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Abstract- The building blocks are common structures of
high-quality solutions. Genetic algorithms often assume
the building-block hypothesis. It is hypothesized that the
high-quality solutions are composed of building blocks
and the solution quality can be improved by composing
building blocks. The studies of building blocks are lim-
ited to some artificial optimization functions in which it
is obvious that the building blocks exist. A large num-
ber of successful applications has been reported with-
out a strong evidence that proves the hypothesis. This
paper proposes a quantitative approach for validating
the building-block hypothesis. We define the quantity of
building blocks and the degree of discontinuity by us-
ing the chi-square matrix. We test the building-block
hypothesis with 15-bit onemax, 5×3-trap, parabola
1− (x2/1010), and two-dimensional Euclidian traveling
salesman problem (TSP). The building-block hypothe-
sis holds for onemax,5×3-trap, and parabola. In the
case of parabola, Gray coding gives a higher quantity of
building blocks than that of binary coding. The hypoth-
esis is accepted for random instances of TSP with a low
confidence.

1 Introduction

The building blocks are common structures of high-quality
solutions [6, 3]. Genetic algorithms often assume the
building-block hypothesis. It is hypothesized that the high-
quality solutions are composed of building blocks and the
solution quality can be improved by composing building
blocks. The studies of building blocks are limited to some
artificial optimization functions in which it is obvious that
the building blocks exist [7, 14]. A large number of suc-
cessful applications has been reported without a strong ev-
idence that proves the hypothesis. The genetic algorithms
enhanced with building-block identification give promis-
ing solutions in real-world applications [11, 4]. However,
it is not sufficient to prove the building-block hypothesis.
Reaching optimal solution results from a number of parame-
ters that interact with each other, for example, genetic oper-
ator, selection method, diversity control, and local search. A
fair building-block measurement must decouple itself from
the unnecessary parameters that involve finding optimal so-
lutions.

Modern genetic algorithms are capable of identifying
and maintaining building blocks [5, 12, 4, 15]. Recent work
turns to build a distribution of solutions [13]. The basic con-
cept of the estimated distribution algorithms (EDAs) starts
with a uniform distribution of solutions. Next, a number of

solutions is drawn according to the distribution. Some good
solutions (winners) are selected, and the distribution is ad-
justed toward the winners (the winner-like solutions will be
drawn with a higher probability in the next iteration). These
steps are repeated until the optimal solution is found or
reaching a termination condition. Building a distribution of
solutions involves identifying dependency of solution bits.
It can be done by a statistical method, for example, Bayesian
network [12]. EDAs focus on the accuracy of building dis-
tribution (or identifying the dependency) which is essential
to improve solution quality. As mentioned earlier, execut-
ing EDAs and obtaining the optimum are not sufficient to
prove the building-block hypothesis. In contrast, testing the
building-block hypothesis requires measuring the quantity
of dependency of solution bits. It will be shown that testing
the hypothesis is simple and fast. If the building-block hy-
pothesis holds, one of the EDAs would be applied. Building
an accurate distribution needs a great deal of computational
time. It might be worth testing the building-block hypothe-
sis before executing EDAs.

This paper proposes a quantitative approach for validat-
ing the building-block hypothesis. We define the quantity of
building blocks and the degree of discontinuity by using the
chi-square matrix [1]. We test the building-block hypothe-
sis with15-bit onemax,5×3-trap, parabola1 − (x2/1010),
and two-dimensional Euclidian traveling salesman problem
(TSP). Onemax and trap functions are chosen for evaluation
purpose because the building-block information is known
beforehand. The quantity of building blocks depends on
how the solutions are encoded. In some cases, the perfor-
mance of genetic algorithms is enhanced by the use of Gray
coding [10]. The parabola is tested with binary coding and
Gray coding. TSP represents real-world applications. We
choose TSP because it is close to practical applications such
as vehicle routing, PCB design, X-ray crytallography, etc
[8, 2]. The hypothesis is tested for three different codings
that are commonly used in the TSP literature.

This paper is organized as follows. Section 2 defines the
quantity of building blocks and the chi-square matrix. Sec-
tion 3 describes a methodology for validating the building-
block hypothesis. Section 4 tests the building-block hypoth-
esis with a number of functions. Section 5 concludes the
paper.

2 The Quantity of Building Blocks

Building blocks are inferred from a set of solutions. An
example of four15-bit solutions is shown below.



v1v2v3 v4v5v6 v7v8v9 v10v11v12 v13v14v15

#1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1
#2 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0
#3 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1
#4 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

An inference might be that the above solutions are com-
posed of aligned chunks of 000 and 111. The strong
dependency between variablesvi andvi+1 andvi+2 where
i = 1, 4, 7, 10, 13 can be detected by a statistical method.
We do not give a precise definition of building blocks, but
measuringthe quantity of building blocksis possible.

Given a set of solutions, the quantity of building blocks
ranges betweenmin and max. min means no building
blocks. This implies that the solutions are random because
random bits do not have common structures.max indicates
that the solutions are absolutely not random. For instance,
all solution bits are zero. The quantity of building blocks
inversely relates to randomness. We choose the chi-square
matrix for measuring randomness because computing the
matrix is simple and fast [1].

Let M = (mij) be an`×` symmetric matrix of num-
bers. LetP be a population or a set of`-bit binary strings.
The chi-square matrix is defined as follows.

mij =
{

ChiSquare(i, j) ; if i 6= j
0 ; otherwise.

(1)

TheChiSquare(i, j) is defined as:

∑
xy

(Countxy
P (i, j)− n/4)2

n/4
, xy ∈ {00, 01, 10, 11} (2)

where the observed frequencyCountxy
P (i, j) counts the

number of solutions in which biti is identicalx and bitj is
identical toy. The expected frequencies of observing “00,”
“01,” “10,” “11” are n/4 wheren is the number of solu-
tions. If the solutions are random, the observed frequencies
are close to the expected frequencies and therefore the chi-
square is low. The quantity of building blocks is defined as
the sum of all matrix elements. Since the matrix is sym-
metric, we sum only a half of the matrix. The quantity of
building blocks given a population,P , is defined as follows.

QP =
∑

ij

mij , i < j (3)

The time complexity of computing the quantity of building
blocks isO(`2n).

It is important to note that the chi-square matrix deals
only with second-order interactions or marginal depen-
dency. There exist also higher-order interactions that play
a crucial role in optimization. However, our goal is not to
build an accurate distribution of solutions. A sum of every
pairwise couplings is sufficient for measuring the quantity
of building blocks, because the sum counts the quantity of
higher-order interactions. For examples:

v1 v2 v3 v4 v1 v2 v3 v4

#1 0 0 0 0 #1 0 0 0 0
#2 0 0 1 1 #2 0 0 0 0
#3 1 1 0 0 #3 1 1 1 1
#4 1 1 1 1 #4 1 1 1 1

The set of four 4-bit solutions on the left represents the
second-order interactions ofv1 andv2, v3 andv4. There
is no dependency betweenv1 and v3, v1 and v4, v2 and
v3, v2 and v4 because the observed frequencies are iden-
tical to the expected frequencies. The quantity of build-
ing blocks isChiSquare(1, 2) + ChiSquare(3, 4) = 4
+ 4 = 8. The solutions on the right represent the higher-
order interactions ofv1, v2, v3, v4. The quantity of
building blocks isChiSquare(1, 2) + ChiSquare(1, 3) +
ChiSquare(1, 4) + ChiSquare(2, 3) + ChiSquare(2, 4)
+ ChiSquare(3, 4) = 4 + 4 + 4 + 4 + 4 + 4 = 24. The so-
lutions on the right give a higher quantity of building blocks
because of the high-order interactions.

3 A Methodology for Validating the Building-
block Hypothesis

In the previous section, we have defined the quantity of
building blocks that is a fundamental tool for validating
the building-block hypothesis. The building-block hypoth-
esis are separated in two hypotheses. The first hypothesis
states that the high-quality solutions are composed of build-
ing blocks. The second hypothesis states that the solution
quality can be improved by composing building blocks. We
begin with a methodology for validating the first hypothe-
sis. Then, a different methodology for validating the second
hypothesis will be presented.

Let F : {0, 1}` → R be a fitness function. Let
P1, . . . , Pm be m sets ofn high-quality solutions. Let
T1, . . . , Tm be m fitness thresholds such thatT1 < . . . <
Tm. Each setPi is made by randomly choosingn solutions
of which their fitness is greater than or equal toTi. The sets
of solutionsP1 to Pm simulate a sequence of evolving pop-
ulations generated by an optimization algorithm. We do not
execute an actual optimization algorithm because we want
to decouple our methodology from unnecessary parameters
such as genetic operator, selection method, diversity con-
trol, and local search.

The quantity of building blocks is computed for allP1

to Pm. The result is shown in Figure 1.min andmax are
the minimum and the maximum quantity of building blocks.
min is the quantity of building blocks in a random popula-
tion. max is the quantity of building blocks in a population
in which all bits are zero. We normalizemin andmax to
0 and 1, respectively. The first hypothesis holds if and only
if the quantity of building blocks does not fall within the
rejection area (being closer tomin means more random-
ness). Drawing the plot in Figure 1 requires some parame-
ters. Here is a guideline for parameter settings.

Population size.If the population size is too small, the
gap betweenmin andmax is narrowed. Subsequently, the
resolution is not enough for distinguishing between a ran-
dom population and a nonrandom population. Themin and
max should be calculated to make sure that the chosen pop-
ulation size gives a large resolution.

Fitness thresholds.T1 should not be too small because
it makesP1 random (falling within the rejection area). The
first hypothesis involves high-quality solutions.T1 should



be set at a fitness value that indicates “high quality”. A rule
of thumb is to setP1 a little bit greater than the average
fitness of a random population.Tm can be at most the opti-
mum. Increasing the number of fitness thresholds,m, likes
zooming in the plot. Settingm to be too small makes loss of
visual information because of zooming out. It is difficult to
make a good-looking plot at the first time without any prior
knowledge about the fitness function. However, the sweet
spot for settingm is large for trial-and-error method.

Rejection area. The first hypothesis is rejected if the
quantity of building blocks is close tomin (falling within
the rejection area). It is difficult to draw a line that di-
vides building blocks and randomness because the quan-
tity of building blocks is defined over the whole population.
However, we can test the randomness separately for every
pairwise coupling. There arè(`− 1)/2 pairwise couplings
(the number of elements in the upper triangle of the chi-
square matrix) wherè is the number of solution bits. The
chi-square test is a test procedure for studying random data
[9]. It is summarized as follows. We observe a solution
at bit i and bit j. The number of observations is set at a
fairly large number such that an expected frequency is five
or more. An observation falls into four categories (three
degrees of freedom) that are “00,” “01,” “10,” “11.” We
compute the chi-square value (an element of the chi-square
matrix). The selected percentage points of the chi-square
distribution is shown below.

Chi-square value Percentage point
11.345 99%
7.815 95%
6.251 90%

If the chi-square value is greater than 99% entry, the ob-
served data is not sufficiently random. If the chi-square
value lies between the 95% and 99% entries, the observed
data is suspect. If the chi-square value lies between the 90%
and 95% entries, the observed data might be almost suspect.
Otherwise, the observed data passes the randomness test.
We also reject the building-block hypothesis if more than a
half of all pairwise couplings pass the randomness test.

The number of conducting tests. As testing the hy-
pothesis is probabilistic, the hypothesis is accepted by a ma-
jority vote or an average quantity of building blocks. The
number of conducting tests is up to your desired confidence
in accepting the hypothesis.

Generating solutions,Pi, of which their fitness is greater
or equal to a constant,Ti, is not obvious. Fortunately,
we can choose a small problem size so that we can enu-
merate all possible solutions (for example, choosing 8-city
TSP rather than 100-city TSP). Intuitively, if the hypothesis
holds for 8-city TSP, the hypothesis would hold for 100-city
TSP. Enumerating all possible solutions may not be required
if there is an effective method for generating a set of solu-
tions that is subject to a fitness constraint.

The second hypothesis states that the solution quality can
be improved by composing building blocks. In other words,
the common structures ofPk are similar to that ofPk+1 be-
cause the populationPk+1 is produced by composing build-
ing blocks from the previous populationPk. The second
hypothesis would be accepted if there exist a similarity or

Population
321 m

max (1)

Rejection Area

P P P P
min (0)

Quantity of Building Blocks

. . . . . . . . . . .

Figure 1: Quantity of building blocks.

continuity betweenPk andPk+1. To validate the second
hypothesis, we define the degree of discontinuity between
two populations. The degree of discontinuity betweenPk

andPk+1 is defined as:

DPk,Pk+1 =
√∑

ij

(mk
ij −mk+1

ij )2, i < j (4)

where(mk
ij) is the chi-square matrix ofPk and(mk+1

ij ) is
the chi-square matrix ofPk+1. The degree of discontinu-
ity is plotted in Figure 2.min andmax are the minimum
and the maximum degree of discontinuity.min is always
zero (Pk andPk+1 are identical).max is the degree of dis-
continuity between a random population and a population
in which all bits are zero. We normalizemax to 1. The
second hypothesis holds if and only if the degree of discon-
tinuity does not fall within the rejection area (being close
to max means a drastic change of common structures be-
tween adjacent populations). The other parameter settings
are similar to that of the first hypothesis.

Population Pair
P

Rejection Area

max (1)

min (0)
P P P

1
,P ,P

2
,P

3
,P

m−12 3

Degree of Discontinuity

4
. . . . . . . . . .

m

Figure 2: Degree of discontinuity.

4 Testing the Building-block Hypothesis

This section tests the building-block hypothesis with15-bit
onemax,5×3-trap, parabola, and two-dimensional Euclid-
ian TSP. The15-bit onemax Fonemax : {0, 1}15 →
{0, . . . , 15} is defined as:

Fonemax =
15∑

i=1

bi (5)

wherebi is the ith bit of the solution. The5×3-bit trap
F5×3 : {0, 1}15 → {0, . . . , 15} is defined as:

F5×3(B1B2B3B4B5) =
5∑

i=1

F3(Bi) (6)



whereBi ∈ {0, 1}3. F3 denotes 3-bit trapF3 : {0, 1}3 →
{0, 1, 2, 3} that is defined as:

F3(b1b2b3) =
{

3 ; if u = 3
2− u ; otherwise,

(7)

whereu =
∑

bi andbi ∈ {0, 1}. The quantity of building
blocks and the degree of discontinuity are shown in Figure
3 (see also Table 2). The building-block hypothesis holds
for 15-bit onemax and5×3-trap because of high quantity
of building blocks and low degree of discontinuity. In ad-
dition, the number of pairwise couplings that pass the ran-
domness test drops to zero. It is clear that the populations
are composed of building blocks and not random. It may
seem counter-intuitive that onemax (first-order interaction)
gives a higher quantity of building blocks than that of5×3-
trap (third-order interaction). The high-quality solutions of
onemax are composed of “1” more than “0.” The5×3-trap
solutions are aligned chunks of “000” and “111.” The one-
max and5×3-trap solutions of which the fitness is 12 are
shown below.

15-bit onemax 5×3-trap
#1 000111111111111 000000000111111
#2 001011111111111 000000111000111
#3 001101111111111 000000111111000
#4 001110111111111 000001111111111
#5 001111011111111 000010111111111

By the chi-square definition, the onemax solutions are more
dependent (less random). The quantity of building blocks is
1143 and 720 for onemax and5×3-trap, respectively. The
result is counter-intuitive.

The parabolaFparabola : {0, 1}32 → I is defined as:

Fparabola(x) = 1− x2

1010
. (8)

There are two alternatives for encoding solutions, the binary
coding and Gray coding. The 3-bit coding is shown in Ta-
ble 1 (actual codings are 32 bits). The quantity of building
blocks and the degree of discontinuity are shown in Figure
4 (see also Table 3). It is obvious that Gray coding gives
a higher quantity of building blocks. The high discontinu-
ity of Gray coding is typical for the quantity of building
blocks that increases sharply. The building-block hypothe-
sis is rejected for binary coding because of the low quantity
of building blocks and more than a half of pairwise cou-
plings passing the randomness test. On the other hand, the
hypothesis is accepted with a high confidence for Gray cod-
ing.

We randomize an instance of TSP (Figure 7). The num-
ber of cities is fixed at eight. Each city is randomly placed
on a10×10 grid. The cost of traveling from cityi to j is
identical to the distance betweeni andj. The fitness of a
solution is 100 subtracted by tour length. There are three
codings that are commonly used. The first coding, each city
is tagged with a 3-digit binary number (“000” to “111”).
The first three bit of a binary solution is the starting city.
The next city the salesman visits is the next three bits. The
second coding represents a tour by a matrix. If the salesman
visits cityi beforej, the matrix element at rowi and column
j is one. Otherwise, the matrix element is zero. The third

Table 1: Binary coding and Gray coding.

Solution Binary coding Gray coding
-4 100 110
-3 101 111
-2 110 101
-1 111 100
+0 000 000
+1 001 001
+2 010 011
+3 111 010

coding is very similar to the second. If the salesman travels
from city i to j, the matrix element at rowi and columnj is
one. Otherwise, the matrix element is zero. The first coding
results in 24-bit solutions, but the second and the third cod-
ing results in 56-bit solutions. We do not count the binary
strings that are invalid tours. The expected frequencies of
observing a pairwise coupling being “00,” “01,” “10,” “11”
are not identical for TSP codings. Equation 2 assumes the
identical expected frequencies. In the case of TSP codings,
theChiSquare(i, j) is defined as follows.

(O00 − E00)
2

E00
+

(O01 − E01)
2

E01
+

(O10 − E10)
2

E10
+

(O11 − E11)
2

E11
(9)

TheOxy andExy are the observed frequencies and the ex-
pected frequencies, respectively. The expected frequencies,
Exy, are computed by enumerating all possible solutions.
The quantity of building blocks and the degree of discon-
tinuity are shown separately in Figure 5 and 6 due to the
different lengths in codings (see also Table 4 and 5). The
building-block hypothesis is rejected for the first and the
second codings because the quantity of building blocks is
obviously low. Plus more than a half of pairwise couplings
pass the randomness test. The solutions encoded by the first
and the second codings are likely random bits rather than
composing of some common structures. The third coding
gives a higher quantity of building blocks that distinguishes
the third coding from the others. However, the quantity
of building blocks is a little bit lower than that of5×3-
trap function. The5×3-trap is invented to have a sufficient
amount of building blocks. In terms of quantity of build-
ing blocks, the hypothesis would be accepted but more than
40% of pairwise couplings pass the randomness test. For
the third coding, we accept the hypothesis with a low confi-
dence. The main point might not be accepting or rejecting
the hypothesis. Figure 5 and 6 suggest that the third coding
is superior to the others. The third coding would be the best
choice if we are going to solve TSP with an optimizer that
exploits common structures.

In practical optimization problems, there are many
choices for fitness function and coding. Designing fitness
function and coding is problematic because it is evaluated
by the end result (the quality of a best-so-far solution). The
solution quality is affected by many parameters that inter-
act with each other. Therefore it is difficult to find out a
proper fitness function and a proper coding. Our method for
testing the building-block hypothesis is separated from the
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Figure 3: Quantity of building blocks (left) and degree of discontinuity (right). The fitness functions are15-bit onemax and
5×3-trap. The population size is set at 100. Each point is averaged from 10 independent runs. The fitness thresholds are 8,
9, 10, 11, 12 (see also Table 2).
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Figure 4: Quantity of building blocks (left) and degree of discontinuity (right). The fitness function is parabola (1−x2/1010)
with binary and Gray codings. The population size is set at 500. Each point is averaged from 10 independent runs. The
fitness thresholds are10−8, 10−6, 10−4, 10−2, 0 (see also Table 3).
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Figure 5: Quantity of building blocks (left) and degree of discontinuity (right). The fitness function is 100 subtracted by a
tour length (coding 1). The population size is set at 500. Each point is averaged from 10 independent runs (an instance of
TSP is randomized every run). The fitness thresholds are 45, 48, 51, 54, 57, 60, 63 (see also Table 4).
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Figure 6: Quantity of building blocks (left) and degree of discontinuity (right). The fitness function is 100 subtracted by
a tour length (codings 2 and 3). The population size is set at 500. Each point is averaged from 10 independent runs (an
instance of TSP is randomized every run). The fitness thresholds are 45, 48, 51, 54, 57, 60, 63 (see also Table 5).
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Figure 7: Three codings for TSP. A tour (left) is encoded to a binary string and matrices (right). The tour length is 28.58
and the fitness is 100- 28.58 = 71.42.

Table 2: Averaged number of pairwise couplings that pass the randomness test (max = 105). The fitness functions are
15-bit onemax and5×3-trap. This table corresponds to the data in Figure 3.

Fitness Averaged number of pairwise couplings that pass the randomness test
function P1 P2 P3 P4 P5

Onemax 26% 3% 0% 0% 0%
5×3-trap 72% 45% 21% 3% 0%

Table 3: Averaged number of pairwise couplings that pass the randomness test (max = 496). The fitness functions is
parabola (1− x2/10) with binary and Gray codings. This table corresponds to the data in Figure 4.

Coding Averaged number of pairwise couplings that pass the randomness test
P1 P2 P3 P4 P5

Binary 88% 86% 76% 77% 67%
Gray 80% 58% 41% 36% 22%

Table 4: Averaged number of pairwise couplings that pass the randomness test (max = 276). The fitness functions is 100
subtracted by tour length (coding 1). This table corresponds to the data in Figure 5.

Coding Averaged number of pairwise couplings that pass the randomness test
P1 P2 P3 P4 P5 P6 P7

1 91% 90% 84% 80% 70% 67% 59%

Table 5: Averaged number of pairwise couplings that pass the randomness test (max = 1540). The fitness functions is 100
subtracted by tour length (codings 2 and 3). This table corresponds to the data in Figure 6.

Coding Averaged number of pairwise couplings that pass the randomness test
P1 P2 P3 P4 P5 P6 P7

2 93% 92% 92% 92% 89% 86% 83%
3 88% 86% 81% 73% 65% 53% 40%

optimization. A large number of fitness functions and cod-
ings can be tested in a short time by setting a small problem
size.

5 Conclusion

Two important measurements are defined, the quantity of
building blocks and the degree of discontinuity. We show
that the building-block hypothesis can be tested for a small
problem size. The building-block hypothesis holds for15-
bit onemax,5×3-trap, and parabola (Gray coding). For TSP

with the third coding, the hypothesis is accepted with a low
confidence. Future work will be to explore the quantity
of building blocks in a wide range of real-world applica-
tions. The final outcome is a number of problem domains
for which the building-block identification and composition
are applicable.
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