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Abstract 

I will argue in this work that because of the 
flexibility offered by the field programmable devices, 
such as FPGA, the instruction set design becomes an 
essential part of designing digital systems of the future.  
There are advantages to experiment with micro-
architecture and instruction set design to fit various 
applications.  I will illustrate by a series of evolution of 
instruction set design for mobile devices.  Driven by the 
mobile code requirement, the instruction set and micro-
architecture of various alternatives are evaluated and 
compared.  Some of the latest ideas will be described, 
including the evaluation of a proposed instruction set 
plus its micro-architecture. 
   
Keywords:  instruction set, code compression, mobile 
devices, stack machines. 
 
1. Introduction 

As PC becomes ubiquitous, the computing 
platform are becoming uniform. Only a few designs 
dominate the market for microprocessor chips.  The 
present instruction set architecture (ISA) for common 
platforms are converged, there are not much differences 
between leading instruction set architectures.  The 
conclusion seems to be that the instruction set design is 
not an active area of research.   
 
Embedded systems are emerging as a major driving force 
for computing devices.  The much larger volume of 
demand makes embedded systems a dominant factor in 
industries.  However, the market force reduces the 
number of developers of new processors and new 
instruction set.  Therefore, the platforms and their 
instruction sets are converged.  Conclusion, the 
instruction set design is not an active area of research. 
 
Contrary to the above views, I would like to present a 
different view. As programmable devices, such as the 
field programmable gate array (FPGA) devices, become 
popular, it enables a designer to innovate with new 
instruction sets.  There are advantages to experiment with 
micro-architecture and instruction set design to fit 
various applications.  These alternatives can offer many 
advantages such as application specific performance, the 
small code size, the reduction of chip resources, the 
custom made functionality etc.  So, it is the aim of this 
work to try to convince the reader that the instruction set 

design and the special purpose micro-architecture is 
still an interesting and worthwhile area for research. 
 
In the last decade the progress of microprocessor 
design has been phenomenal.  Performance rises 
according to Moore's law.  The performance is double 
every 18 months.  Performance is the key driving force 
for the progress of the last decade.  However, the new 
applications have shifted the design landscape once 
again to low power, portable devices [1].  The 
technology for implementing computational devices in 
small batch with fast turnaround time has opened up 
the issue of ISA design.   
 
One example of the emerging trend is the mobile code 
[2].  In the server-client model, the server ships an 
executable code to the client to be executed there.  The 
portability is the primary goal, that the mobile code is 
independent of the client platforms.  The compactness 
of code is the secondary goal, to reduce the time for 
transporting the mobile code through the network and 
to reduce the storage requirement on the client devices.   
 
I will illustrate through a series of evolution of 
instruction set architecture, what is achievable to meet 
different requirements by adapting the instruction set 
and micro-architecture.  To reduce the confusion of the 
use of term "instruction set" which is used to mean both 
the virtual machine instruction set and the hardware 
level instruction set, I define instruction set to be 
instructions that can be directly executed on the 
hardware.  The purpose of an instruction set is to be the 
interface between applications written in a high-level 
language and the actual processor.   
 
2. Base instruction set 

I will start with one instruction set which begins 
its life as a virtual machine.  R1 [3] is a simple 
language which provides concurrency control, 
protection of shared resources, interprocess 
communication and real-time facilities.  This language 
is designed for programming embedded applications.  
R1 instruction set is stack-based and byte-coded.  The 
table below shows R1 instruction set with the following 
format: [instruction #argument]  meaning. 
 
Notation: CS code segment, DS data segment, SS stack 
segment. Both data segment and stack segment resided 
in the same address space and can be denoted by M.  



Local variables are accessed through FP, the frame 
pointer, denotes the pointer to the activation record. IP 
denotes the instruction pointer. 
 
Table 1  R1 instruction set 
 
[Literal #n ] push( n ) 
[Lvalueg #ref ] push( ref )    
[Lvalue #i ]           push( FP-i )  
[Rvalueg #ref ]  push( DS[ref] )   
[Rvalue #i ]  push( SS[FP-i] ) 
[Fetch]  push( M[ pop ] ) 
[Set]  M[ pop1 ] = pop2   
[Index]  push( base_ads + index ) 
[Jmp #ads ] IP = ads 
[Jz #ads ]  if pop = 0 then IP = ads 
[Call #ads ] push( IP ), IP = ads 
[Func #nparam #nlocal ]      function call  
[Proc #pid #npara #nlocal]   create new process 
[Ret0]  remove stack frame, restore state 
[Ret1]  similar to Ret0 but return a value 
[Stop]  terminate the process 
[Aop]  push ( pop1 Aop pop2 )  
[Lop]  push ( pop1 Lop pop2 )   
[Uop]  push ( Uop pop )   
Aop (arithmetic operators): Add, Sub, Mul, Div. 
Lop (logical operators): Lt, Le, Eq, Ne, Ge, Gt, And, Or. 
Uop (unary operators): Minus, Not. 
[Send ]  send message  
[Receive ]  receive message 
[Wait #sem] wait on semaphore 
[Signal #sem ]  signal semaphore 
[gettime] store system time to address 
[delay ]  send a timer  
[tmwait]  wait with time-out  
[tmsend]                 send with time-out     
[tmreceive]  receive with time-out  
 
 
It is worth noticing that all real-time facilities are 
provided in the instruction set.  This instruction set is a 
minimalist style, only 39 instructions are necessary to 
support the requirement of the source language.  The use 
of stack-based instruction simplifies the addressing 
mode.  R1 is an instruction set for a virtual machine.  It is 
implemented as an interpreter running on a target device.  
However, this is not necessary the only way to realize an 
instruction set.  Currently, we have created a direct 
realization of this instruction set in the actual hardware.  
The prototype, with 16-bit data path and omitted the real-
time facilities, can be synthesised on a 20,000 gates field 
programmable gate array (FPGA) device running 20-40 
MHz.   
 
3. Extended code 

To improve the performance of the base 
instruction set, some new instructions are added.  In [4], 
some sequence of byte-codes can be represented by a 
shorter code which can be executed faster.  The 
benchmark programs are profiled and the most frequently 
used sequences are collected (see Table 2) 
 
We classified these sequences into 4 classes : 
1. increment, decrement and combined operators (such 

as "+=" in C language). 

2. array access 
3. assignment 
4. flow control 
 
Table 2  The most frequently used sequences 
 

byte-code sequence correspond to 
lval a, rval a, lit 1, plus, set.    a = a + 1;  
lval b, lvalg c, ... , index, ...     b = c[..] ...  
lvalg c, ... , index, ... c[..] = ...  
lval a, lit 0, set a = 0; 
lvalg c, ..., index, lit 0, set  c[..] = 0;  
lval a, rval a, exp, plus, set  a = a + exp;  
lvalg c,..,index,lvalg c,..,index, 
fetch,..,plus set 

c[n] = c[n] + ...  

rval a, rval b, EQ, Jz if ( a == b )  
rval a, lit 0, EQ, Jz if ( a == 0 )  
lvalg c, ..., index, rval b, LE, Jz if ( c[..] <= b )  
rval a, rval b, LT, Jz while ( a < b )  

  
Corresponding to these sequence of codes, a number of 
extended byte-codes are designed. Totally 21 
instructions are added to the instruction set. Table 3 
shows the extended codes. The experiment shows that 
this technique yields 25% - 120% speedup (means it is 
faster as much as 2.2 times as before the optimisation) 
with 10% - 30% code size reduction (varies across the 
benchmark programs).    
 
Table 3 Extended code 
 

extended code  for the sequence 
inc v (dec v) lval v, rval v, lit 1, plus, set.  
addset a lval a, rval a, exp, plus, set.  
set-var a lval a, ... set. 
set-0 a  lval a, lit 0, set  
EQjz a b $1  rval a, rval b, EQ, jz $1   
Jnz a $1 rval a, lit 0, EQ, jz $1  
LEjz a b $1 rval a, rval b, LE, jz $1 
LTjz a b $1 rval a, rval b, LT, jz $1  

 
4. Register-based instruction set 

In contrast to the stack-based instruction, the 
register-based instruction set has dominated the 
landscape of instruction set design in the last decade.  
In [5] we compared the stack-based instruction with the 
register-based instruction set.  The work intended for 
the virtual machine implementation of the instruction 
set.  We observed that for a stack-based machine the 
performance limit of the interpreter is likely to be the 
fetch-limit, i.e. the time spending on fetching and 
decoding an instruction.  To improve the performance 
the number of executed instruction should be reduced.  
This can be achieved by designing an instruction set 
that each instruction performs as much work as 
possible.  
 
To achieve this goal, a register-based instruction set 
(RVM) is designed.  In the register-based architecture 
an instruction has access to a number of operands in the 



registers instead of limit to the access to the stack.  The 
registers can be accessed randomly unlike the stack.   
 
The RVM is a 3-operand register machine.  It is a  load-
store architecture with 32 registers.  The operand in the 
opcode can be accessed using 5 addressing modes:  (1) 
absolute,  (2) intermediate,  (3) base/index, (4) 
base/displacement and  (5) register deferred.  The RVM 
has 17 simple instructions.  All of the instructions 
support only 32-bit word data type. The instructions are 
encoded using 32-bit fixed length encoding.  Figure 1 
shows the RVM instruction set. 
 
op:5 mod:2 rd:5 rs1:5 rs2:5 ud:10 
op:5 mod:2 rd:5 rs1:5 imm:15 
op:5 mod:2 rd:5 ads:20 
op:5 mod:2 rd:5 rb:5  disp:15 
op:5 mod:2 rd:5 rb:5 rx:5 ud:10 
 
Data transfer: LOAD, STORE, LOADI, SAVE, RSTO.  
Control flow: CALL, JUMP, HALT   
Alu op: ADD, SUB, AND, OR, XOR, SHIFT, MUL, DIV.  
Others: SAVE, RSTO save and restore value of registers 
 
Figure 1   RVM instruction set. rd = destination register, 
rs = source register, rb = base register, rx = index 
register, imm = immediate value, ads = address, disp = 
displacement, ud = undefined. 
 
RVM is designed to minimise the dynamic instruction 
count.  Using the similar benchmark suite to the R1 
extended code experiment, the experiment shows that 
RVM has reduced the instruction count 35 - 60% 
compared to stack-based instruction set, accordingly, the 
performance of RVM is is 1.5 to 2 times faster than the 
stack-based virtual machine interpreter.  The RVM is 
realizable as a hardware-level instruction set as it can be 
mapped directly to almost any 3-operand ISA that exists 
today.   
 
5. Code compression 

The other requirement of mobile devices is the 
compact code size.  Reducing the size of machine code 
has benefit in two aspects.  The first one is obvious in 
reducing the storage requirement, both in code segment 
and in instruction cache memory.  This is often the 
reason behind many classic instruction set architecture, 
to achieve very compact executable code.  The second 
one is related to power requirement.  As the instruction 
bandwidth is reduced, the power consumption is also 
reduced [6, 7].  
 
How to make the program as small as possible? In [8] we 
proposed a method, called "nibble coding", compresses 
two instructions into one byte.  The experiment is carried 
out to compare conventional byte-code instruction and a 
typical 32-bit machine code with the nibble coding.  The 
result shows the proposed scheme achieves a smaller 
instruction bandwidth than a byte-code virtual machine 
and is much smaller than the conventional executable 

machine code.  The reduction is 50% and 57% of static 
and dynamic code size.  In other words, using the static 
code size is half of the normal code and the dynamic 
code size is less than half of the normal code. 
 
The method to pack instructions into a smaller space is 
based on the following techniques: 
1. Extended instruction, making a special instruction 

that replace several simple instructions. 
2. Specialization, eliminate arguments by making an 

instruction special to a particular argument thus 
reduce the size of instruction. 

3. Reduce the size of arguments, by using a literal 
table that stores a number of full-size arguments. 
The argument of the instruction can be replaced by 
the index into this table.  The index is much 
smaller than full-range of argument as there are 
small finite number of different variables in a 
program.   

4. Packing two instructions into one instruction, this 
technique is called "nibble coding".   

 
We also investigate the use of nibble coding technique 
with Java byte-code based on a subset of JVM [9].  The 
details of the technique and the results are reported in 
[10].  The nibble code format is shown in Figure 2. 
 
normal and extended  
0|op:7    zero argument 
0|op:7 a2:8  local: get, put, inc, dec 
0|op:5|a1:2  a2:8                 jmps, call, ld, st 
 
nibble 
1|op1:3|op2:4       zero argument 
1|op1:3|op2:4 a2:8     one argument 
 
Figure 2 Instruction encoding of the nibble code. 
 
6. Concern with micro-architecture 

With byte-coded instruction set, the data path is 
simplified, the complexity is shifted to the control unit.  
I draw an example from the micro-architecture of the 
prototype 16-bit stack-based processor.  The high level 
description language for this chip is only 5 pages long 
but the control unit is 22 pages long!   
 
The choice of instruction set for a stack machine has a 
close relationship to a high level language.  The 
"semantic gap" between its machine language and a 
high level language is narrow.  One can almost write a 
stack machine language directly from a high level 
language source program. The higher semantic content, 
especially on the function call and parameter passing, 
helps to simplify the task of programming.  See the 
following example: 
 
to sum a b | s =    //sum from a to b, s is a local 
  s = 0 
  while a <= b 
    s = s + a 
    a = a + 1 



  
to main = 
  print sum 1 10 
 
can be written in a machine code for our stack machine 
as follows: 
 
:sum 
lit 0, put s,  
:loop  
get a, get b, <=, jF exit, get s, get a, +, put s, get a, 
lit 1, +, put a, jmp loop 
:exit 
get s, retv 
  
:main 
lit 1, lit 10, call sum, call print 
end 
 
7. Current work 

The R1 extended code and RVM are comparable 
in term of performance.  To investigate the issue of 
performance improvement further we are experimenting 
with a stack-based register machine (SR).  
 
A stack-based instruction set relies on an evaluation 
stack to store arguments and intermediate values.  For 
local variables, an activation record is used to give direct 
access to local variables.  Because a stack has only one 
port to access it, and because the stack is implemented in 
the memory, it slows down the computation.  If registers 
are used in places of the activation record to store local 
variables, and the instruction set can access to these 
registers directly, it will not be necessary to use a stack.  
However, the registers used in the callee must be saved 
and restored.  The activation record has advantage that 
local variables need not to be saved and restored as the 
creation and deletion of the activation record occurs 
naturally on call/return of functions.  Combining storing 
local variables in registers and last-in-first-out (LIFO) 
behaviour of activation records is the stack-based register 
machine. 
 
7.1 How it can be accomplished? 

To access a variable in an activation record, a 
frame pointer is needed.  The access to a local variable is 
indexed by an offset from this frame pointer.  To enable 
registers to have this behaviour, there must be a "register 
renaming" mechanism.  With register renaming, all 
register indexing is relative to a "frame pointer".  The 
register bank can be implemented as a circular buffer.  
The visible registers set are finite and are stored in the 
buffer.  When the buffer is full it can be spilled into the 
memory, and vice versa for the underflow of buffer.  
Hence, the "stack segment" is in the memory with the 
front of the segment cached in the register buffer.   
 
7.2 SR Instruction Set 

The instruction set becomes similar to a 3-operand 
register instruction set.  From a programmer's point of 
view, this is a register machine with the twist that no 

registers need to be saved/restored on call/return.  The 
activation record creation/deletion is done in hardware 
and also the spilling/pulling between registers-memory 
is done transparently to the programmer.  Because all 
local variable accesses are to registers it is fast. 
Occasionally, spill/pull to memory is necessary but by 
amortized analysis, it should be a net win (reducing the 
number of memory access).  Figure 3 shows SR 
instruction set.  All instructions are 32-bit, fixed length.   
 
op:6 r1:5 r2:5 r3:5 xop:11   (register) 
op:6 r1:5 r2:5 imm:16          (immediate) 
op:6 r1:5 ads:21                  (absolute) 
op:6 lads:26                         (long) 
 
addressing mode   mnemonics        meaning 
absolute                 ld r1 ads               r1 = M[ads] 
displacement         ld r1 @disp r2      r1 = M[disp + r2] 
index                       ld r1 +r2 r3           r1 = M[r2 + r3] 
 
Figure 3  SR instructions set 
 
7.3 Register renaming 

The size of register bank is determined by the 
amount of resources. To implement "register 
windowing", the register buffer is used.  The register 
buffer must be larger than this size so that more than 
one activation record can be resided in the buffer.  A 
register FP is a rename register.  FP is similar to a 
frame pointer.  The mapping of a register name to the 
actual register is: 
 rn = R[FP + n] 
where R[.] is the register bank. The width of FP is       
lg(size of register bank), 8 bits for a 256-register buffer. 
 
7.4 Register spilling 

When the register buffer is full, to get more 
registers, the older registers are spilled into the 
memory.  Allocating more registers occur at the 
function call to create an activation record.  At the 
return from a call, the activation record is deleted.  An 
underflow of register deallocation can occurs.  The 
value of registers will be pulled from the memory.   
 
The size of register bank is the amount of register a 
programmer will see (determine by the number of bit of 
register addressing, 5 bits is 32 registers).  The size of 
the buffer is determined by the resource of a processor 
(for example, 256 registers).  The register buffer is 
implemented as a circular LIFO list.  There are two 
pointers: F (Front), B (Back).  F and B always point to 
the existing elements in the list.  Initially F = B = 0.  
Let n denotes the size of the register buffer, m denotes 
the request for allocating new register for a new 
activation record. 
 
The following invariance holds: 
 

F' = (F + n) mod n = F 
 



If the request for m registers occurs, the allocation will 
be: 
 

 F' = F 
 F = (F + m) mod n 
 return F' 

 
F' points to the beginning of the newly allocated block. 
And vice versa for freeing m registers: 
 

 F’ = (F - m) mod n 
 
When an overflow occurs the oldest block is saved to the 
memory. 
 

F' = (F + m) mod n 
 

if F < B then  ovf = (F' < F) or (F' >= B) 
else  ovf = (F' < F) and (F' >= B) 

 
and vice versa for underflow. 
 

F' = (F - m) mod n 
 
if F < B then  udf = (F' > F) and (F' < B) 
else  udf = (F' > F) or (F' < B) 

 
Example the previous sum(a,b) program can be written in 
SR: 
 
:sum 
mv i #1, mv s #0 
:while 
jgt i s exit, add s s i, add i i #1, jmp while 
:exit 
 
It is 6 instructions and only 4 instructions are in the loop.  
Compare this to the R1 instructions, the number of 
instructions executed is less than half.   
 
7.5 Experimental results 
The following benchmark programs are used: 
 
bubble  sort 20 items 
hanoi   move 6 disks 
matmul multiply two 8x8 matrices 
perm    permuting 4 digits of 0,1,2,3 
queen   all solutions of 8-queen 
quick   sort 20 items 
sieve   find all primes <= 500 
 
Comparing the number of executed instructions between 
R1 and SR shows that the reduction in the number of 
executed instruction of SR over R1 is 50% - 80%. In 
other words, SR executed 2 times to 5 times less 
instruction than R1.  This result agrees with the previous 
result [5] that the register-based instruction reduces the 
number of executed instruction 35% - 60%.   (see Table 
4) 

Table 4 Comparison of the number of executed 
instructions between R1 and SR 
 
     R1       SR      SR/R1 
bubble  13879   4621   0.33 
hanoi   2631    1313   0.50 
matmul  20608   7109   0.34 
perm    6514    2030   0.31 
queen   753261  282458   0.37 
quick   3522    851     0.24 
sieve   18665   3744   0.20 
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Figure 4 The reduction of the number of executed 
instruction SR over R1 
 
The effectiveness of using the register buffer is 
measured in Table 5.  The figures show that the number 
of access to the memory (in term of accessing the 
activation record) is greatly reduced.  In all cases, it is 
reduced to zero using the register buffer size of 128 for 
this benchmark (the benchmark is not a realistic one 
because the size is too small). Please remember that for 
any implementation of stack, there will be some 
spilling to the memory because the depth of call is 
determined at run-time.  One can compares this scheme 
of register buffering with the compile time 
saving/restoring registers to an internal (on chip) stack.  
 
Table 5  The number of register spilling. 
 
buffer size  16      32        64      128   
bubble   0         0         0        0  
hanoi    98       16       0        0 
matmul   0         0         0        0 
perm     26       0         0        0 
queen    17991 10437 2507  0  
quick    70       43       11      0  
sieve    0         0         0        0 
 
 
8. Related work 

There are volume of work on customised 
instruction set for specific applications for example [11, 
12] including using programmable gate array for 
realizing these instruction set embedded in an ordinary 
processor [13]. The flexibility of customizing 
instruction set for specific applications has been 
commercialized by a number of companies for example 
Xtensa [14]. For multimedia work load the most well-



known is MMX instruction from Intel [15].  These are 
aimed for high performance. Portability issue is 
investigated in [16].  The object code is a highly 
compact, architecture-neutral intermediate program 
representation which is used to generate native code of 
high quality on-the-fly.  Many works investigate the code 
compression, aiming to reduce the size of executable 
code [17 ,18].  For example, Pugh [19] achieved 
compressing of Java classfiles by a factor of 2 to 5.  The 
proposed stack-based register machine is reminiscent of 
PicoJava chip [20].  
 
9. Conclusion and future work 

It has been illustrated in this work, that the 
instruction set design is a vital part for future generation 
of hardware devices.  The flexibility offered by the field 
programmable devices allows designers to explore a 
different architectural landscape.  Low power design is 
currently one of the most active research in the processor 
design and implementation.  There are many indicators 
that the instruction set design has a role to play in this 
area [21, 22].  Future processors will be totally different 
from what we know today.  We have proposed one 
design in which the flexibility of programmable devices 
is exploited.  By time-multiplexing the circuits into a 
limited resource, high performance can be achieved at 
the same time as conversing resources and energy [23].  I 
think we are now in the age of energy-aware computing.  
Anybody wants to design a processor that adapt itself to 
the amount of available energy?   
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