
A Hardware Implementation of the Compact Genetic Algorithm

Chatchawit Aporntewan
Department of Computer Engineering

Faculty of Engineering, Chulalongkorn University
Bangkok 10330, Thailand

43718043@chula.ac.th

Prabhas Chongstitvatana
Department of Computer Engineering

Faculty of Engineering, Chulalongkorn University
Bangkok 10330, Thailand

prabhas@chula.ac.th

Abstract- We propose a hardware implementation of the
Compact Genetic Algorithm (Compact GA). The design
is realized using Verilog HDL, then fabricated on FPGA.
Our design, though simple, runs about 1,000 times faster
than the software executing on a workstation. An alter-
native hardware for linkage learning is also proposed in
order to enhance the capability of Compact GA to solve
highly deceptive problems.

1 Introduction

The Genetic Algorithm (GA) is a powerful optimization al-
gorithm inspired by natural evolution [Goldberg89]. The
optimization is performed by creating a population of solu-
tions. In Simple GA, the offspring are produced by standard
genetic operators: reproduction, crossover, and mutation. In
each generation, a selection scheme is used to select the sur-
vivors to the next generation according to their fitness values
defined by users. With this artificial evolution, the solutions
are gradually improved generation by generation. The GA
process starts with a random population and iterates until the
termination condition is met (the optimal solution is found,
or reaches the maximum number of generations).

Over the past years, GA has been successfully applied to
many hard optimization problems. However, the GA pro-
cess is time-consuming. For many real-world applications,
GA can run for days, even when it is executed on a high-
performance workstation. Due to the extensive computation
of GA, a myriad of hardware-based GAs has been put for-
ward [Scott95, Graham95, Sitkoff95, Bland98, Kajitani98,
Yoshida99, Shackleford00]. Here we cite only the more re-
cent works. Most of the cited works present the hardware
accelerating the Simple GA, except [Kajitani98, Yoshida99,
Shackleford00] that are Steady-state GA. The impressive
speedups are depicted in Table 2. However, complex and ex-
pensive hardware is employed to attain the speedups. For
example, SPLASH2 uses a collection of processor array
boards connected to Sun Sparc workstation via an interface
card [Graham95]. Another example is the ARMSTRONG,
which is a MIMD multicomputer with reconfigurable re-
sources [Sitkoff95]. It consists of an array of processor
boards. Each board consists of microprocessor, memory, and
FPGAs. Those machines are regarded as reconfigurable com-
puters, developed for general computation. The other works
propose custom hardware dedicated for the execution of GA,

the implementation still suffers from memory latency limit-
ing the operating clock frequency. The memory bottleneck is
inevitable since GA requires a large memory to store the pop-
ulation. As a result, high-speed memory may be used making
the hardware expensive, or low-cost memory reducing per-
formance. In contrast to the Simple GA, the Compact GA
is more suitable for hardware implementation [Harik99a].
The Compact GA represents a population as an �-dimensional
vector, where � is called the chromosome length. The � ��-
dimension in the vector is a probability of being “0” or “1”.
Thus the Compact GA manipulates this vector instead of the
actual population. This dramatically reduces a number of bits
required to store the population. With this representation, it is
practical to use registers for a probability vector. Consequent-
ly, the hardware can execute at the maximum frequency, that
is higher than the memory speed. The experiment shows that
the hardware Compact GA is 1,000 times faster than a soft-
ware version.

The remaining sections are organized as follows. Section
2 introduces the Compact GA. Section 3 describes translat-
ing the Compact GA into hardware. Section 4 presents the
performance evaluation. Section 5 discusses the extension of
hardware Compact GA. Section 6 concludes the paper.

2 The Compact Genetic Algorithm

The pseudocode of Compact GA is presented in Figure 1.
The Compact GA’s parameters are population size (�) and
chomosome length (�). A population is represented by an �-
dimensional probability vector (�). The ���� is the probability
that the ���-position bit of an individual, randomly picked up
from the population, will be one. First, � is initialized to (0.5,
0.5, . . . , 0.5). Next, the individual � and � are generated ac-
cording to �. The fitness values, �� and ��, are then assigned
to � and � respectively. If �� � �� then the probability vector
will be updated towards the individual �. If ���� = 1 and ����
= 0 then ���� will be increased by ���. If ���� = 0 and ���� = 1
then ���� will be decreased by ���. Note that if ���� = ���� then
���� will not be updated. The loop is repeated until each ����
becomes zero or one. Finally, � presents the final solution.

3 Hardware Design

It can be seen that the pseudocode of Compact GA is com-
posed of basic operations: add, subtract, and compare. Each

jjaeone
Proceedings of the 2001 IEEE Congress on Evolutionary Computation Seoul, Korea 匀 May 27-30, 2001

sonms
624

sonms
0-7803-6657-3/01/$10.00 © 2001 IEEE

Compact GA parameters:
�: population size.
�: chromosome length.

for � = 1 to � do
���� = 0.5;

repeat
for � = 1 to � do

���� �

�
� with probability ����
� otherwise

���� �

�
� with probability ����
� otherwise

endfor

// Fitness calculation
�� = fitness(�)
�� = fitness(�)

for i = � to � do
if �� � �� then

if ���� = 1 and ���� = 0 then
���� = min(1, ���� + �

�
)

if ���� = 0 and ���� = 1 then
���� = max(0, ���� - �

�
)

else
if ���� = 1 and ���� = 0 then

���� = max(0, ���� - �

�
)

if ���� = 0 and ���� = 1 then
���� = min(1, ���� + �

�
)

endif
endfor

until each ���� � �0,1�

Figure 1: Pseudocode of Compact GA.

probability, ����, can be updated in parallel. In addition, the
Compact GA can be partially overlapped. This will allow
pipelining that increases the hardware performance. The de-
sign of implementation of Compact GA consists of 5 mod-
ules: random number generator, probability register, com-
parator, buffer, and fitness evaluator. The hardware organi-
zation is shown in Figure 2.

Random number generator (RNG) A one-dimensional, 2-
state cellular automata (CA) is used to produce random
numbers [Hortensius89]. Increasing the size of CA
yields a better quality of random numbers, however, the
�-bit CA is sufficient for the demonstration. To gener-
ate each bit of an individual in parallel, the number of
RNGs is identical to the chromosome length.

Probability register (PRB) In Figure 1, the probability, ����,
is a floating-point number. In fact, it can be replaced
by an integer representation since the operations per-

formed on ���� are only add and subtract by ���. Sup-
pose � = 256. Then a 8-bit integer is sufficient for ����
and the operations performed on the integer are limited
to increment and decrement. For that reason, � must be
a power of two.

Comparator (CMP) The CMP is a combinational circuit
comparing two integers, 	 and �. If 	 � �, then the
output will be “1”. Otherwise, the output will be “0”.

Buffer (BUF) The buffer is a sequential circuit determining
the ���-position bits of the individuals “a” and “b”. The
buffers hold the individuals while they are being evalu-
ated.

Fitness evaluator (FEV) Two evaluators are used to com-
pute the fitness of the individuals “a” and “b” in par-
allel. For one-max problem, the fitness evaluator sim-
ply counts the number of “1” in a binary string. The
number of clocks, spent in the fitness evaluation, varies
tremendously from toy problems to hard optimization
problems.

The hardware Compact GA performs operations on a
probability vector, �. Every dimension, ����, is updated in
parallel. The RNG, PRB and CMP units are used to gener-
ate two individuals and store them in BUF. The FEV units
evaluate the fitness of two individuals. The CMP unit deter-
mines the winner/loser and updates the probability vector in
the PRBs.

The hardware Compact GA works as follows. When the
reset signal is received, the random number generators are
seeded with values, the probability registers are set at 0.5,
and the buffers are reset to the start state. Next, the following
steps are repeated until all probability registers are zero or
one.

1. The result of fitness evaluations determines whether an
increment or decrement operation is performed on the
probability register. Next, the random numbers and the
probability registers are compared.

2. The buffers store the comparison result. If the random
number is greater than ����, the ���-position bit of indi-
vidual “a” will be set to “0”. Otherwise, it will be set
to “1”. While the buffers are clocked, the new random
numbers are produced simultaneously.

3. The buffers perform the same operation as in step 2
for individual “b”. In this step, the individuals are for-
warded to the fitness evaluators, that are combinational
circuits. The comparison of the fitness values is used to
update the probability registers in step 1.

It is obvious that each step can be executed in one clock.
As a result, the Compact GA executes one generation per
three clock cycles for one-max problem. The number of
clocks per generation depends on the optimization problem.
For more complicated problems, a generation takes � �

sonms
625

BUF

BUF

BUF

PRB

PRB

PRB

CMP

CMP

CMP

.

RNG

RNG

RNG

Individual b

Individual a

CMP

Chromosome
Length (32)

FEV

FEV

1

1

1

1

1

8

8

8

8

32

32 6

6

8

8

3232

1

1

1

1

1

Figure 2: Hardware organization (population size = 256, chromosome length = 32).

Target information:
Vendor: Xilinx
Family: Virtex
Device: V1000FG680
Speed: -6

Design Summary:
Number of Slices: 813 out of 12,288 6%

Slice Flip Flops: 615
4 input LUTs: 1,475

Number of Slices containing
unrelated logic: 0 out of 813 0%

Number of bonded IOBs: 2 out of 512 1%
Number of GCLKs: 4 out of 4 100%
Number of GCLKIOBs: 1 out of 4 25%

Total equivalent gate count for design: 15,210
Additional JTAG gate count for IOBs: 144

Design statistics:
Minimum period: 42.423 ns
Maximum frequency: 23.572 MHz
Maximum net delay: 10.537 ns

Figure 3: Synthesis result for one-max problem.

sonms
626

clocks, where
 is a number of clocks used in fitness eval-
uation of an individual. The design is realized using Verilog
hardware description language. The population size (�) and
the chromosome length (�) are set at 256 and 32 respective-
ly. At the final stage, the design is fabricated on FPGA. The
target device is an Xilinx FPGA. The synthesis result for one-
max problem is given in Figure 3. The equivalent gate count
for the design is 15,210. It is very small. The maximum op-
erating frequency for the design is 23.57 MHz.

4 Performance Evaluation

We choose one-max problem to evaluate the system perfor-
mance. The population size (�) and the chromosome length
(�) are set at 256 and 32 respectively. One million generations
are benchmarked. A comparison between software and hard-
ware version is presented in Table 1. The software version is
written in C language and compiled using gcc compiler. The
software executes on 200 MHz Ultra Sparc II, SunOS. The
result shows that the hardware is 1,000 times faster than the
software executing on a workstation. The number of genera-

tions executed in hardware is operating frequency
clocks used per one generation

= ���

�
= 6.67 million generations per second. It can be seen

that the hardware performs much faster.

Table 1: A performance comparison between HW and SW.

Software Hardware Speedup
(200 MHz Ultra Sparc 2) (FPGA 20 MHz)

2:30 min. 0.15 sec. 1,000

The hardware-based GAs, proposed by others are present-
ed in Table 2. In the last column, the speedups are based on
the computers given below. We pick up the best speedups re-
ported in the literatures. To compare our work to the others
is difficult since the works use different algorithm, optimiza-
tion problem, and speedup measurement. The initial works
are based on Simple GA [Scott95, Graham95, Sitkoff95].
Due to the reason that Simple GA is not suitable for hard-
ware implementation, the recent works turn to employ the
Steady-state GA [Kajitani98, Yoshida99, Shackleford00].
With Steady-state GA, the extreme speedup is achievable. In
the latest work, an individual is evaluated every clock cycle
[Shackleford00]. We could not claim that the performance of
hardware Compact GA is better than the others since the per-
formance evaluations are considerably different. On the other
hand, the extreme speedup of the Compact GA over software
reveals its ability to capture the benefits of VLSI implemen-
tation.

Next, the performance of the hardware Compact GA is
generalized to other optimization problems. We divide the
software version of Compact GA to two parts: the evaluation
part (part one) and the remaining part (part two). Let ���
be 	

	�

and let ��	 be

	�

, where � is the time spent in

part one and is the time spent in part two. Let ��� be

the speedup of hardware over software for part one and let
��	 be the speedup of hardware over software for part two.
Therefore the speedup of hardware Compact GA for a partic-
ular problem can be shown in Equation 1.

speedup �
�

���

���
� ���

���

(1)

The ��	, ��� , and ��� depend on the optimization prob-
lem and the fitness function. Moreover, the ��� highly de-
pends on how fast we can evaluate an individual in hardware.
The ��	 is known since it is problem independent. The ��	
can be obtained from Equation 2.

��	 �
time spent in part two (SW)
time spent in part two (HW)

(2)

Consequently,

��	 �
1:48 min.
0.10 sec.

� �� ���

In Equation 1, we substitute ��	 with 1,080 and substitute

��	 with �� ��� .

speedup �
�� ������

��� 	�� ���
 � �� ������
(3)

Here the speedup of hardware Compact GA is achieved. It
should be noted that the speedup in Equation 3 is based on a
200 MHz Ultra Sparc 2.

The speedup is shown in Figure 4. When the ��� is less
than ��	, a problem of which ��� is smaller runs faster.
This goes along with the Amdahl’s law since the slower part
should be as small as possible. When the ��� is greater than
��	, the part two becomes a bottleneck. As a result, a prob-
lem of which ��� is larger runs faster.

s EV

EVt

EVt

EVt

EVt

EVt

=
=
=
=

= 0.1
0.3
0.5
0.7
0.9

Speedup

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

Figure 4: The speedup of hardware Compact GA.

5 Extension

The Compact GA theoretically simulates the oder-one behav-
ior of Simple GA using binary tournament selection and uni-
form crossover [Harik99a]. Therefore the Compact GA can-
not absolutely replace Simple GA for all classes of problems.

sonms
627

Table 2: Performance evaluation.
Developer Optimization Performance evaluation

Problem
S. Scott Linear, quadratic, 18.8X speedup (measured in terms of clock cycles)
(HGA [Scott95]) and cubic functions (Silicon Graphics 4D/440 with four MIPS R3000 CPUs)
P. Graham TSP 10.6X speedup
(SPLASH2 [Graham95]) (125 MHz HP PA-RISC workstation)
N. Sitkoff Chip partitioning 3.0X speedup
(ARMSTRONG [Sitkoff95]) (60 MHz SPARC Model 61)
I. Kajitani Hand controller 62X speedup
(EHW chip [Kajitani98]) (200 MHz Ultra Sparc 2)
N. Yoshida Data partitioning NA
(GAP [Yoshida99])
B. Shackleford Protein folding 160X speedup
(GA Machine [Shackleford00]) (366 MHz Pentium II)

The convergence is ensured for problems consisting of tight-
ly coded, nonoverlapping building blocks. Such problems are
rarely found in real-world applications. To enhance the ability
to solve highly deceptive problems, linkage learning is inte-
grated to the Compact GA [Harik99b]. However, the linkage
learning is too complicated for hardware. We have to find an-
other algorithm that performs similar to the linkage learning
algorithm but should be simpler to implement in hardware.

An alternative is the SG-Clans algorithm [Corno98,
Corno99]. The SG-Clans algorithm is similar to Compact
GA. The only difference is in generating individual � and �.
The SG-Clans algorithm can be shown by inserting the fol-
lowing lines above the fitness calculation in Figure 1.

� = cga(build clan(�)))
� = cga(build clan(�)))

After � and � are generated according to the probability
vector �, the individual is supposed to be a forefather of a
clan. In GA literature, a clan refers to a set of strings which
has a common trait (e.g. �1010, 1110, 1011� belongs to
1*1*). A clan is denoted by a probability vector, � �. The �� is
a copy of vector � of which some ���� are randomly set to “0”
or “1” according to the forefather. The build clan proce-
dure returns �� to the cga procedure. Next, the cga performs
Compact GA on ��. Each clan is separately evolved. The cga
returns the best individual observed during the clan evolution.

We have not yet implemented the SG-Clans algorithm
in hardware. However, it can be seen that the hardware
for SG-Clans algorithm is straightforward. The cga proce-
dure is simply a duplication of hardware Compact GA. In
[Corno99], the SG-Clans algorithm is able to find the optimal
solution of Holland’s Royal Road function (default settings).
As a result, the hardware Compact GA could be extended to
solve highly deceptive problems.

6 Conclusions

This paper presented a hardware implementation for Compact
GA. The hardware Compact GA is simple but effective. The
approximate size, including two fitness evaluators, is 15,000
gates. The operating clock frequency on FPGA is 20 MHz.
For 32-bit one-max problem, the 1,000X speedup over a soft-
ware version is achieved. An alternative hardware for linkage
learning, adopted from SG-Clans algorithm, is also proposed
to solve highly deceptive problems.

7 Acknowledgements

We thank Phillip Rogaway for his helpful comments and a
lot of effort contributed to improve this paper. Chatchawit
Aporntewan is being supported by Chulalongkorn univer-
sity’s scholarship given in the occasion of the Sixth-Cycle
(��nd) Birthday Anniversary Of His Majesty King Bhumibol
Adulyadej.

Bibliography

[Bland98] Bland, I. M. and Megson, G. M. “The Systolic
Array Genetic Algorithm, An Example of Systolic
Arrays as a Reconfigurable Design Methodology,” in
Proc. of IEEE Symp. on FPGAs for Custom Comput-
ing Machines, pp. 260-261, 1998.

[Corno98] Corno, F., Reorda, M. S., and Squillero, G. “A
New Evolutionary Algorithm inspired by the Selfish
Gene Theory,” in Proc. of Int. Conf. on Evolutionary
Computation, pp. 575-580, 1998.

[Corno99] Corno, F., Reorda, M. S., and Squillero, G. “Op-
timizing Deceptive Function with the SG-Clans Al-
gorithm,” in Proc. of the Congress on Evolutionary
Computation, pp. 2190-2195, 1999.

sonms
628

[Goldberg89] Goldberg, D. E. “Genetic Algorithm in
search, optimization and machine learning,” Addison-
Wesley, 1989.

[Graham95] Graham, P. and Nelson, B. “A Hardware Ge-
netic Algorithm for the Traveling Salesman Problem
on SPLASH 2,” in Proc. of the 5th Int. Workshop
on Field Programmable Logic and Applications, pp.
352-361, 1995.

[Harik99a] Harik, G. R., Lobo, F. G., and Goldberg, D. E.
“The Compact Genetic Algorithm,” in IEEE Trans.
on Evolutionary Computation, Vol. 3, No. 4, pp. 287-
297, 1999.

[Harik99b] Harik, G. “Linkage Learning via Probabilistic
Modeling in the ECGA,” in IlliGAL Technical Report
99019, 1999.

[Hortensius89] Hortensius, P., McLeod, R., and Card, H.
“Parallel Random Number Generation for VLSI Sys-
tems using Cellular Automata,” in IEEE Trans. on
Computers, Vol. 38, No. 10, pp. 1466-1473, 1989.

[Kajitani98] Kajitani, T., Hoshino, T., Nishikawa, D., Yokoi,
H., Nakaya, S., Yamauchi, T., Inuo, T., Kajihara, N.,
Iwata, M., Keymeulen, D., and Higuchi T. “A Gate-
Level EHW Chip: Implementing GA Operations and
Reconfigurable Hardware on a Single LSI,” in Proc.
of Int. Conf. on Evolvable Systems (ICES’98), pp. 1-
12, 1998.

[Scott95] Scott, S. and Seth, A. “HGA: A Hardware-Based
Genetic Algorithm,” in Proc. of the ACM/SIGDA
Third Int. Symp. on Field-Programmable Gate Ar-
rays, pp. 53-59, 1995.

[Shackleford00] Shackleford, B., Okushi, E., Yasuda, M.,
Koizumi, H., Seo, K., Iwamoto, T., and Yasuura,
H. “An FPGA-based Genetic Algorithm Machine,”
in Proc. of the ACM/SIGDA Int. Symp. on Field-
Programmable Gate Arrays, pp. 218, 2000.

[Sitkoff95] Sitkoff, N., Wazlowski, M., Smith, A., and Sil-
verman, H. “Implementing a Genetic Algorithm on
a Parallel Custom Computing Machine,” in Proc. of
IEEE Symp. on FPGAs for Custom Computing Ma-
chines, pp. 180-187, 1995.

[Yoshida99] Yoshida, N. and Yasuoka, T. “Multi-GAP: Par-
allel and Distributed Genetic Algorithms in VLSI,” in
Proc. of Int. Conf. Systems, Man, and Cybernetics,
Vol. 5, pp. 571-576, 1999.

sonms
629

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

