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Abstract— The Compact Genetic Algorithm (cGA) has a 

distinct characteristic that it requires almost minimal memory to 
store candidate solutions. It represents a population structure as 
a probability distribution over the set of solutions. Although cGA 
offers many advantages, it has a limitation that hinges on an 
assumption of the independency between each individual bit. For 
example, cGA fails to solve a deceptive function or the so called 
trap function, which is a standard difficult test problem for 
genetic algorithm. This paper proposes applying a moving 
average technique to update a probability vector in the compact 
genetic algorithm. This method requires fewer evaluations and 
achieves a higher solution quality. The results are compared with 
the original cGA, sGA, persistent elitist cGA (pe-cGA) and 
nonpersistent elitist cGA (ne-cGA). The compared results 
illustrate that the proposed methodology can successfully 
improve the solution quality by modifying the updating strategy 
of cGA. 
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I.  INTRODUCTION 
The genetic algorithm (GA) [1, 2] is an optimization 

algorithm inspired by natural evolution [3]. The GA is 
performed by creating a population of solutions and uses 
genetic operators, e.g. reproduction, crossover and mutation to 
produce offsprings. The solutions are gradually improved by a 
selection scheme which selects the survivors by their fitness 
values defined by users. Contrary to the GA, the compact 
genetic algorithm (cGA) proposed by Harik, Lobo and 
Goldberg [4] represents the population as a probability 
distribution over the set of solutions; thus, the whole population 
needs not to be stored. At each generation, cGA samples 
individuals according to the probabilities specified in the 
probability vector. The individuals are evaluated and the 
probability vector is updated towards the better individual. The 
cGA mimics the order-one behavior of simple genetic 
algorithm (sGA) with uniform crossover using a small amount 
of memory and achieves comparable quality with 
approximately the same number of fitness evaluations as the 
sGA. The cGA reduces the size and power requirements of the 
system by representing the population as a probability vector 
rather than a collection of bitstrings. Thus, these advantages 
translate into a flexible hardware implementation. There are 
several research works that apply cGA to hardware 
implementation [5-7] because it is easy to implement cGA 

using common VLSI techniques. Although it has many 
advantages, the cGA does not provide acceptable solutions to 
difficult problems such as a deceptive problem or so called trap 
function, which is a standard difficult test problem for GA. To 
improve the cGA, Zhou, Meng and Qiu [8] presented an 
improved cGA using mutation, named mutated by bit compact 
genetic algorithm (MBBCGA). At each generation, MBBCGA 
generates only one individual and then mutates this individual 
bit by bit. Ahn and Ramakrishna [9] proposed persistent elitist 
compact genetic algorithm (pe-cGA) and nonpersistent elitist 
compact genetic algorithm (ne-cGA) for solving difficult 
optimization problems. The pe-cGA keeps the current best 
solution until a better solution is found. The ne-cGA relaxes 
selection pressure of the pe-cGA by restricting the length of 
elite chromosome’s inheritance, thereby mitigating the 
possibility of premature convergence. The ne-cGA further 
improves the performance of the pe-cGA by avoiding strong 
elitism that may lead to premature convergence.  

In order to improve the ability of cGA, we propose using a 
moving average technique to modify the updating strategy of 
cGA. This technique is simple to understand and implement. 
The concept behind this method is to wait for more information 
in order to reduce of incorrect decision. The moving average 
approach can help slowing down the increasing or decreasing 
of the probability vector. The algorithm implicitly waits to see 
the trend, which could lead to a better decision strategy.  

The paper is organized as follows: Section II reviews the 
compact genetic algorithm. Section III describes the solution 
technique using a moving average approach. Section IV 
contains the test problem and the experiment setup. Experiment 
results and analysis are provided in Section V. A conclusion is 
drawn in Section VI. 

II. THE COMPACT GENETIC ALGORITHM 
The Compact Genetic Algorithm (cGA), proposed by 

Harik, Lobo and Goldberg [4], is a special class of genetic 
algorithms. It represents the population as a probability 
distribution over the set of solutions; thus, the whole population 
needs not to be stored. At each generation, cGA samples 
individuals according to the probabilities specified in the 
probability vector. The individuals are evaluated and the 
probability vector is updated towards the better individual.  
Hence, its limitation hinges on the assumption of the 
independency between each individual bit. 
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The cGA has an advantage of using a small amount of 
memory and achieves comparable quality with approximately 
the same number of fitness evaluations as sGA. The 
pseudocode of cGA is shown in Fig. 1. The parameters are a 
population size(n) and a chromosome length(l).  

 

 

1) initialize probability vector 
 for i := 1 to l do p[i] := 0.5; 
 

2) generate two individuals from the vector 
 a := generate(p); 
 b := generate(p); 
 

3) let them compete 
 winner, loser := compete(a, b); 
 

4) update the probability vector towards  
the better one 

 for i := 1 to l do 
           if winner[i] ≠ loser[i] then 
           if winner[i] = 1 then p[i] := p[i] + 1/n 
                                    else  p[i] := p[i] – 1/n; 
 

5) check if the vector has converged 
 for i := 1 to l do 
          if p[i] > 0 and p[i] < 1 then 
           return to step 2; 
 

 
Figure 1.   Pseudocode of the cGA 

 
First, the probability vector p is initialized to 0.5. Next, the 

individuals a and b are generated from p. The fitness values are 
then assigned to a and b. The probability vector is updated 
towards the better individual. In the population of size n, the 
updating step size is 1/n; the probability vector is increased or 
decreased by this size. The loop is repeated until the vector 
converges.    

Harik, Lobo and Goldberg [4] also propose a modification 
of the compact genetic algorithm with a higher selection 
pressure. It simulates a tournament size s. Fig. 2 shows the 
modification of cGA. 
 

1) generate s individuals from the vector  
and store them in S 

 for i := 1 to s do S[i] := generate(p); 
 

2) rearrange S so that S[1] is the individual  
with the highest fitness 

 

3) Compare S[1] with the other individuals 
 for i := 2 to s do 
 begin 
  winner, loser := compete(S[1], S[i]); 

  update probability vector  
  (step 4 of cGA code) 

 end 
 

 
Figure 2.   Pseudocode of a tournament cGA 

III. MODIFYING UPDATING METHOD 
 

This paper proposes applying a moving average technique 
to update the probability vector in compact genetic algorithm. 

A moving average approach is one of the oldest and most 
popular technical analysis tools for trend identification in 
financial application. A simple moving average is calculated by 
adding together the closing prices of a financial instrument 
over a certain number of days and then dividing the sum by the 
number of days involved. For example, the five-day average 
for a stock price would be calculated by taking five days’ worth 
of data, adding them together, and dividing by five. Assume 
that the following table is the closing prices for the last seven 
days of market. 

TABLE I.  EXAMPLE OF STOCK PRICES  

day1 day2 day3 day4 day5 day6 day7 

1311 1284 1271 1307 1388 1304 1368 

 
To calculate the moving average: take the first five days 

worth of data and calculate the average value. Then add the 
prices for day 2-6 together and divide by five. Continue doing 
this for day 3-7 and so on. From table I, the moving average for 
day 1-5 is (1311 + 1284 + 1271 + 1307 + 1388) / 5 and the 
moving average for day 2-6 is (1284 + 1271 + 1307 + 1388 + 
1304) / 5 respectively. 

We apply the moving average approach to update the 
probability vector by adding the circular array size M that is a 
window size of the moving average. This modification replaces 
a step 4) of the standard cGA shown in Fig. 1. The new step 4) 
is described in the following pseudocode. 
 
 
 
 
  

 4.1) calculate the updating rate (q[i]) 
 for i := 1 to l do 
           if winner[i] ≠ loser[i] then 
           if winner[i] = 1 then q[i] := q[i] + 1/n 
                                    else  q[i] := q[i] – 1/n; 

  
4.2) calculate the moving average (movavg) 

for i := 1 to l do 
     for m := 1 to M do 
          movavg = movavg + q[i][m] 

       movavg = movavg / M; 
  p[i] = movavg; 
 
 

 
Figure 3.   Pseudocode of modification of cGA 

 

IV. TESTING PROBLEMS 
 

In the experiments, we test the algorithms using two test 
problems: 100 bit one-max problem and 3x10-bit trap problem. 

691



The data are averaged over 50 runs. All runs end when the 
vector fully converges, that is all positions are zero or one.  

One-max problem is a simple test problem for GA. This 
problem finds a maximum value in which all bits are one. The 
fitness value is assigned according to the number of bits that 
are one in the chromosome. Thus, the maximum value is equal 
to the chromosome length. 

The trap function [10] is a difficult test problem for GA. 
The general k-bit trap function is defined as: 
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This function fools gradient-based optimizers to favor 

zeroes, but the optimal solution is composed of all ones. The k 
and m may vary to produce a number of test functions. For 
example, 3x5 bit trap function is shown in table II. 

We test the algorithm on these two problems using a 
moving average window size of 2, 3, 4, 5, 10 and 15. The 
results are compared with the original cGA, sGA, pe-cGA and 
ne-cGA. 

TABLE II.  EXAMPLE OF 3X5 BIT TRAP FUNCTION  

Ind. b0b1b2 b3b4b5 b6b7b8 b9b10b11 b12b13b14 Fit. 

1 111 111 000 111 000 13.0 
2 000 000 111 000 111 12.0 
3 111 111 011 111 111 12.0 
4 111 000 000 111 000 12.0 
5 111 001 010 111 111 11.0 
6 000 000 000 000 111 11.0 
7 111 001 110 111 111 10.0 
8 000 000 000 000 000 10.0 

 

 

V. EXPERIMENT RESULTS AND ANALYSIS 
 

In the experiments, we test the algorithms using two 
problems: one-max and trap problems. This section presents 
the experiment results and compares the proposed technique 
with the cGA, sGA, pe-cGA and ne-cGA in terms of the 
solution quality and the number of function evaluations. The 

results of cGA and sGA are from the original paper of cGA 
[4], and the pe-cGA and ne-cGA results are from [9].   

First, the results from the one-max problem are shown. Fig. 
4 shows the solution quality, and Fig. 5 shows the number of 
function evaluations needed to converge. The results from the 
moving-average cGA (mcGA) are comparable to sGA and 
cGA in terms of performance and solution quality. From Fig. 4 
and Fig. 5, it can be seen that using the same number of 
function evaluations, the moving-average cGA obtains higher 
solution quality than the cGA and sGA.   
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Figure 4.   Comparison of solution quality on one-max problem. 
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Figure 5.   Comparison of the number of function evaluations on one-max 
problem. 
 

Second, the results from the trap problem are illustrated. 
Fig. 6 shows the comparison of sGA, cGA, pe-cGA, ne-cGA 
and cGA with a moving average (mcGA). The graphs illustrate 
that the moving average cGA outperforms the original cGA in 
all cases in terms of solution quality and the number of 
function evaluations. Table III shows the details of window 
size variations versus the average number of correct building 
blocks and the average number of function evaluations taken 
to converge. 
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TABLE III .        PERFORMANCE COMPARISON AT VARIOUS WINDOW SIZES 
 

Window Population Tournament Size 2 Tournament Size 4 Tournament Size 8 

Size Size BBs Evaluation BBs Evaluation BBs Evaluation 

2 8 3.84 141.20 3.42 70.88 3.00 44.96 
 500 4.68 17699.68 6.88 10531.76 7.98 7875.52 
 1000 4.22 38320.96 7.16 22483.84 8.16 16952.48 
 1500 4.00 56551.88 7.72 32065.92 8.38 23490.56 
 2000 3.36 76136.00 8.54 43296.88 9.40 30356.16 
 2500 3.80 96455.92 8.28 54014.88 8.88 37940.00 
 3000 3.56 118202.44 8.56 62631.84 8.92 46039.68 

3 8 3.68 150.36 3.46 69.92 3.26 44.48 
 500 4.60 18163.12 7.48 10437.36 7.90 7874.08 
 1000 3.90 37549.80 7.48 22438.00 8.02 17321.60 
 1500 3.50 56066.40 8.40 32198.48 9.28 22958.08 
 2000 3.26 76706.76 8.76 42448.08 9.52 30449.76 
 2500 3.72 95621.80 8.98 54092.80 9.58 38102.40 
 3000 3.84 116655.84 8.52 63708.40 8.92 44619.68 

4 8 3.46 147.48 3.68 73.12 2.92 44.00 
 500 4.62 18006.48 7.30 10377.04 8.00 7973.76 
 1000 4.34 38481.28 7.26 22858.16 8.06 16927.36 
 1500 3.88 57742.28 8.24 32326.72 9.02 23488.16 
 2000 4.00 77834.80 8.84 42976.80 9.34 30811.04 
 2500 3.80 96903.68 8.88 53437.20 9.68 38340.96 
 3000 3.54 116630.28 8.50 64264.80 8.96 44970.56 

5 8 3.88 159.00 3.98 76.08 3.34 44.00 
 500 4.42 18210.36 7.12 10329.12 7.60 7868.32 
 1000 3.84 38444.56 7.42 22876.32 8.14 16613.76 
 1500 3.70 56212.72 8.04 32073.76 9.00 23500.96 
 2000 3.56 76595.96 8.56 42433.44 9.48 30300.00 
 2500 3.60 96629.32 8.98 53151.68 9.74 37524.32 
 3000 3.24 113416.52 8.56 64491.20 8.94 45147.84 

10 8 3.72 199.84 4.34 97.36 3.50 66.40 
 500 4.38 17622.40 7.18 10512.56 7.50 8039.36 
 1000 3.80 37699.12 7.58 22382.56 7.98 16888.32 
 1500 4.10 57466.28 8.18 32280.96 8.92 23189.12 
 2000 3.88 78326.04 8.48 42414.80 9.26 31106.88 
 2500 3.64 95888.12 8.84 51769.04 9.70 37622.24 
 3000 3.80 119054.36 9.18 63173.76 9.72 44631.84 

15 8 4.30 253.76 4.08 125.20 4.06 85.12 
 500 4.50 17724.96 6.76 10398.24 7.70 7800.64 
 1000 3.82 38106.60 7.30 22432.40 7.94 16826.88 
 1500 3.62 57436.36 8.34 32679.28 8.96 23796.32 
 2000 3.66 77055.96 8.72 43499.44 9.42 31139.36 
 2500 3.94 99288.96 8.86 53999.28 9.80 37801.76 
 3000 3.30 117041.40 9.12 63836.88 9.68 45330.24 
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Figure 6.   The plots illustrate the comparison of sGA, cGA, pe-cGA, ne-cGA and mcGA. The test problem is ten copies of 3-bit trap function, using selection rate 
of two (top), four (middle) and eight (bottom). The algorithms were run for population sizes of 8, 500, 1000, 1500, 2000, 2500 and 3000. On the left side, the 
graphs show the number of correct building blocks (Correct BBs). On the right side, the graphs show the number of function evaluations taken to converge. 
 
 

We also compare the results with the pe-cGA and ne-cGA. 
From Fig. 6, the pe-cGA and ne-cGA outperform the others 
methods in terms of the number of function evaluations (the 
right side of Fig. 6). Considering the solution quality (the left 
side of Fig. 6), pe-cGA and ne-cGA also achieve a higher 
solution quality than the others in case of the tournament size 

of two (the top left). For more selection pressure, when 
tournament size are four and eight, (the middle and the bottom 
graphs on the left side of Fig. 6), the proposed method achieves 
a higher solution quality than the pe-cGA and ne-cGA, 
although it requires a higher number of function evaluations.
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Finally, we analyze the results form the two test problems. 
In the one-max problem, the moving average method obtains 
the result that is comparable to the sGA and the original cGA in 
terms of solution quality and the number of function 
evaluations. In the trap problem, the moving average method 
outperforms the original cGA in all cases. The results 
emphasize the merit of updating the probability vector at a 
slower pace, namely using a moving average which normally 
produces a more moderate update than the original cGA. A 
minor adjustment to vector updating technique allows the 
algorithm to achieve a higher solution quality.         

The moving average window size (M) has minimal effect 
on the solution quality and the number of function evaluations. 
Nonetheless, we observe that a larger window size generally 
leads to a slightly higher solution quality, except when the 
population size is large. Overall, the performance will not be 
improved significantly by varying the window size. However, 
choosing a suitable window size can lead to a smooth increase 
in solution quality, as the probability vector is updated with a 
smooth sequence of values. From the experiments, it can be 
observed that a suitable moving average window size for the 
3x10 trap problem is 10. As may be expected, the solution 
quality increases when the tournament size increases. We also 
notice that the number of function evaluations needed to 
converge decreases as the tournament size increases regardless 
of the window size.  

 

VI.  CONCLUSIONS 
 

This paper proposes using a moving average approach to 
modify the updating strategy of cGA. The technique is simple 
to understand and implement. A minor adjustment to the vector 
updating process allows the algorithm to achieve a higher 
solution quality. The experiment results show that the proposed 
method can improve the solution quality with a smaller number 
of function evaluations than the original cGA. The study yields 
an insight that waiting for more information in order to better 
capture the probability trend can help the algorithm make a 
better decision. For future extension, we will model the look-
ahead decision strategy that can assist the algorithm in deciding 
whether to increase or decrease the probability vector under the 
uncertainty of possible trap.   
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