generations
increases. In addition, the execution time reduces dra-
matically as the population size decreases.

The widely used performance evaluation of the paral-

Table 1: The number of runs yielding solutions (from 10 runs) : reversible 8-counter

Number of Processors Population Size on Each Processor
400 | 200 | 100
1 8 6 1
4 10 10 7
6 10 9 5
8 10 10 2
10 10 10 6

Table 2: The number of runs yielding solutions (from 10 runs) : 0101 detector

Number of Processors Population Size on Each Processor
400 | 200 | 100
1 10 9 9
4 10 10 10
6 10 10 10
8 10 10 10
10 10 10 10

® population 400 ®population 200 Hpopulaion 100

1L!kk

Number of Processors

7:12:00

6:00:00

4:48:00 7

3:36:00 T

2:24:00 7

Time (hour:min:sec)

1:12:00

0:00:00 -

Figure 2: Time spent for synthesizing reversible 8-counter

‘. population 400 M population 200 & population 100‘

02:35.5
02:18.2 7
02:01.0
01:43.7 4
01:26.4
01:09.1 7§
00:51.8 7§
00:34.6 7

00:17.3 7§ 1_‘ . .
4 6 8 10

Time (min:sec)

00:00.0

Number of Processors

Figure 3: Time spent for synthesizing 0101 detector

* population 400 ™ population 200 * population 100‘

7:12:00 P(1)

6:00:00

4:48:00
P(Q/

D
£ 336:00
= P(f/
4 P(10) _
2:24:00 e P©) P4y P()
P(6) Ps)
1:12:00 p(10) L P(1)
P s) P(4) ,P(10) _ ¢
P(6) at—— e
0:00:00 T
0 5000 10000 15000 20000 25000 30000
Generation

Figure 4: Time-Generation : reversible 8-counter (P(n); n is the number of processors)

‘ * population 400 ™ population 200 * population 100 ‘

02:35.5
P(1) P(1)
02:18.2 /‘ —

02:01.0
01:43.7
01:26.4
01:09.1
00:51.8
00:34.6
00:17.3
00:00.0 T

0 500 1000 1500 2000 2500 3000 3500 4000

P(1)

/

Time

'f‘\\
~~
\\
—

Generation

Figure 5: Time-Generation : 0101 detector (P(n); n is the number of processors)

‘* Linear ™ Reversible 8-Counter 4 0101 Detector‘

Relative Time
173
»

Number of Processors

Figure 6: Relative Time

lel algorithm is the parallel speedup. However, there
are some controversies about the speedup measure-
ment in the coarse-grained model (Canti-Paz, 1999).
Many studies have claimed that superlinear speedup
has been achieved. Some cases of superlinear speedup
have been reported without explicitly comparing the
quality of the solutions. Another source of superlin-
ear speedup is that the parallel algorithm do less work
than the serial algorithm (Punch, 1998).

In (Hart, 1996), the work avoided using the speedup
measurement. The study claimed that the randomiza-
tion in the GA process makes the distinction between
the process of the serial implementation and the pro-
cess of the parallel implementation. The execution
time was used to compare the performance between
two algorithms.

In this present study, we defined the performance com-
parison between the serial algorithm and parallel algo-
rithm in terms of the relative time. The relative time
is the ratio of the serial execution time to the parallel
execution time. The serial algorithm and parallel algo-
rithm must give the same quality of the solutions. This
differs from the speedup calculation which two algo-
rithms must do the same amount of work (Gustafson,
1990).

In comparing the performance, we want to measure the
time used to find solutions of the same quality. The
execution time is largely determined by the population
size. We therefore chose the smallest population size
that yielded solutions of the same quality.

The relative time is shown in figure 6. The relative
time of the reversible 8-counter synthesis is compared
between the parallel time with the population size of
200 and the serial time with the population size of 400.
The relative time of the 0101 detector synthesis is cal-
culated from the parallel time with the population size
of 100 compared with the serial execution time with
population size of 400. From the graph, the relative
time of the reversible 8-counter synthesis is close to
the number of processors used while the relative time
of the 0101 detector synthesis is greater than the num-
ber of processors used.

5 CONCLUSIONS

This paper presents an empirical study of parallel ge-
netic algorithm for solving the FSM synthesis. Since
the size of the population is small, the population size
in each processor is fixed, rather than dividing the to-
tal population size with the number of processors used.

The results show that the use of parallel processing in-

creases the chance of finding solutions. Moreover, the
parallel algorithm can help to reduce the population
size in each process. Due to the method of selection,
the reduction of the population size results in the sig-
nificant gain in the execution time.

To avoid a controversy about the speedup calculation,
we defined the ratio of the serial time and parallel
time as the relative time. The serial algorithm and
parallel algorithm must give the same solution qual-
ity, rather than executing the equal amount of work.
The 0101 detector synthesis acquires the higher rela-
tive time compared with the relative time of the re-
versible 8-counter because the smaller population size
can be used in the 0101 detector synthesis.

References

E. Canti-Paz (1998). A survey of parallel genetic al-
gorithms. Calculateurs Paralléles, Reseauz et Systems
Repartis Vol. 10 No. 2. : 141-171.

E. Cantti-Paz (1999). Designing Efficient and Accu-
rate Parallel Genetic Algorithms. PhD Thesis, Uni-
versity of Illinois at Urbana-Champaign.

P. Chongstitvatana, and C. Aporntewan (1999). Im-
proving correctness of finite-state machine synthesis
from multiple partial input/output sequences. In Pro-
ceedings of the 1st NASA/DoD Workshop of Evolvable
Hardware, 262-266.

A. L. Corcoran, and R. L. Wainwright (1994). A
parallel island model genetic algorithm for the mul-
tiprocessor scheduling problem. In Proceedings of the
1994 ACM/SIGAPP Symposium on Applied Comput-
ing, 483-487.

J. Gustafson (1990). Fixed Time, Tiered Memory, and
Superlinear Speedup. In Proceedings of the Fifth Dis-
tributed Memory Computing Conference (DMCCS5).

W. E. Hart, S. Baden, R. K. Belew, and S. Kohn
(1996). Analysis of the numerical effects of paral-
lelism on a parallel genetic algorithm. In Proceedings
of the 10th International Parallel Processing Sympo-
stum, 606-612.

C. Manovit, C. Aporntewan, and P. Chongstitvatana
(1998). Synthesis of synchronous sequential logic cir-
cuits from partial input/output sequence. In Pro-
ceedings of International Conference on Evolvable Sys-
tems, 98-105.

B. Punch (1998). How effective are multiple popula-
tions in genetic programming. In Proceedings of the
Third Annual Conference in Genetic Programming,
308-313.

P. H. Winston (1992). Artificial Intelligence. MA:
Addison-Wesley.

