Nibbling Java Byte Code for Resource-Critical Devices

Vishnu Kotrajaras and Prabhas Chongstitvatana

Department of computer engineering
Chulalongkorn University
Thailand

vkl@ep.eng.chula.ac.th, prabhas@chula.ac.th

Abstract

This work describes a method that makes the
Java instruction as small as possible. The
proposed method, called '"nibble coding”,
compresses two instructions into one byte. The
experiment is carried out to compare Java byte
code instruction and a modified code with the
nibble coding. The result shows the proposed
scheme achieves a much smaller instruction
bandwidth than the ordinary byte-code
counterpart.

Key-Words: code compression, instruction
bandwidth, Java byte code

Introduction

The progress of microprocessor design has been
phenomenal in the last decade. The performance
is doubled every 18 months, as stated by Moore's
law. In the last decade, drive for performance is
the key for progress. In time, the market
competition forces the architecture to slowly
converge and Instruction Set Architecture (ISA)
has become not as important as in the previous
decade where the market was still young.
However, new applications have shifted the
design landscape once again to low power,
portable devices [1]. The technology for
implementing computational devices in small
batch with fast turnaround time has opened up
the issue of ISA design.

For some very small devices, the instruction
storage can be absolutely critical. This work
describes a new investigation of the old problem:
How to make the instruction (program) as small
as possible. We experimented with Java and
proposed to compress two instructions into one
byte. This scheme is called "nibble coding".
The investigation is carried out to compare the
instruction bandwidth using the measure of
dynamic instruction count on a small suite of

benchmark programs. The result shows that this
scheme achieves a much smaller code size.
Reducing the size of code has benefit in two
aspects. The first one is obvious in reducing the
storage requirement, both in code segment and in
instruction cache memory. This is often the
reason behind many classic instruction set
architectures, to achieve very compact
executable code. The second one is related to
power requirement. As the instruction
bandwidth is reduced, the power consumption is
also reduced [2, 3].

Choosing code to compress

Conventional machine code is not the most
compact form to represent an executable code.
The intermediate code for a virtual machine is
usually much smaller because of its higher
semantic content. One of the most popular form
of intermediate code is based on stack
addressing. A stack machine code is very
compact due to its use of stack, which does not
require addressing bit. Majority of instructions
thus do not require the operand in the instruction
as it is implicit in the stack. Basically the stack
instruction has two forms: zero argument and
one argument. All arithmetic and logic
instructions are zero argument. The jump/call
load/store instructions have one argument, the
address of jump or the data memory. The most
well-known stack virtual machine is Java Virtual
Machine (JVM) [4,5,6] as it is embedded into
most browser. Its machine code is called byte
code. As the name implied, the format of code is
byte oriented where most instruction is one byte.
We chose Java byte code for our experiment
because of its small size as a stack machine code
and because of its popularity.

Code compression

There are a number of work in code compression
[7, 8]. This work differs in that it is concentrated

on virtual machine code, specifically Java byte
code. There are many existing methods to pack
instructions into a smaller space, such as:

1. Extended instruction, making a special
instruction that replaces several simple
instructions.

2. Specialization, eliminate argument by
making an instruction special to a particular
argument thus reduce the size of instruction.

3. Reduce the size of argument, by using a
literal table that store a number of full-size
arguments. The argument of the instruction
can be replaced by the index into this table.
The index is much smaller than full-range of
argument as there are small finite number of
different variables in a program.

The contribution of this work is the technique of
packing two instructions into one instruction, or
"nibble coding".

Extending instruction set is a very powerful
method and has potential to reduce the size of
code beyond what achievable by other methods.
It has been explored in our previous work [9].
For example, the expression 1 = i + 1 which
can be translated into the following sequence of
stack code: address of i, value of i,
literal 1, plus, store, totally five
instructions can be replaced by one special
instruction: increment i. However, beside
some obvious idiom, selection of special
instructions faces combinatorial explosion as the
combination of code grows very fast with the
length of sequence. Another limitation of this
technique is that except combination of length
two, it is applicable only to a small percentage of
the whole program.

To specialize instructions the frequency of use of
each instruction including its argument is
measured. A number of most often used
instructions are then made into special
instructions with no argument. This method
eliminates the space to store argument
completely.

Using a table to store literals in a program can
save large amount of bit in instructions that are
required to store full-size literals such as the
address of a variable. An index into this table is
used as argument instead. The size of this index
depends on the size of the table. A careful
judgement is required to balance the size of the
table to cover large number of literals appeared

in a program without making the size of index
too large.

Nibble coding is the main technique to encode
two instructions into one. The instruction space
is divided into normal instructions and packed
instructions. For example, in byte code format,
the normal instructions occupy half of 256
instructions and the rest is for packed
instructions. The space for instruction encoding
is limited to half-length of the normal
instruction, for example 7 bits is remained to
pack two instructions in the byte-code format.
The choice of two-instruction combination is
based on:
= The frequency of use, by compacting the
most used combination, the impact in
dynamic code compression is maximized.
= The frequency of occurrence, the
combination that appears most frequently in
the program will reduce the static code size.

The nibble coding can be designed to be
orthogonal, that is, it can be full combination of
the selected instructions. In this aspect, it can be
applied to a large percentage of code sequence.
This is in contrast to the extended instruction
concept mentioned previously. The result of this
technique can achieve 50% code size reduction
in average when the selection of instruction
covers the program well.

To investigate the idea, the experiment of
application of these techniques is carried out on
the Java virtual machine. Various effects are
measured to ascertain their actual contribution to
code compression. The detail of which will be
describe in the next section.

Experiment

A small benchmark suite to test integer
instructions [10] is used to collect statistic of
behavior of code execution. The benchmark
suite consists of seven programs:

1. Sieve: test normal loop. Sieve prime
number, the method of Erathothenes, find
the prime <= 100.

2. Hanoi: test recursion. Move 6 disks from
peg 1 to peg 3.

3. Matmul: test loop and arithmetic. Multiply
4 by 4 matrix, C= A * B.

4. Bubble: test loop and swap. Bubble sort,
with input data 20..1.

5. Qsort: test loop and recursion. Quick sort,
with input data 20..1.

6. Perm: test recursion. Permutation generator.
Permute 4 numbers: 0 1 2 3.

7. Queen: test loop and index. Find all
solutions of 8-queen problem encoding the
solution as column position {0, 1,2, 3,4, 5,
6,7}

The static size of all programs and the dynamic
size of executing these programs are collected
and are used to compare with the proposed code
compression method.

Profiling the benchmark suite results in the

following general observation:

= The top 10 most often used instructions
consume 96.5% of instruction bandwidth
(Table 1). The next four instructions each
consume only 0.5% of the bandwidth, and
the rest each even consume much less
bandwidth.

= The most often used instruction is "getstatic"
(loading value of class variable to stack).

= The literal 0 and literal 1 constitute almost
100% of all literals executed.

getstatic 18.95886
iload_1 18.81711
iload_0 13.55789
if_icmplt = 10.61253
iadd 9.089021
iconst_1 6.889043
iaload 6.346258
istore_1 4574203
isub 3.884542

iastore 3.762348

Table 1: the top 10 most often used instructions
(percent)

Nibble coding

The constraints in our code compression are as

follows:

= For byte code, the natural boundary for
accessing a code is a byte, the encoding of

our code compression will follow this byte
addressing.

= Sequence of code in consideration is in a
basic block, although compressing
combination across jump is possible, it is not
attempted in this work.

Using 8-bit for an instruction, the instruction
space is 256 instructions. The first half is
allocated to normal instructions and special
instructions. The second half is reserved for
nibble coding. There is 7-bit space of which will
be divided into 3 and 4-bit for the first nibble and
the second nibble following the observation from
the code execution profile that the leading
instruction of 2-combination is more constrained
than the followed instruction. The basic block
constraints that the leading instruction cannot be
the control flow (such as jumps and method
calls, for example: if icmplt, if icmpne,
ifeq, return, invokevirtual,
invokespecial). Another constraint is that
instructions in the nibble can not both have
arguments at the same time otherwise argument
encoding will be complicated and will not be
compact. To consider the selection of instruction
of nibble coding, the lead and follow instruction
sets will be considered separately.

To form a set of 128 compressed instructions,
eight instructions are chosen to be the lead
instructions according to their frequency of use
and frequency of instruction pairs appearing in
our benchmark programs. They are {
getstatic, iload O, iload 1,
iconst 1, iaload, istore 1,
iconst 0, iadd }. The follow set can have
16 instructions and the choice is the lead set plus

{ isub, if icmplt, return, goto,
iastore, iload 2, invokestatic,
iload 3 }.

As only argument from one instruction is
allowed in nibble coding, there are instructions
that cannot be compressed with others, such as
if icmpne and if icmpge. Although such
instructions have higher occurrences than
iload 3, we have to remove them from our
list.

The normal instructions occupy the first half of
instruction space and are begun with a bit 0. The
second half is for nibble code. The nibble code
starts with a bit 1, the next 3-bit specifies the
lead instruction, the last 4-bit specifies the follow

instruction. If the instruction has argument, then
the nibble has one byte argument. (Fig 1)

Normal instructions

Olop:7 ;; zero argument
Olop:7 a2:8 ;; one argument
Olop:7]al:8 a2:8 ;; two arguments

nibble instructions
llopl:3jop2:4
llop1:3jop2:4 a2:8

;; Zero argument
;; one argument

Figure 1: Instruction encoding of the proposed
scheme

Result and discussion

Table 3 shows all the raw data on static and
dynamic measures of the execution of
benchmark programs. Figure 2 shows the
improvement of code size reduction. From Fig.
2, the nibble coding affects on average 30% of
static code size, with the maximum reduction of
38% for the permutation program and the
minimum reduction of 23% for the quicksort
program. For the dynamic code size, the average
reduction is 36%, with the maximum reduction
of 50% for the 8-queen program and the
minimum reduction of 25% for the quicksort
program. Comparing with a typical 32-bit 3-
address machine code of a load/store register
processor, [11], the proposed method achieves
the static code size of 74% less and the dynamic
code size of 70% less.

References
[1] C. Kozyrakis and D. Patterson, "A new

direction for computer architecture
research", IEEE computer, Nov. 1998,

pp.24-32.

[2] R. Gonzalez, Low-power processor
design,Technical Report No. CSL-TR-97-
726, June 1997, Computer Systems
Laboratory Departments of Electrical
Engineering and Computer Science,
Stanford University.

[3] R. Krishnamurthy, Mixed Swing

Techniques for Low Energy/Operation
Datapath Circuits, PhD thesis, Electrical
and Computer Engineering, Carnegie
Mellon University, December 1997.

[4] B. Joy (Ed), G. Steele, J. Gosling, G.
Bracha, Java™ Language Specification
(2nd Ed), Addison Wesley Pub., 2000.

(6]
(7]

(9]

[10]

(11]

T. Lindholm and F.Yellin, The Java™
Virtual Machine Specification, Addison
Wesley Pub., 1997.

B. Venners, Inside the
Machine, McGraw Hill, 1998.
K. Cooper and N. Mclntosh, Enhanced
code compression for embedded RISC
processors, Proc. ACM SIGPLAN '99
Conf. on Programming language design
and implementation, May 1-4, 1999,
Atlanta, GA, pp.139-149.

H. Lekatsas, J. Henkel, W. Wolf, Code
Compression for Low Power Embedded
System Design, Proc. of the 37th Conf. on
Design automation, June 5 - 9, 2000, Los
Angeles, CA USA.

P. Chongstitvatana, "Post processing
optimization of byte-code instructions by
extension of its virtual machine", 20th
Electrical Engineering Conference,
Thailand, 1997.

J. Hennessy and P. Nye, "Stanford Integer
Benchmarks", Stanford University.

P. Chongstitvatana, "S2 processor and its
opcode format",
http://ww.cp.eng.chula.ac.th/
faculty/pjw/teaching/ads

Java Virtual

bubble hanoi matmul perm queen quick sieve

static

normal 75 67 132 53 149 114 61
nibble 53 48 99 33 94 88 42
dynamic

normal 11220 21563 2765 4539 384334 3595 2484
nibble 6668 1487 2058 2891 189719 2695 1385

Table 3: Statistics on the number of instructions on benchmark .

Static code size

200

150
O normal

100

M nibble
50 |
o

bubble hanoi matmul perm queen quick sieve

Dynamic code size

6000
O normal
4000]
M nibble
- B] i
o L[. ‘

bubbleg*10) hanoi matmul perm queen (*100) quick sieve

Figure 2: Static (top) and dynamic (bottom) code size for normal instruction set and nibble code instruction set.

