
The Art of Instruction Set Design

Prabhas Chongstitvatana
Department of computer engineering

Chulalongkorn University
Phayathai Road, Bangkok 10330, Thailand

E-mail: prabhas@chula.ac.th

Abstract

I will argue in this work that because of the
flexibility offered by the field programmable devices,
such as FPGA, the instruction set design becomes an
essential part of designing digital systems of the future.
There are advantages to experiment with micro-
architecture and instruction set design to fit various
applications. I will illustrate by a series of evolution of
instruction set design for mobile devices. Driven by the
mobile code requirement, the instruction set and micro-
architecture of various alternatives are evaluated and
compared. Some of the latest ideas will be described,
including the evaluation of a proposed instruction set
plus its micro-architecture.

Keywords: instruction set, code compression, mobile
devices, stack machines.

1. Introduction

As PC becomes ubiquitous, the computing
platform are becoming uniform. Only a few designs
dominate the market for microprocessor chips. The
present instruction set architecture (ISA) for common
platforms are converged, there are not much differences
between leading instruction set architectures. The
conclusion seems to be that the instruction set design is
not an active area of research.

Embedded systems are emerging as a major driving force
for computing devices. The much larger volume of
demand makes embedded systems a dominant factor in
industries. However, the market force reduces the
number of developers of new processors and new
instruction set. Therefore, the platforms and their
instruction sets are converged. Conclusion, the
instruction set design is not an active area of research.

Contrary to the above views, I would like to present a
different view. As programmable devices, such as the
field programmable gate array (FPGA) devices, become
popular, it enables a designer to innovate with new
instruction sets. There are advantages to experiment with
micro-architecture and instruction set design to fit
various applications. These alternatives can offer many
advantages such as application specific performance, the
small code size, the reduction of chip resources, the
custom made functionality etc. So, it is the aim of this
work to try to convince the reader that the instruction set

design and the special purpose micro-architecture is
still an interesting and worthwhile area for research.

In the last decade the progress of microprocessor
design has been phenomenal. Performance rises
according to Moore's law. The performance is double
every 18 months. Performance is the key driving force
for the progress of the last decade. However, the new
applications have shifted the design landscape once
again to low power, portable devices [1]. The
technology for implementing computational devices in
small batch with fast turnaround time has opened up
the issue of ISA design.

One example of the emerging trend is the mobile code
[2]. In the server-client model, the server ships an
executable code to the client to be executed there. The
portability is the primary goal, that the mobile code is
independent of the client platforms. The compactness
of code is the secondary goal, to reduce the time for
transporting the mobile code through the network and
to reduce the storage requirement on the client devices.

I will illustrate through a series of evolution of
instruction set architecture, what is achievable to meet
different requirements by adapting the instruction set
and micro-architecture. To reduce the confusion of the
use of term "instruction set" which is used to mean both
the virtual machine instruction set and the hardware
level instruction set, I define instruction set to be
instructions that can be directly executed on the
hardware. The purpose of an instruction set is to be the
interface between applications written in a high-level
language and the actual processor.

2. Base instruction set

I will start with one instruction set which begins
its life as a virtual machine. R1 [3] is a simple
language which provides concurrency control,
protection of shared resources, interprocess
communication and real-time facilities. This language
is designed for programming embedded applications.
R1 instruction set is stack-based and byte-coded. The
table below shows R1 instruction set with the following
format: [instruction #argument] meaning.

Notation: CS code segment, DS data segment, SS stack
segment. Both data segment and stack segment resided
in the same address space and can be denoted by M.

Local variables are accessed through FP, the frame
pointer, denotes the pointer to the activation record. IP
denotes the instruction pointer.

Table 1 R1 instruction set

[Literal #n] push(n)
[Lvalueg #ref] push(ref)
[Lvalue #i] push(FP-i)
[Rvalueg #ref] push(DS[ref])
[Rvalue #i] push(SS[FP-i])
[Fetch] push(M[pop])
[Set] M[pop1] = pop2
[Index] push(base_ads + index)
[Jmp #ads] IP = ads
[Jz #ads] if pop = 0 then IP = ads
[Call #ads] push(IP), IP = ads
[Func #nparam #nlocal] function call
[Proc #pid #npara #nlocal] create new process
[Ret0] remove stack frame, restore state
[Ret1] similar to Ret0 but return a value
[Stop] terminate the process
[Aop] push (pop1 Aop pop2)
[Lop] push (pop1 Lop pop2)
[Uop] push (Uop pop)
Aop (arithmetic operators): Add, Sub, Mul, Div.
Lop (logical operators): Lt, Le, Eq, Ne, Ge, Gt, And, Or.
Uop (unary operators): Minus, Not.
[Send] send message
[Receive] receive message
[Wait #sem] wait on semaphore
[Signal #sem] signal semaphore
[gettime] store system time to address
[delay] send a timer
[tmwait] wait with time-out
[tmsend] send with time-out
[tmreceive] receive with time-out

It is worth noticing that all real-time facilities are
provided in the instruction set. This instruction set is a
minimalist style, only 39 instructions are necessary to
support the requirement of the source language. The use
of stack-based instruction simplifies the addressing
mode. R1 is an instruction set for a virtual machine. It is
implemented as an interpreter running on a target device.
However, this is not necessary the only way to realize an
instruction set. Currently, we have created a direct
realization of this instruction set in the actual hardware.
The prototype, with 16-bit data path and omitted the real-
time facilities, can be synthesised on a 20,000 gates field
programmable gate array (FPGA) device running 20-40
MHz.

3. Extended code

To improve the performance of the base
instruction set, some new instructions are added. In [4],
some sequence of byte-codes can be represented by a
shorter code which can be executed faster. The
benchmark programs are profiled and the most frequently
used sequences are collected (see Table 2)

We classified these sequences into 4 classes :
1. increment, decrement and combined operators (such

as "+=" in C language).

2. array access
3. assignment
4. flow control

Table 2 The most frequently used sequences

byte-code sequence correspond to
lval a, rval a, lit 1, plus, set. a = a + 1;
lval b, lvalg c, ... , index, ... b = c[..] ...
lvalg c, ... , index, ... c[..] = ...
lval a, lit 0, set a = 0;
lvalg c, ..., index, lit 0, set c[..] = 0;
lval a, rval a, exp, plus, set a = a + exp;
lvalg c,..,index,lvalg c,..,index,
fetch,..,plus set

c[n] = c[n] + ...

rval a, rval b, EQ, Jz if (a == b)
rval a, lit 0, EQ, Jz if (a == 0)
lvalg c, ..., index, rval b, LE, Jz if (c[..] <= b)
rval a, rval b, LT, Jz while (a < b)

Corresponding to these sequence of codes, a number of
extended byte-codes are designed. Totally 21
instructions are added to the instruction set. Table 3
shows the extended codes. The experiment shows that
this technique yields 25% - 120% speedup (means it is
faster as much as 2.2 times as before the optimisation)
with 10% - 30% code size reduction (varies across the
benchmark programs).

Table 3 Extended code

extended code for the sequence
inc v (dec v) lval v, rval v, lit 1, plus, set.
addset a lval a, rval a, exp, plus, set.
set-var a lval a, ... set.
set-0 a lval a, lit 0, set
EQjz a b $1 rval a, rval b, EQ, jz $1
Jnz a $1 rval a, lit 0, EQ, jz $1
LEjz a b $1 rval a, rval b, LE, jz $1
LTjz a b $1 rval a, rval b, LT, jz $1

4. Register-based instruction set

In contrast to the stack-based instruction, the
register-based instruction set has dominated the
landscape of instruction set design in the last decade.
In [5] we compared the stack-based instruction with the
register-based instruction set. The work intended for
the virtual machine implementation of the instruction
set. We observed that for a stack-based machine the
performance limit of the interpreter is likely to be the
fetch-limit, i.e. the time spending on fetching and
decoding an instruction. To improve the performance
the number of executed instruction should be reduced.
This can be achieved by designing an instruction set
that each instruction performs as much work as
possible.

To achieve this goal, a register-based instruction set
(RVM) is designed. In the register-based architecture
an instruction has access to a number of operands in the

registers instead of limit to the access to the stack. The
registers can be accessed randomly unlike the stack.

The RVM is a 3-operand register machine. It is a load-
store architecture with 32 registers. The operand in the
opcode can be accessed using 5 addressing modes: (1)
absolute, (2) intermediate, (3) base/index, (4)
base/displacement and (5) register deferred. The RVM
has 17 simple instructions. All of the instructions
support only 32-bit word data type. The instructions are
encoded using 32-bit fixed length encoding. Figure 1
shows the RVM instruction set.

op:5 mod:2 rd:5 rs1:5 rs2:5 ud:10
op:5 mod:2 rd:5 rs1:5 imm:15
op:5 mod:2 rd:5 ads:20
op:5 mod:2 rd:5 rb:5 disp:15
op:5 mod:2 rd:5 rb:5 rx:5 ud:10

Data transfer: LOAD, STORE, LOADI, SAVE, RSTO.
Control flow: CALL, JUMP, HALT
Alu op: ADD, SUB, AND, OR, XOR, SHIFT, MUL, DIV.
Others: SAVE, RSTO save and restore value of registers

Figure 1 RVM instruction set. rd = destination register,
rs = source register, rb = base register, rx = index
register, imm = immediate value, ads = address, disp =
displacement, ud = undefined.

RVM is designed to minimise the dynamic instruction
count. Using the similar benchmark suite to the R1
extended code experiment, the experiment shows that
RVM has reduced the instruction count 35 - 60%
compared to stack-based instruction set, accordingly, the
performance of RVM is is 1.5 to 2 times faster than the
stack-based virtual machine interpreter. The RVM is
realizable as a hardware-level instruction set as it can be
mapped directly to almost any 3-operand ISA that exists
today.

5. Code compression

The other requirement of mobile devices is the
compact code size. Reducing the size of machine code
has benefit in two aspects. The first one is obvious in
reducing the storage requirement, both in code segment
and in instruction cache memory. This is often the
reason behind many classic instruction set architecture,
to achieve very compact executable code. The second
one is related to power requirement. As the instruction
bandwidth is reduced, the power consumption is also
reduced [6, 7].

How to make the program as small as possible? In [8] we
proposed a method, called "nibble coding", compresses
two instructions into one byte. The experiment is carried
out to compare conventional byte-code instruction and a
typical 32-bit machine code with the nibble coding. The
result shows the proposed scheme achieves a smaller
instruction bandwidth than a byte-code virtual machine
and is much smaller than the conventional executable

machine code. The reduction is 50% and 57% of static
and dynamic code size. In other words, using the static
code size is half of the normal code and the dynamic
code size is less than half of the normal code.

The method to pack instructions into a smaller space is
based on the following techniques:
1. Extended instruction, making a special instruction

that replace several simple instructions.
2. Specialization, eliminate arguments by making an

instruction special to a particular argument thus
reduce the size of instruction.

3. Reduce the size of arguments, by using a literal
table that stores a number of full-size arguments.
The argument of the instruction can be replaced by
the index into this table. The index is much
smaller than full-range of argument as there are
small finite number of different variables in a
program.

4. Packing two instructions into one instruction, this
technique is called "nibble coding".

We also investigate the use of nibble coding technique
with Java byte-code based on a subset of JVM [9]. The
details of the technique and the results are reported in
[10]. The nibble code format is shown in Figure 2.

normal and extended
0|op:7 zero argument
0|op:7 a2:8 local: get, put, inc, dec
0|op:5|a1:2 a2:8 jmps, call, ld, st

nibble
1|op1:3|op2:4 zero argument
1|op1:3|op2:4 a2:8 one argument

Figure 2 Instruction encoding of the nibble code.

6. Concern with micro-architecture

With byte-coded instruction set, the data path is
simplified, the complexity is shifted to the control unit.
I draw an example from the micro-architecture of the
prototype 16-bit stack-based processor. The high level
description language for this chip is only 5 pages long
but the control unit is 22 pages long!

The choice of instruction set for a stack machine has a
close relationship to a high level language. The
"semantic gap" between its machine language and a
high level language is narrow. One can almost write a
stack machine language directly from a high level
language source program. The higher semantic content,
especially on the function call and parameter passing,
helps to simplify the task of programming. See the
following example:

to sum a b | s = //sum from a to b, s is a local
 s = 0
 while a <= b
 s = s + a
 a = a + 1

to main =
 print sum 1 10

can be written in a machine code for our stack machine
as follows:

:sum
lit 0, put s,
:loop
get a, get b, <=, jF exit, get s, get a, +, put s, get a,
lit 1, +, put a, jmp loop
:exit
get s, retv

:main
lit 1, lit 10, call sum, call print
end

7. Current work

The R1 extended code and RVM are comparable
in term of performance. To investigate the issue of
performance improvement further we are experimenting
with a stack-based register machine (SR).

A stack-based instruction set relies on an evaluation
stack to store arguments and intermediate values. For
local variables, an activation record is used to give direct
access to local variables. Because a stack has only one
port to access it, and because the stack is implemented in
the memory, it slows down the computation. If registers
are used in places of the activation record to store local
variables, and the instruction set can access to these
registers directly, it will not be necessary to use a stack.
However, the registers used in the callee must be saved
and restored. The activation record has advantage that
local variables need not to be saved and restored as the
creation and deletion of the activation record occurs
naturally on call/return of functions. Combining storing
local variables in registers and last-in-first-out (LIFO)
behaviour of activation records is the stack-based register
machine.

7.1 How it can be accomplished?

To access a variable in an activation record, a
frame pointer is needed. The access to a local variable is
indexed by an offset from this frame pointer. To enable
registers to have this behaviour, there must be a "register
renaming" mechanism. With register renaming, all
register indexing is relative to a "frame pointer". The
register bank can be implemented as a circular buffer.
The visible registers set are finite and are stored in the
buffer. When the buffer is full it can be spilled into the
memory, and vice versa for the underflow of buffer.
Hence, the "stack segment" is in the memory with the
front of the segment cached in the register buffer.

7.2 SR Instruction Set

The instruction set becomes similar to a 3-operand
register instruction set. From a programmer's point of
view, this is a register machine with the twist that no

registers need to be saved/restored on call/return. The
activation record creation/deletion is done in hardware
and also the spilling/pulling between registers-memory
is done transparently to the programmer. Because all
local variable accesses are to registers it is fast.
Occasionally, spill/pull to memory is necessary but by
amortized analysis, it should be a net win (reducing the
number of memory access). Figure 3 shows SR
instruction set. All instructions are 32-bit, fixed length.

op:6 r1:5 r2:5 r3:5 xop:11 (register)
op:6 r1:5 r2:5 imm:16 (immediate)
op:6 r1:5 ads:21 (absolute)
op:6 lads:26 (long)

addressing mode mnemonics meaning
absolute ld r1 ads r1 = M[ads]
displacement ld r1 @disp r2 r1 = M[disp + r2]
index ld r1 +r2 r3 r1 = M[r2 + r3]

Figure 3 SR instructions set

7.3 Register renaming

The size of register bank is determined by the
amount of resources. To implement "register
windowing", the register buffer is used. The register
buffer must be larger than this size so that more than
one activation record can be resided in the buffer. A
register FP is a rename register. FP is similar to a
frame pointer. The mapping of a register name to the
actual register is:
 rn = R[FP + n]
where R[.] is the register bank. The width of FP is
lg(size of register bank), 8 bits for a 256-register buffer.

7.4 Register spilling

When the register buffer is full, to get more
registers, the older registers are spilled into the
memory. Allocating more registers occur at the
function call to create an activation record. At the
return from a call, the activation record is deleted. An
underflow of register deallocation can occurs. The
value of registers will be pulled from the memory.

The size of register bank is the amount of register a
programmer will see (determine by the number of bit of
register addressing, 5 bits is 32 registers). The size of
the buffer is determined by the resource of a processor
(for example, 256 registers). The register buffer is
implemented as a circular LIFO list. There are two
pointers: F (Front), B (Back). F and B always point to
the existing elements in the list. Initially F = B = 0.
Let n denotes the size of the register buffer, m denotes
the request for allocating new register for a new
activation record.

The following invariance holds:

F' = (F + n) mod n = F

If the request for m registers occurs, the allocation will
be:

 F' = F
 F = (F + m) mod n
 return F'

F' points to the beginning of the newly allocated block.
And vice versa for freeing m registers:

 F’ = (F - m) mod n

When an overflow occurs the oldest block is saved to the
memory.

F' = (F + m) mod n

if F < B then ovf = (F' < F) or (F' >= B)
else ovf = (F' < F) and (F' >= B)

and vice versa for underflow.

F' = (F - m) mod n

if F < B then udf = (F' > F) and (F' < B)
else udf = (F' > F) or (F' < B)

Example the previous sum(a,b) program can be written in
SR:

:sum
mv i #1, mv s #0
:while
jgt i s exit, add s s i, add i i #1, jmp while
:exit

It is 6 instructions and only 4 instructions are in the loop.
Compare this to the R1 instructions, the number of
instructions executed is less than half.

7.5 Experimental results
The following benchmark programs are used:

bubble sort 20 items
hanoi move 6 disks
matmul multiply two 8x8 matrices
perm permuting 4 digits of 0,1,2,3
queen all solutions of 8-queen
quick sort 20 items
sieve find all primes <= 500

Comparing the number of executed instructions between
R1 and SR shows that the reduction in the number of
executed instruction of SR over R1 is 50% - 80%. In
other words, SR executed 2 times to 5 times less
instruction than R1. This result agrees with the previous
result [5] that the register-based instruction reduces the
number of executed instruction 35% - 60%. (see Table
4)

Table 4 Comparison of the number of executed
instructions between R1 and SR

 R1 SR SR/R1
bubble 13879 4621 0.33
hanoi 2631 1313 0.50
matmul 20608 7109 0.34
perm 6514 2030 0.31
queen 753261 282458 0.37
quick 3522 851 0.24
sieve 18665 3744 0.20

0.00

0.20

0.40

0.60

0.80

1.00

bubble hanoi matmul perm queen quick sieve

Figure 4 The reduction of the number of executed
instruction SR over R1

The effectiveness of using the register buffer is
measured in Table 5. The figures show that the number
of access to the memory (in term of accessing the
activation record) is greatly reduced. In all cases, it is
reduced to zero using the register buffer size of 128 for
this benchmark (the benchmark is not a realistic one
because the size is too small). Please remember that for
any implementation of stack, there will be some
spilling to the memory because the depth of call is
determined at run-time. One can compares this scheme
of register buffering with the compile time
saving/restoring registers to an internal (on chip) stack.

Table 5 The number of register spilling.

buffer size 16 32 64 128
bubble 0 0 0 0
hanoi 98 16 0 0
matmul 0 0 0 0
perm 26 0 0 0
queen 17991 10437 2507 0
quick 70 43 11 0
sieve 0 0 0 0

8. Related work

There are volume of work on customised
instruction set for specific applications for example [11,
12] including using programmable gate array for
realizing these instruction set embedded in an ordinary
processor [13]. The flexibility of customizing
instruction set for specific applications has been
commercialized by a number of companies for example
Xtensa [14]. For multimedia work load the most well-

known is MMX instruction from Intel [15]. These are
aimed for high performance. Portability issue is
investigated in [16]. The object code is a highly
compact, architecture-neutral intermediate program
representation which is used to generate native code of
high quality on-the-fly. Many works investigate the code
compression, aiming to reduce the size of executable
code [17 ,18]. For example, Pugh [19] achieved
compressing of Java classfiles by a factor of 2 to 5. The
proposed stack-based register machine is reminiscent of
PicoJava chip [20].

9. Conclusion and future work

It has been illustrated in this work, that the
instruction set design is a vital part for future generation
of hardware devices. The flexibility offered by the field
programmable devices allows designers to explore a
different architectural landscape. Low power design is
currently one of the most active research in the processor
design and implementation. There are many indicators
that the instruction set design has a role to play in this
area [21, 22]. Future processors will be totally different
from what we know today. We have proposed one
design in which the flexibility of programmable devices
is exploited. By time-multiplexing the circuits into a
limited resource, high performance can be achieved at
the same time as conversing resources and energy [23]. I
think we are now in the age of energy-aware computing.
Anybody wants to design a processor that adapt itself to
the amount of available energy?

References
[1] C. Kozyrakis and D. Patterson, "A new direction for

computer architecture research", IEEE computer,
Nov. 1998, pp.24-32.

[2] M. Franz, "Code-Generation On-the-Fly: A Key to
Portable Software", Doctoral Dissertation No. 10497,
ETH Zurich; published by Verlag der Fachvereine,
Zurich, ISBN 3-7281-2115-0; March 1994.

[3] P. Chongstitvatana, "A multitasking environment for
real-time control", The Engineering Research Fund,
Faculty of Engineering, Chulalongkorn University,
research project number 132-MRD-2537.
http://www.cp.eng.chula.ac.th/faculty/pjw/r1/

[4] P. Chongstitvatana, "Post processing optimization of
byte-code instructions by extension of its virtual
machine", Conf. of Electrical Engineering, Bangkok,
1997.

[5] C. Wongsiriprasert, P. Chongstitvatana,
"Performance comparison between two virtual
machine interpreters: stack-based vs. register-based",
Proc. of 3rd Annual National Symposium on
Computational Science and Engineering, Bangkok,
1999, pp. 401-406.

[6] R. Gonzalez, "Low-power processor design",
Technical Report No. CSL-TR-97-726, June 1997,
Computer Systems Laboratory Departments of
Electrical Engineering and Computer Science,
Stanford University.

[7] R. Krishnamurthy, "Mixed Swing Techniques for
Low Energy/Operation Datapath Circuits", Ph.D.
thesis, Electrical and Computer Engineering,
Carnegie Mellon University, December 1997.

[8] P. Chongstitvatana and V. Kotrajaras, "Instruction
compression by nibble coding: war on the old
front", IEEE Thailand section: Silver Jubilee
Symposium, 15 Nov 2002.

[9] B. Joy (Ed), G. Steele, J. Gosling, G. Bracha,
Java(TM) Language Specification (2nd Ed),
Addison Wesley Pub., 2000.

[10] V. Kotrajaras, P. Chongstitvatana, "Nibbling Java
byte code for resource-critical devices", National
Conf. of Computer Science and Engineering, 2003.

[11] R. Leupers and J. Elste and B. Landwehr,
"Generation of interpretive and compiled
instruction set simulators", Proc. of the Asia and
South Pacific Design Automation Conference, Jan.
1999.

[12] S. Pees, A. Hoffmann, V. Zivojnovic and H. Meyr,
"LISA - Machine Description Language for Cycle-
Accurate Models of Programmable DSP
Architectures", Design Automation Conference,
1999, pp. 933-938.

[13] T. Glokler and S. Bitterlich, "Power Efficient
Semi-Automatic Instruction Encoding For
Application Specific Instruction Set Processors",
ICASSP, 1999.

[14] R. Gonzalez, "Xtensa: a configurable and
extensible processor", IEEE Micro, March/April
2000, p.60

[15] MMX technology, http://developer.intel.com
[16] M. Franz and T. Kistler, "Slim binaries", Comm.

of the ACM, vol.40 no. 12, Dec. 1997, pp.87-94.
[17] W. Evans and C. Fraser, "Bytecode Compression

via Profiled Grammar Rewriting", in ACM Sigplan
Conference on Programming Language Design and
Implementation, 2001, pp.148-155.

[18] H. Lekatsas, J. Henkel, W. Wolf, "Code
Compression for Low Power Embedded System
Design", Proc. of the 37th Conf. on Design
automation, 2000.

[19] W. Pugh, "Compressing java classfiles", In ACM
SIGPLAN Conference on Programming Language
Design and Implementation, 1999, pp.247-258.

[20] H. McGhan and M. O'Conner, "PicoJava : a direct
execution engine for Java bytecode", IEEE
Computer, Vol.31 No. 10, 1998.

[21] D. Kirovski, C. Lee, M. Potkonjak, W. Mangione-
Smith, "Synthesis of Power Efficient Systems-on-
Silicon", Asia and South Pacific Design
Automation Conference, 1998, pp.557-562.

[22] T. Burd and R. Brodersen, "Processor design for
portable systems", Journal of VLSI Signal
Processing, 13(2/3):203-222, August 1996.

[23] K. Piromsopa, P. Bavonparadon, P.
Chongstitvatana, "Hardware multiplexing: towards
a resource efficient reconfigurable processor", 3rd
Inter. Symposium on Communications and
Information Technologies, Thailand, 2003.

