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ABSTRACT 
The problem of multiple sequence alignment is important for 
bioinformatics. This problem is widely studied and a popular tool 
to solve this problem is Clustal X. This work introduces a 
multiple objective evolutionary algorithm to improve solutions 
obtained from Clustal X. The proposed method is tested with the 
dataset from BAliBASE database.   

Categories and Subject Descriptors 
J.3 [LIFE AND MEDICAL SCIENCES]: – Biology and 
genetics, Medical information systems.  

General Terms: Algorithms, Performance.  

Keywords: Multiple objective evolutionary algorithm, 
Multiple sequence alignment, Clustal X, BAliBASE. 

1. INTRODUCTION 
Multiple sequence alignment (MSA) of amino acid 
sequences is a fundamental part of bioinformatics and 
dynamic programming is a popular method to solve MSA 
problems. Many previous works for example [1] used sum-
of-pair to scoring and improving the solution. This work 
introduces the use of multiple sets of penalty function in an 
evolutionary algorithm to optimize the alignment.  

2. The MOMSA Algorithm 
MOMSA is described as follow: let P be a population, A be 
nondominated set or archive, T be maximum number of 
generations. 

I. Generate an initial population P0 from Clustal X, set 
empty archive A0 and t = 0. 

II. Calculate objective value and rank value of individuals 
in Pt and At. 

III. Select individual in Pt and At to At+1. 
IV. If t ≥ T then stop. 
V. Use binary tournament selection on Pt and At.  

VI. Use recombination and mutation operators to create 
Pt+1, set t=t+1 and go to step II. 

The input in MOMSA is derived from the output of program 
Clustal X [2]. The new archive is derived from nondominated 
individuals (rank = 0) and they must not be the same individuals. 
The binary tournament selection is used to select individuals. 
Recombination and mutation operators are used to create new 
individuals. Finally, the program repeats step II and checks for the 
condition to stop or to terminate. 

2.1 Initial Solutions 
The output from Clustal X is used as an initial solution in the 
MOMSA population. The sequence is extended 10% longer than 
the output from Clustal X.  

2.2 Objective Function 
To evaluate the score of a candidate alignment, the reward 
function and the penalty function are used.   

Objective function = SPscore - GapPenalty  (1) 

SPscore is sum-of-pair score.  There are several cost matrices such 
as PAM, BLOSUM to use in calculation the cost.  Each cost 
matrix indicates the probability of the similarity between residues.  
Blosum45 is used in this work.  

n-1 n
SPscore = BLOSUM45(l ,l )i ji=1 j=i+1

∑ ∑  (2) 

The gap penalty score specifies the penalty score. 
GapPenalty = GOP+GEP×GAPS   (3) 

where GOP was gap opening penalty, GEP was the gap extension 
penalty and GAPS was the number of consecutive gaps under 
consideration. 
MOMSA solves this problem by using two objective functions. 
The first objective function was assigned value by GOP>GEP and 
the second objective function was assigned value by GOP<GEP. 

2.3 Pareto ranking 
Each individual i in the population Pt and archive At is assigned 
the rank value.  

Rank(i)= {j | j P + A j i}t t∈ ∧ f   (4) 

Where ⋅  denotes the cardinality of a set, +  stands for multiset 

union and f  is the Pareto dominance relation. 
The rank zero means that the individual is nondominated solution. 
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2.4 Environment Selection 
The new archive is derived from two conditions. First all 
nondominated individual in Pt and At (rank = 0) are copied to the 
new archive. 

{ | ( ) 0}1A i i P A Rank it tt = ∈ + ∧ =+
 (5) 

Second, each individual in the new archive must not be the same. 

2.5 Operators 
In MOMSA, various variational operators are used to improve 
solutions. One recombination operator and three mutation 
operators are used in this work. The Recombination operator is 
TwopointCrossover and mutations are MoveColumn, ShiftSide 
and RandomLocalShuffle. 

The TwopointCrossover randomly chooses column region that the 
positions of residue are not the same in two old individuals and 
exchanges the chosen column region. The MoveColumn operator 
randomly selects a column that residues in this column are near 
gaps and chooses a random direction to move the column left or 
right. Residues in the selected column follow the direction of the 
last position in the gap region. The ShiftSide operator selects a 
random gap region from a randomly chosen row and moves 
residue near the first or last gap in the chosen gap region to the 
other side. If the gap region has residue in the left and right hand 
side then randomly chooses a side.  The RandomLocalShuffle 
operator picks a random residue from a randomly chosen row and 
checks a gap region in its neighbor. If there is a gap region, this 
operator exchanges the selected residue with a randomly chosen 
position in the gap region.  Finally, the program will always pack 
gap columns to the end of last column. 

3. Experiments 
3.1 BAliBASE  
This work used nine data sets (1taq, 1aad, 1pii, 1pfc, 1hfh, 451c, 
kinase, 1aboA, 1tvxA) from the first reference in BAliBASE [3] 
database in the experiments. In Table 1, NSEQ are number of 
sequences, LSEQ are length of sequences and SEQID are percent 
residue identity.  

3.2 Evaluation measure 
The result from the MOMSA is compared with the BAliBASE 
reference alignments using the BAliBASE evaluation measure. 

The sum-of-pair score (SPS) is calculated such that the score 
increases with the number of sequence correctly aligned. The 
column score (CS) counts the number of correct alignment of all 
sequences. 

3.3 Experimental Setup 
In this study we used the default parameter setting provided with 
Clustal X to generate the candidate input for MOMSA. The 
population size is 50 and the total number of generation is 200. 
BLOSUM45, substitution matrix, is used. The first objective 
function has GOP=10 and GEP=1. The second objective function 
has GOP=8 and GEP=12. The probability of recombination 
operator was 0.25 and mutation operators were 0.75. Three 
mutations were randomly chosen with equal probability. 

4. Result 
Table1 summarizes the performance of MOMSA on the test set. 
The SPS and CS columns show the BAliBASE scores. The best 
column shows the score derived from overall best alignments. The 
mean and SD columns show the mean score obtained from 30 
runs of program and standard deviations.  

The MOMSA improved the SPS score of all data sets. In CS 
score, mean score was improved in seven data sets over 30 runs. 
The remaining two data are similar or equal to Clustal X. The 
standard deviations were low. This indicates the reliability of 
MOMSA in obtaining solutions. 
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Table 1. Comparison between Clustal X and MOMSA in terms of SPS and CS. 

Clustal X MOMSA 
SPS CS SPS CS Dataset 

* * Best Mean SD Best Mean SD 
1taq 0.874 0.810 0.878 0.876 0.001 0.819 0.817 0.011 
1aad 0.818 0.696 0.833 0.833 0.00 0.714 0.714 0.000 
1pii 0.787 0.618 0.789 0.789 0.002 0.622 0.621 0.004 
1pfc 0.774 0.600 0.797 0.784 0.007 0.620 0.603 0.006 
1hfh 0.820 0.624 0.836 0.829 0.004 0.679 0.661 0.01 
451c 0.555 0.338 0.568 0.561 0.003 0.354 0.354 0.000 

kinase 0.655 0.485 0.665 0.661 0.003 0.494 0.488 0.003 
1aboA 0.693 0.556 0.713 0.706 0.006 0.556 0.534 0.005 
1tvxA 0.223 0.000 0.227 0.225 0.002 0.000 0.000 0.000 
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