
Improving the Performance of BLAST in a Memory Limited
Environment

Warin Wattanapornprom1, Natawut Nupairoj2 and Prabhas Chongstitvatana3
Department of Computer Engineering, Chulalongkorn University
Phayathai Rd., Phathumwan Bangkok 10330, THAILAND
E-Mail: warin@chula.com1, natawut@cp.eng.chula.ac.th2 and prabhas@chula.ac.th3

Abstract: BLAST has become an important tool for the research in
bioinformatics areas, since it can help scientists to make inferences about the
functions of proteins. The BLAST’s database is enormous and has been
growing every day, and this causes the lower performance of the program.
This paper presents an alternative way to improve the performance of
BLAST in a single machine by reducing the overhead of disk swapping.

Key words: BLAST, Distributed database, Parallel search, Clustering,
Memory Limited

1. Introduction
BLAST (Basic Local Alignment Search Tool) [1] is one of the most widely
used search tools, which identifies statistically significant matches between
newly sequenced segments of genetic material or proteins and databases of
known nucleotide or amino acid sequences. Such searches allow scientists to
make inferences about the structures and functions of their discoveries or to
screen new sequences for further investigation.

Although BLAST have been designed and optimized for speed, the major
drawback of BLAST is that it consumes large amount of CPU-time, memory,
and I/O. It takes a very long time to search a large number of queries in a
large database. There were attempts to reduce the searching time using many
approaches such as upgrading computer hardware, using some parallel
approach such as parallel queries search or using multiple processor
machines. Our preliminary study of BLAST indicates that BLAST’s running
time is proportional to the size of the database. BLAST shows the highest
efficiency if the whole database can be fitted in the memory. As the genome
databases are enormous and doubling in size every 1.3 years [2], it is important
to recognize the performance limitation due to the limited main memory.

To overcome this problem, we propose to separate the database into smaller
parts, which each part fits the available memory and then search each part
separately. We find that the time used for searching all separated parts is
almost equal to the time used to search the whole database with the memory

large enough to hold it. This provides us the maximum efficiency for a given
memory size.

This paper reports on our progress to design and develop the parallel system
environment for BLAST. The paper is organized as follows. In Section 2, we
begin with a preliminary experiment to the better understanding of the
behavior of BLAST and the essential knowledge to improve the performance
of the program. Then we describe the process to improve the performance
and the result of the improved system in Section 3. Section 4 concludes the
paper with status of the current prototype implementation and discussions of
some future work.

2. Background
From our preliminary study of BLAST, we find that BLAST needs high
bandwidth of the main memory. BLAST will show the highest efficiency if
the whole database can be fitted in the main memory while searching. In the
experiment, we vary the memory size while maintaining the other system
environment such as CPU or hard disk; we find that the system with memory
less than the size of the database will take longer time to process large
amount of queries while the system with excess memory will not increase the
performance of the search. This problem is called “memory-bounded
problem”, a problem in parallel processing [3].

Number of Queries Memory Size
(Megabyte)

10 50 100 500 1000

128 5 33 70 351 706

256 2 15 37 180 364

512 2 14 37 180 363

Table 1 shows the performance of BLAST at the different system environments

From the sample experiment, we use database named NR size 234 megabytes
to represent the performance of the program because this size of database can
fit into 256 megabytes of memory or higher. We can see that the performance
is improved when we use larger size of memory. But if the memory size is
too large, the system can no longer be improved. As we can see in the table 1,
the performance of BLAST at 512 megabytes of memory cannot improve the
performance from the system with 256 megabytes of memory at all.

0

100

200

300

400

500

600

700

800

10 50 100 500 1000

Number of queries

Ti
m

e
us

ed
 (M

in
)

Ram 128 MB
Ram 256 MB
Ram 512 MB

Figure 1 shows the performance of BLAST at the different system environments

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200

Number of queries

Ti
m

e
us

ed
 (M

in
)

RAM 128 MB
RAM 256 MB
RAM 512 MB

Figure 2 shows the linear performance of BLAST at the different system environments

The behavior of the searching process can be described. BLAST tries to copy
the whole database into the main memory while searching every single query
in the database. If the database is too large to fit into the main memory, the
operating system will automatically allocate the memory space by swapping

the memory contents. The disk throughput is normally much less than the
memory throughput, so the time is wasted by swapping between disk and
memory. Since the memory which can hold the whole database at running
time has to be enormous and expensive, moreover the systems that can install
large size of database are scarce, the system should be improved to solve this
problem.

We find that the database can be divided into smaller pieces. BLAST’s
database structure is simply a text file. Each database record is started with
character “>” followed by necessary fields separated by “|” and ended up
with protein or DNA sequence. The database file can be cut at the end of any
record which is just before the “>”.Output from the separated database can
also be merged by just concatenate the result of each query together.

CKLSIKRATVIYEGERVAIQNKFKNGMLHGQKVSFFCKHKEKKCSYTEDAQ
CIDGTIEIPKCFKEHSSLAFWKTDASDVKPC
> gi|129249|sp|P02820|OSTC_BOVIN OSTEOCALCIN PRECURSOR (GAMMA-
CARBOXYGLUTAMIC ACID-CONTAINING PROTEIN) (BONE GLA-
PROTEIN) (BGP)_gi|538590|pir||GEBO osteocalcin precursor -
bovine_gi|8|emb|CAA35997.1| (X51700) bone Gla precursor (100 AA) [Bos
taurus]_gi|720|emb|CAA37737.1| (X53699) Gla protein precusor [Bos taurus]

Figure 2 shows an example of the BLAST’s database records

3. Performance Improvement
The system performance is hypothetically better if the database size is fitted
the memory size while searching. To avoid the overhead caused by swapping,
we propose steps to reduce the time to search a large number of sequence
queries as follows.

1. Preprocessing – separate the database into smaller parts to be
able to fit in the memory (the size should be almost similar to the
available memory) then create index files for each of the.

2. Processing – Search all queries in each of the splited database
parts.

3. Postprocessing – Concatenate the output.

We proof this hypothesis by separate the database into different sizes which
are small enough to fit in the main memory then process all queries and
concatenate the output together. The experiment is carried out in one machine
to eliminate the overhead of communication between machines. The total
time is the sum of all processing time in each separated databases and
postprocessing time. The preprocessing time is not counted because the
preprocessing is done only once before processing any query.

∑
=

+=
n

i
postitotal ttt

1

Where
 = Total time used. totalt
 = Time to concatenate all output. postt
 = Time to process database part i. it
 n = Number of separated databases.

No. of
separated
Database

Database
Part No.

Database
size

(Megabyte)

Time
used
(min)

Time used
to

concatenate
(min)

Total time
used
(min)

1 1 234 70 0 70

1 109 17 2
2 125 20

1 38

1 100 16

2 100 15 3

3 34 3

1.5 38.5

Table 2 shows the performance of BLAST at various numbers of separated databases.

The experiment is done with the same database in the section 2. We separate
the database into different sizes and process the same 100 of queries at the
fixed memory size at 128 megabytes. We can see that no matter how many
parts the database is separated, if each part of the database fits the memory,
the time used to process all of them will equal to the time used to process the
original database in the environment which memory can contain the whole
database at runtime. The time used to concatenate the output depends on
number of separated databases because the more output file will need more
time to concatenate. The performance of the proposed method can be
measured using “speedup”. Speedup is the ratio of the normal execution time
to the improved execution time. In our experiment, the speedup of the
improved system is the total time used in an improved system divided by the
time used in a single database search which is 70/38 = 1.84 times faster.

The results show that the time used to search through the separated databases
at the limited memory size is equal to the time used to search in the
environment that memory size is large enough to hold the whole database. In
fact, there are some overhead in merging the outputs which depend on the
search result and the number of separated databases. The overhead is less
than a minute in this case and will take longer time depends on the pieces of
the separated database.

4. Conclusions and Future work
In this paper, we have studied the main factor which slowdowns the
searching process of BLAST and have found the way to solve this problem.
Since BLAST’s databases are enormous and have been growing larger every
year and main memory cannot hold the whole database at running time, so
the overheads are generated by swapping of the memory contents. We
propose to separate the database to be able to fit the available memory and
search through each database part separately. This provides us the maximum
efficiency for a given memory size. Form the results of our experiments,
BLAST shows that the performance can be doubled when we apply our
technique. However, the improvement can be varied depended on the
database size, the disk speed and the size of memory. Our proposed steps are
not only enabling BLAST to search through the whole database at the peak
performance, but also reducing the access time. The access time of the disk
is reduced due to the smaller database fits in the given memory and requires
no disk swapping.

We plan to expand our studies to apply our techniques to improve the
performance of the searching on the clustered computers by distributing each
database part to each of the clustering node and performing the search in
parallel, and we expect even greater performance improvement. We are in the
process of designing an optimized system at different number of processors
to maximize the performance of the system.

5. References
[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J.

“Basic local alignment search tool” Journal of Molecular Biolog.
215:403-410. (1990)

[2] Chi E.H., Shoop E., Carlis J., Retzel E., Riedl J,“Efficiency of Shared-
Memory Multiprocessors for a Genetic Sequence Similarity Search
Algorithm” (1997)

[3] Xian-He S, “Scalable Problems and Memory-Bounded Speedup”
Journal of Parallel and Distributed Computing (1993)

