
Simultaneity Matrix for Solving Hierarchically
Decomposable Functions

Chatchawit Aporntewan and Prabhas Chongstitvatana

Chulalongkorn University, Bangkok 10330, Thailand
Chatchawit.A@student.chula.ac.th Prabhas.C@chula.ac.th

Abstract. The simultaneity matrix is an �×� matrix of numbers. It is
constructed according to a set of �-bit solutions. The matrix element
mij is the degree of linkage between bit positions i and j. To exploit
the matrix, we partition {0, . . . , � − 1} by putting i and j in the same
partition subset if mij is significantly high. The partition represents the
bit positions of building blocks (BBs). The partition is used in solution
recombination so that the bits governed by the same partition subset
are passed together. It can be shown that by exploiting the simultaneity
matrix the hierarchically decomposable functions can be solved in a poly-
nomial relationship between the number of function evaluations required
to reach the optimum and the problem size. A comparison to the hier-
archical Bayesian optimization algorithm (hBOA) is made. The hBOA
uses less number of function evaluations than that of our algorithm. Ho-
wever, computing the matrix is 10 times faster and uses 10 times less
memory than constructing Bayesian network.

1 Introduction

For some conditions [6, Chapter 7–11], the success of genetic algorithms (GAs)
can be explained by the schema theorem and the building-block hypothesis [4].
The schema theorem states that the number of solutions that match the above
average, short defining-length, and low-order schemata grows exponentially. The
optimal solution is hypothesized to be composed of the above average schemata
or the building blocks (BBs). However, in simple GAs only short defining-length
and low-order schemata are permitted to the exponential growth. The other
schemata are more disrupted due to the single-point crossover. When the good
BBs are more disrupted, it is said to be a GA-hard problem. Trap function [1]
is an adversary function for studying BBs and linkage problems in GAs [7]. The
general k-bit trap functions are defined as:

Fk(b0 . . . bk−1) =
{

fhigh ; if u = k

flow − u flow
k−1 ; otherwise, (1)

where bi ∈ {0, 1}, u =
∑k−1

i=0 bi, and fhigh > flow. Usually, fhigh is set at k and
flow is set at k− 1. The additively decomposable functions (ADFs), denoted by
Fm×k, are defined as:

K. Deb et al. (Eds.): GECCO 2004, LNCS 3102, pp. 877–888, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [300 300] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 300 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 200 dpi Downsampling für Bilder über: 200 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 200 dpi Downsampling für Bilder über: 200 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.0 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.0 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.0 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 200 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 200 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [300 300]>> setpagedevice

878 C. Aporntewan and P. Chongstitvatana

Fm×k(B0 . . . Bm−1) =
m−1∑
i=0

Fk(Bi), Bi ∈ {0, 1}k. (2)

The m and k are varied to produce a number of test functions. The ADFs fool
gradient-based optimizers to favor zeroes, but the optimal solution is composed
of all ones. Trap function is a fundamental unit for designing test functions that
resist hill-climbing algorithms. The test functions can be effectively solved by
composing BBs. Several discussions of the test functions can be found in [9,21,
22].

The BBs are inferred from a population of highly-fit individuals [6, pp. 60–61].
A population of highly-fit individuals (5×3-trap function) is shown in Table 1.
The dependency between variables bi, bi+1, bi+2 (i = 0, 3, 6, 9, 12) can be detected
by means of a statistical method. An inference might be that the highly-fit
individuals are composed of triple zeroes and triple ones. It is said that the
triple zeroes and triple ones are common traits or BBs. We aim to identify these
BBs.

Table 1. A population of highly-fit individuals (5×3-trap function)

Individual b0b1b2 b3b4b5 b6b7b8 b9b10b11 b12b13b14 Fitness
no.
1 111 111 000 111 000 13.0
2 000 000 111 000 111 12.0
3 111 000 000 111 000 12.0
4 000 000 000 000 111 11.0
5 000 000 000 000 000 10.0

Thierens raised the scalability issue of simple GAs [20]. He used the uniform
crossover so that the solutions are randomly mixed. The objective function is
the m×5-trap functions. The analysis shows that either the computational time
grows exponentially with the number of 5-bit trap functions or the population
size must be exponentially increased. It is clear that scaling up the problem size
requires information about the BBs so that the solutions are efficiently mixed. In
addition, the performance of simple GAs relies on the ordering of solution bits.
The ordering may not pack the dependent bits close together. Such an ordering
results in poor mixing. Therefore the BBs need to be identified to improve the
scalability issue.

Many strategies in the literature use the bit-reordering approach to pack the
dependent bits close together, for example, inversion operator [4], messy GAs [5],
and linkage learning [7]. The bit-reordering approach does not explicitly identify
BBs, but it successfully delivers the optimal solution. Several works explicitly
identify BBs. An approach is to find a partition of bit positions. For instance,
Table 1 infers the partition:

{{0, 1, 2}, {3, 4, 5}, {6, 7, 8}, {9, 10, 11}, {12, 13, 14}}. (3)

Simultaneity Matrix for Solving Hierarchically Decomposable Functions 879

In the case of nonoverlapped BBs, partition is a clear representation [8,11,12,13].
Note that Kargupta [12] computes Walsh’s coefficients which imply the partition.
The bits governed by the same partition subset are passed together to prevent
BB disruption.

Identifying BBs is somewhat related to building a distribution of solutions
[8,14,15]. The basic concept of optimization by building a distribution is to start
with a uniform distribution of solutions. Next, a number of solutions is drawn
according to the distribution. Some good solutions (winners) are selected, and
the distribution is adjusted toward the winners (the winners-like solutions will
be drawn with higher probability in the next iteration). These steps are repea-
ted until the optimal solution is found or reaching a termination condition. The
works in this category are referred to as probabilistic model-building genetic al-
gorithms (PMBGAs). For a particular form of distribution used in the extended
compact genetic algorithm (ECGA), building the distribution is identical to se-
arching for a partition [8]. The Bayesian optimization algorithm (BOA) uses
Bayesian network to represent a distribution [14]. Pelikan showed that if the
problem is composed of k-bit trap functions, the network will be fully connected
sets of k nodes [17, pp. 54]. In addition, the Bayesian network is able to represent
joint distributions in the case of overlapping BBs. The hierarchical BOA (hBOA)
is the BOA enhanced with decision tree/graph and a niching method called re-
stricted tournament replacement [17]. The hBOA can solve the hierarchically
decomposable functions (HDFs) in a scalable manner [17]. Successful applica-
tions for BB identification are financial applications [10], cluster optimization
[19], maximum satisfiability of logic formulas (MAXSAT) and Ising spin glass
systems [18].

The Bayesian network is able to identify common structures in a population.
Nevertheless, building the network is time-consuming. This paper presents a BB
identification algorithm that is simpler and faster than that of the hBOA. In ad-
dition, our algorithm uses less memory. The algorithm is named building-block
identification by simultaneity matrix (BISM) [2]. The BISM input is a set of �-
bit solutions. The BISM output is a partition of {0, . . . , �− 1}. Algorithm BISM
consists of two parts: simultaneity matrix construction (SMC) and partitioning
(PAR) algorithms. The SMC constructs the matrix according to a set of solu-
tions. Next, PAR searches for a partition for the matrix. The remainder of the
paper is organized as follows. Section 2 defines the hierarchically decomposable
functions. Section 3 describes the SMC algorithm. Section 4 describes the PAR
algorithm. Section 5 presents the experimental results and discussions. Section
6 concludes the paper.

2 Hierarchically Decomposable Functions

To solve ADFs, the BBs need to be identified so that the solutions are efficiently
mixed. The hierarchically decomposable functions (HDFs) are far more difficult
than the ADFs. First, BBs in the lowest level need to be identified. The solution
quality is improved by exploiting the identified BBs in solution recombination.
Next, the improved population reveals larger BBs. Again the BBs in higher le-
vels need to be identified. Identifying and exploiting BBs are repeated many

880 C. Aporntewan and P. Chongstitvatana

times until reaching the optimal solution. Commonly used HDFs are hierarchi-
cally if-and-only-if (HIFF), hierarchical trap 1 (HTrap1), and hierarchical trap
2 (HTrap2) functions. Due to page limitations, the original definitions of HDFs
can be found in [21,17].

3 Simultaneity Matrix Construction (SMC) Algorithm

The SMC input is a set of �-bit binary string denoted by:

S = {s0, . . . , sn−1}, (4)

where si is the ith string, 0 ≤ i ≤ n − 1. The si[j] denotes the jth bit of si,
0 ≤ j ≤ � − 1. Algorithm SMC outputs an �×� symmetric matrix of numbers,
denoted by M = (mij), 0 ≤ i, j ≤ � − 1. A closed form of mij is shown in
Equation 5.

mij =
{

0 ; if i = j
Count00S (i, j)Count11S (i, j) + Count01S (i, j)Count10S (i, j) ; otherwise,

(5)
where Countab

S (i, j) = |{x ∈ {0, . . . , n− 1} : sx[i] = a and sx[j] = b}| for all 0 ≤
i, j ≤ �− 1, (a, b) ∈ {0, 1}2.

Algorithm SMC is shown in Figure 1. Step 1 constructs only the upper tri-
angle of the matrix by using Equation 5. Step 2 perturbs the matrix so that there
are no identical elements. This matrix, in which all the elements are distinct, is
greatly helpful in partitioning. The perturbation does not totally change the ma-
trix because each element is incremented by a small real random number ranging
between 0 and 1. The perturbation by adding an integer with a real number is
practical for a random number generator with a sufficiently large period because
it is hardly possible to produce identical random numbers. Step 3 copies the
upper triangle {mij | i < j} to the lower triangle {mij | i > j}. Step 4 returns
the simultaneity matrix M = (mij). The time complexity of SMC is O(�2n).

The matrix element mij is proportional to the probability that 2-bit BBs at
bit positions i and j will be disrupted by the uniform crossover. All cases for
mixing 2-bit BBs are enumerated. Mixing “00” with “11” results in “01” and
“10.” Mixing “01” with “10” results in “00” and “11.” Only mixing in the two
cases must be done carefully because the processing BBs will be lost. Mixing 2-
bit BBs in the other cases gives the same BBs. Therefore Algorithm SMC counts
a pair of 2-bit BBs that are complement to each other. To exploit the matrix,
the bits at positions i and j are passed together every time performing crossover
if the matrix element mij is significantly high. The 3-bit BBs are identified by
inserting k to {i, j}. If the matrix elements mij , mjk, and mik are significantly
high, i, j, k should be in the same partition subset. Larger BBs can be identified
in a similar fashion.

The trap functions embedded in the HDFs bias the population to two aligned
chunks of zeroes and ones, that are complementary to each other. Certainly, the
dependency between every pair of bits in a chunk is stored in the matrix. The ma-
trix is not limited to the cases where the two aligned chunks are complementary

Simultaneity Matrix for Solving Hierarchically Decomposable Functions 881

Algorithm SMC(S)
1. for i = 0 to �− 1 do

mii ← 0;
for j = i + 1 to �− 1 do

mij ← Count00S (i, j)× Count11S (i, j) + Count01S (i, j)× Count10S (i, j);
2. for i = 0 to �− 1 do

for j = i + 1 to �− 1 do
mij ← mij + Random(0, 1);

3. for i = 0 to �− 1 do
for j = i + 1 to �− 1 do

mji ← mij ;
4. return M = (mij);

Fig. 1. SMC algorithm

to each other. In the other cases, the matrix does not detect unnecessary depen-
dency. For instance, the bits at positions of {0, 1, 2, 3, 4} are mostly “b0b1000”
and “b0b1111” where bi ∈ {0, 1}. The dependency among five bits is obvious,
but passing the bits governed by {2, 3, 4} together is sufficient to guarantee that
“b0b1000” and “b0b1111” will exist in the next generation with a high probabi-
lity. In summary, the matrix records only dependency that is actually necessary
for preserving BBs.

4 Partitioning (PAR) Algorithm

The PAR input is an �×� simultaneity matrix. The PAR outputs the partition:

P = {B0, . . . , B|P |−1},
|P |−1⋃
i=0

Bi = {0, . . . , �−1}, Bi ∩ Bj = ∅ for all i �= j. (6)

The Bi is called partition subset. There are several definitions of the desired
partition, for example, the definitions in the senses of nonmonotonicity [13],
GEMGA [11], Walsh coefficients [12], and entropy measurement [8]. We develop
a definition in the sense of simultaneity matrix. Algorithm PAR searches for a
partition P such that

1. P �= {{0, . . . , �− 1}}.
2. For all B ∈ P such that 1 < |B| < �, for all b ∈ B, the largest |B| − 1

matrix elements in row b are founded in columns of B \ {b}.
3. For all B ∈ P such that 1 < |B| < �, Hmax −Hmin < α(Hmax − Lmin)

where α ∈ [0, 1],
Hmax = max(mij | (i, j) ∈ B2, i �= j),
Hmin = min(mij | (i, j) ∈ B2, i �= j),
Lmin = min(mij | i ∈ B, j ∈ {0, . . . , �− 1} \ B).

882 C. Aporntewan and P. Chongstitvatana

4. There are no partition Px such that for some B ∈ P , for some Bx ∈ Px,
P and Px satisfy the first, the second, and the third conditions, B ⊂ Bx.

An example of the simultaneity matrix is shown in Figure 2. The perturbation
is omitted because the values of {mij | i < j} are distinct. The first condition
does not allow the coarsest partition because it is not useful in solution recom-
bination. The second condition makes i and j, in which mij is significantly high,
in the same partition subset. For instance, P1 = {{0, 1, 2}, {3, 4, 5}, {6, 7, 8},
{9, 10, 11}, {12, 13, 14}} satisfies the second condition because the largest two
elements in row 0 are found in columns of {1, 2}, the largest two elements in row
1 are found in columns of {0, 2}, the largest two elements in row 2 are found
in columns of {0, 1}, and so on. However, there are many partitions that satisfy
the second condition, for example, P2 = {{0, 1, 2}, {3, 4, 5, 6, 7, 8}, {9, 10, 11},
{12, 13, 14}}. There is a dilemma between choosing the fine partition (P1) and
the coarse partition (P2). Choosing the fine partition prevents the emergence of
large BBs, while the coarse partition results in poor mixing. To overcome the
dilemma, the coarse partition will be acceptable if it satisfies the third condition.
The fourth condition says choosing the coarsest partition that is consistent with
the first, the second, and the third conditions.

By the third condition, the partition subset {3, 4, 5} is acceptable because
the values of matrix elements governed by {3, 4, 5} are close together (see Fi-
gure 2). Being close together is defined by Hmax−Hmin where Hmax and Hmin

is the maximum and the minimum of the nondiagonal matrix elements gover-
ned by a partition subset. The Hmax −Hmin is a degree of irregularities of the
matrix. The main idea is to limit Hmax −Hmin to a threshold. The threshold,
α(Hmax −Lmin), is defined relatively to the matrix elements because the thres-
hold cannot be fixed for a problem instance. The partition subset {3, 4, 5} gives
Hmax = 71543, Hmin = 70172, and Lmin = 61115. Lmin is the minimum of
the nondiagonal matrix elements in rows of {3, 4, 5}. The third condition limits
Hmax −Hmin to 100× α percent of the difference between Hmax and Lmin. An
empirical study showed that α should be set at 0.75 for both ADFs and HDFs.
Choosing {3, 4, 5, 6, 7, 8} yields (Hmax = 73739, Hmin = 68064, Lmin = 61115)
which does not violate the third condition. The fourth condition prefers a co-
arse partition {{3, 4, 5, 6, 7, 8}, . . .} to a fine partition {{3, 4, 5}, . . .} so that the
partition subsets can be grown to compose larger BBs in higher levels.

Algorithm PAR is shown in Figure 3. A trace of the algorithm is shown in
Table 2. The outer loop processes row 0 to �− 1. In the first step, the columns
of the sorted values in row i are stored in array R. For i = 0, array R[] =
{2, 1, 8, 6, 12, 5, 4, 7, 3, 10, 13, 11, 9, 14, 0}. Next, the inner loop tries a number of
partition subsets by enlarging B1 (B1 ← B1 ∪ {R[j]}). If B1 satisfies the second
and the third conditions, B1 will be saved to B2. Finally, P is the partition that
satisfies the four conditions. Checking the second and the third conditions is the
most time-consuming section. It can be done in O(�2). The checking is done at
most �2 times. Therefore the time complexity of PAR is O(�4).

Simultaneity Matrix for Solving Hierarchically Decomposable Functions 883

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Row 10

Row 11

Row 12

Row 13

Row 14

 0 70130 61115 62569 61972 63075 62080 61943 61290 60002 61259 63515 60205 61223

70130 0 62233 63643 64586 64432 64146 61489 61774 61260 63214 61133 62010

61115 62233 0 70999 70172 68228 68722 68782 61817 62222 62241 63219 62016 61715

62569 63643 70999 0 71543 68738 68064 63443 63244 62739 65128 62765 62995

61972 62571 70172 71543 68715 68567 68727 62289 62683 62613 63685 62914 62791

63075 64586 68228 68738 68715 0 72764 73739 63571 63877 63976 65485 63230 62969

62080 64432 68722 68474 68567 72764 0 73045 63215 62996 63359 64957 62862 62538

61943 64146 68782 68064 68727 73739 73045 0 63289 63623 63590 66003 63272 63170

61290 61489 61817 63443 62289 63571 63215 63289 0 70259 70527 62390 62794 62619

60002 61774 62222 63244 62683 63877 62996 63623 70259 0 70457 61318 63258 61094

61259 61260 62241 62739 62613 63976 63359 63590 70527 70457 0 63025 61219 63465

63515 63214 63219 65128 63685 65485 64957 66003 62390 61318 63025 0 70316 71092

60205 61133 62016 62765 62914 63230 62862 63272 62794 63258 61219 70316 0 70832

61223 62010 61715 62995 62791 62969 62538 63170 62619 63465 70832 0

68474

61094 71092

70451

61129

61841

62405

63493

61560

63968

60455

61065

60472

62699

60534

60272

Col 1 Col 2 Col 3 Col 4 Col 5 Col 7 Col 8 Col 9 Col10 Col11 Col12 Col13 Col14Col 0

70220

70220 70451 61129 61841 62405 63493 61560 63968 60455 61065 60472 62699 60534 60272 0

62571

elements governed by {3, 4, 5}

 0

elements governed by {3, 4, 5, 6, 7, 8}
Col 6

Fig. 2. Simultaneity matrix

Table 2. A trace of the PAR algorithm

i j B1 2nd cond. 3rd cond. B2

0 0 {0, 2} True True {0, 2}
0 1 {0, 2, 1} True True {0, 1, 2}
0 2 {0, 2, 1, 8} False False {0, 1, 2}
0 3 {0, 2, 1, 8, 6} False False {0, 1, 2}
0 4 {0, 2, 1, 8, 6, 12} False False {0, 1, 2}
0 5 {0, 2, 1, 8, 6, 12, 5} False False {0, 1, 2}
0 6 {0, 2, 1, 8, 6, 12, 5, 4} False False {0, 1, 2}
0 7 {0, 2, 1, 8, 6, 12, 5, 4, 7} False False {0, 1, 2}
0 8 {0, 2, 1, 8, 6, 12, 5, 4, 7, 3} False False {0, 1, 2}
0 9 {0, 2, 1, 8, 6, 12, 5, 4, 7, 3, 10} False False {0, 1, 2}
0 10 {0, 2, 1, 8, 6, 12, 5, 4, 7, 3, 10, 13} False False {0, 1, 2}
0 11 {0, 2, 1, 8, 6, 12, 5, 4, 7, 3, 10, 13, 11} False False {0, 1, 2}
0 12 {0, 2, 1, 8, 6, 12, 5, 4, 7, 3, 10, 13, 11, 9} False False {0, 1, 2}

5 Experimental Results

5.1 Methodology

Most papers report the performance in terms of function evaluations required
to reach the optimum. Such a performance measurement is affected by selection
method, solution recombination, and the other factors. At present, research com-
munity does not provide a formal framework for measuring the effectiveness of
a BB identification algorithm regardless of the other factors we have mentioned.
Inevitably, we have to make a comparison in terms of function evaluations. We
have presented the building-block identification by simultaneity matrix (BISM).
An optimization algorithm that exploits the BISM is needed. We customize sim-
ple GAs as follows. Every generation, the simultaneity matrix is constructed.

884 C. Aporntewan and P. Chongstitvatana

Algorithm PAR(M)
P ← ∅;
for i = 0 to �− 1 do

if i �∈ B for all B ∈ P then
array T = {matrix elements in row i sorted in descending order};
for j = 0 to �− 1 do

R[j] = x where mix = T [j];
endfor
B1 ← {i};
B2 ← {i};
for j = 0 to �− 3 do

B1 ← B1 ∪ {R[j]};
if {B1} satisfies the second and the third conditions then

B2 ← B1;
endif

endfor
P ← P ∪ {B2};

endif
endfor
return P ;

Fig. 3. PAR algorithm

The PAR algorithm is executed to find the partition. Two parents are chosen by
the roulette-wheel method. The solutions are reproduced by a restricted uniform
crossover – bits governed by the same partition subset must be passed together.
The mutation is turned off. The diversity is maintained by the rank-space me-
thod [23, pp. 520–523]. The population size is determined empirically by the
bisection method [17, pp. 64]. The bisection method performs binary search for
the minimal population size. There might be 10% different between the popula-
tion size used in the experiments and the minimal population size that ensures
the optimal solution in all independent 10 runs.

5.2 A Visualization of the Simultaneity Matrix

To illustrate how the matrix changes over time, a matrix element is represented
by a square. The square intensity is proportional to the value of matrix element
(see Figure 4). In the early generation (A), the matrix elements are nearly iden-
tical because the initial population is generated at random. After that (B), the
matrix elements become more distinct. The BBs in the lowest level are detec-
ted. The solution recombination is more speculative. Multiple bits are passed
together, and therefore forming larger BBs. A few generations later (C), higher-
level BBs are revealed. Finally (D), the population begins to lose diversity. The
matrix elements are going to be identical. Note that the bits governed by the
same BB do not need to be packed close together. It is done for the ease of
presentation.

Simultaneity Matrix for Solving Hierarchically Decomposable Functions 885

Fig. 4. Simultaneity matrices (HIFF, HTrap1, and HTrap2 functions)

5.3 A Comparison to the hBOA

Our algorithm is compared to the hBOA [17, pp. 164–165]. Figure 5 shows the
number of function evaluations required to reach the optimum. The HTrap2
result is not shown because it is identical to that of the HTrap1. The linear
regression in log scale indicates a polynomial relationship between the number
of function evaluations and the problem size. The degree of polynomial can be
approximated by the slope of linear regression. It can be seen that the hBOA
and BISM can solve the HDFs in a polynomial time. The hBOA performs better
than the BISM. However, the performance gap narrows as the problem becomes
harder (HIFF, HTrap1, and HTrap2 functions respectively).

1e+03

1e+04

1e+05

1e+06

32 64 128 256

BISM
hBOA

Problem size (number of bits)

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

1e+04

1e+05

1e+06

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

Problem size (number of bits)

1e+03
81 24327

hBOA
BISM

Fig. 5. Performance comparison: HIFF (left) and HTrap1 (right)

886 C. Aporntewan and P. Chongstitvatana

1e+01

1e+03

Problem size (number of bits)

1e+02

E
la

ps
ed

 ti
m

e
(s

ec
.)

384256 512 640 768 896

WinMine
hBOA
BISM

hBOA
BISM

WinMine
1e+05

1e+06

1e+07

1e+08

1e+09

M
em

or
y

us
ag

e
(b

yt
es

)

Problem size (number of bits)

256 384 512 640 768 896

Fig. 6. Performance comparison: elapsed time (left) and memory usage (right)

We make another comparison in terms of elapsed time and memory usage.
The elapsed time is an execution time of a call on constructTheNetwork subr-
outine [16]. The memory usage is the number of bytes dynamically allocated in
the subroutine. The hardware platform is HP NetServer E800, 1GHz Pentium-
III, 2GB RAM, and Windows XP. The memory usage in the hBOA is very large
because of inefficient memory management in constructing Bayesian network. A
fair implementation of the Bayesian network is the WinMine Toolkit [3]. The
WinMine is a set of tools that allow you to build statistical models from data.
It constructs Bayesian network with decision tree that is similar to that of the
hBOA. The WinMine’s elapsed time and memory usage are measured by an
execution of dnet.exe – a part of the WinMine that constructs the network.
All experiments are done with the same biased population that is composed of
aligned chunks of zeroes and ones. The parameters of the hBOA and WinMine
Toolkit are set at default. The population size is set at three times greater than
the problem size.

The elapsed time and memory usage averaged from 10 independent runs are
shown in Figure 6. The Bayesian network is a powerful tool that builds stati-
stical models from data. However, constructing the network is time-consuming.
This is because the network gathers all dependency between bit variables. In
contrast, the matrix records only dependency between two bits that are likely
to be disrupted in the uniform crossover. Therefore the matrix computation is
much faster. The empirical results show that the hBOA outperforms the BISM
in terms of function evaluations, but computing the matrix is 10 times faster
and uses 10 times less memory than constructing Bayesian network.

6 Conclusions

The BB identification is indispensable to the scalability of GAs. We have pre-
sented a BB identification by simultaneity matrix. The matrix element mij is
proportional to the probability that 2-bit BBs at positions i and j will be dis-
rupted by the uniform crossover. The matrix does not detect all dependency
between bit variables. We have shown that there might be dependency between
bits at positions i and j that cannot be detected by the matrix. Such dependency

Simultaneity Matrix for Solving Hierarchically Decomposable Functions 887

is not necessary because the 2-bit BBs at positions i and j are very likely to sur-
vive in the next generation regardless of the solution recombination methods.
Exploiting the matrix is simply passing the bits at positions i and j together if
mij is significantly high. More formally, we search for a partition of bit positi-
ons. The bits governed by the same partition subset are passed together every
time performing crossover. It can be shown that the BISM can solve the hier-
archical problem in a polynomial relationship between the number of function
evaluations and the problem size. More importantly, the matrix computation is
simple, fast, and memory efficient. The partition may not fully take advantages
of the matrix. The matrix could be exploited in another way rather than par-
titioning. Future work is to combine the strengths of Bayesian network and the
simultaneity matrix.

References

1. Ackley, D. H. (1987). A Connectionist Machine for Genetic Hillclimbing. Kluwer
Academic Publishers, Boston, MA.

2. Aporntewan, C., and Chongstitvatana, P. (2003). Building-block identification by
simultaneity matrix. In CantúPaz, E. et al., editors, Proceedings of the Genetic and
Evolutionary Computation, page 1566–1567, Springer-Verlag, Heidelberg, Berlin.

3. Chickering, D. M. (2002). The WinMine Toolkit. Technical Report MSR-TR-2002-
103, Microsoft Research, Redmond, WA.

4. Goldberg, D. E. (1989). Genetic Algorithms in Search Optimization and Machine
Learning. Addison Wesley, Reading, MA.

5. Goldberg, D. E., Korb, B., and Deb, K. (1989). Messy genetic algorithms: Moti-
vation, analysis and first results. Complex Systems, Vol. 3, No. 5, page 493–530,
Complex Systems Publications, Inc., Champaign, IL.

6. Goldberg, D. E. (2002). The Design of Innovation: Lessons from and for Competent
Genetic Algorithms. Kluwer Academic Publishers, Boston, MA.

7. Harik, G. R. (1997). Learning linkage. In Belew, R. K., and Vose, M. D., edi-
tors, Foundation of Genetic Algorithms 4, page 247–262, Morgan Kaufmann, San
Francisco, CA.

8. Harik, G. R. (1999). Linkage learning via probabilistic modeling in the ECGA.
Technical Report 99010, Illinois Genetic Algorithms Laboratory, University of Il-
linois at Urbana-Champaign, Champaign, IL.

9. Holland, J. H. (2000). Building blocks, cohort genetic algorithms, and hyperplane-
defined functions. Evolutionary Computation, Vol. 8, No. 4, page 373–391, MIT
Press, Cambridge, MA.

10. Kargupta, H., and Buescher, K. (1995). The gene expression messy genetic algo-
rithm for financial applications. In Proceedings of the IEEE/IAFE Conference on
Computational Intelligence for Financial Engineering, page 155–161, IEEE Press,
Piscataway, NJ.

11. Kargupta, H. (1996). The gene expression messy genetic algorithm. In Proceedings
of the IEEE International Conference on Evolutionary Computation, page 814–819,
IEEE Press, Piscataway, NJ.

12. Kargupta, H., and Park, B. (2001). Gene expression and fast construction of distri-
buted evolutionary representation. Evolutionary Computation, Vol. 9, No. 1, page
43–69, MIT Press, Cambridge, MA.

888 C. Aporntewan and P. Chongstitvatana

13. Munetomo, M., and Goldberg, D. E. (1999). Linkage identification by non-
monotonicity detection for overlapping functions. Evolutionary Computation, Vol.
7, No. 4, page 377–398, MIT Press, Cambridge, MA.

14. Pelikan, M., Goldberg, D. E., and Cantú-Paz, E. (1999). BOA: The Bayesian op-
timization algorithm. In Banzhaf, W. et al., editors, Proceedings of Genetic and
Evolutionary Computation Conference, Vol. 1, page 525–532, Morgan Kaufmann,
San Francisco, CA.

15. Pelikan, M., Goldberg, D. E., and Lobo, F. (1999). A survey of optimization by
building and using probabilistic models. Computational Optimization and Appli-
cations, Vol. 21, No. 1, page 5–20, Kluwer Academic Publishers.

16. Pelikan, M. (2000). A C++ implementation of the Bayesian optimization algorithm
(BOA) with decision graph. Technical Report 2000025, Illinois Genetic Algorithms
Laboratory, University of Illinois at Urbana-Champaign, Champaign, IL.

17. Pelikan, M. (2002). Bayesian optimization algorithm: From single level to hierarchy.
Doctoral dissertation, University of Illinois at Urbana-Champaign, Champaign, IL.

18. Pelikan, M., and Goldberg, D. E. (2003). Hierarchical BOA solves Ising Spin Glas-
ses and MAXSAT. In Cant-úPaz, E. et al., editors, Proceedings of Genetic and
Evolutionary Computation Conference, page 1271–1282, Springer-Verlag, Heidel-
berg, Berlin.

19. Sastry, K., and Xiao, G. (2001). Cluster optimization using extended compact ge-
netic algorithm. Technical Report 2001016, Illinois Genetic Algorithms Laboratory,
University of Illinois at Urbana-Champaign, Champaign, IL.

20. Thierens, D. (1999). Scalability problems of simple genetic algorithms. Evolutio-
nary Computation, Vol. 7, No. 4, page 331–352, MIT Press, Cambridge, MA.

21. Watson, R. A., and Pollack, J. B. (1999). Hierarchically consistent test problems
for genetic algorithms. In Angeline, P. J., Michalewicz, Z., Schoenauer, M., Yao, X.,
and Zalzala, A., editors, Proceedings of Congress on Evolutionary Computation,
page 1406–1413, IEEE Press, Piscataway, NJ.

22. Whitley, D., Rana, S., Dzubera, J., and Mathias, K. E. (1996). Evaluating evolu-
tionary algorithms. Artificial Intelligence, Vol. 85, No. 1–2, page 245–276, Elsevier.

23. Winston, P. H. (1992). Artificial Intelligence, third edition. Addison-Wesley, Rea-
ding, MA.

	Introduction
	Hierarchically Decomposable Functions
	Simultaneity Matrix Construction (SMC) Algorithm
	Partitioning (PAR) Algorithm
	Experimental Results
	Methodology
	A Visualization of the Simultaneity Matrix
	A Comparison to the hBOA

	Conclusions

