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Abstract—The real options technique has emerged as an 
evaluation tool for investment under uncertainty. It 
explicitly recognizes future decisions, and the exercise 
strategy is based on the optimal decisions in future periods. 
The real options approach has been applied to many 
economic and financial problems, but few are in computer 
science and engineering. The novelty of this work lies in 
applying real options to a computational problem. This 
paper proposes using the real options technique to find an 
optimal stopping decision for the compact genetic 
algorithm. The compact genetic algorithm, a kind of 
genetic algorithms, represents the population as a 
probability distribution over a set of solutions. This 
distribution automatically captures the underlying 
uncertainty of the problem, which can be simulated to 
obtain an evolutionary process of the algorithm. The 
experiments show preliminary results of employing the real 
options approach to determine the optimal stopping time 
for the compact genetic algorithm. The proposed technique 
can be applied to analyze other machine-learning 
algorithms, such as neural networks or other variations of 
genetic algorithms. 
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1  Introduction 
Genetic algorithms are becoming a common technique 

to solve difficult real-world problems. In spite of many 
useful practical applications, there are very few studies on 
an optimal stopping time in genetic algorithms. For 
example, Aytug and Koehler [1-2] estimated an upper 
bound of the number of iterations required to achieve a level 
of confidence to guarantee that a simple genetic algorithm 
converges. Meyer and Feng [3] proposed a fuzzy stopping 
criterion for genetic algorithm to establish the termination 
condition. A critical review of the state-of-the-art in the 
design of termination conditions can be found in Safe, 
Carballido, Ponzoni and Brignole [4].  

This paper presents a different approach to analyze an 
optimal stopping time by using the real options approach. 
The optimal stopping problem is an important class of a 
stochastic control problem that arises in economics and 
finance, such as finding optimal exercise rules for financial 
options. Fortunately, there are similarities in the problem of 
finding an optimal stopping time in genetic algorithms and 
finding optimal exercise rules for financial options. Thus, 
this paper proposes using the real options analysis to address 
uncertainty in the compact genetic algorithm, namely to find 
an optimal stopping policy of the algorithm. The concept 
behind this technique is that finding an optimal stopping 
time of the algorithm can be viewed as deciding when to 
exercise a call option. Using the special class of genetic 
algorithms, the compact genetic algorithm, the underlying 
uncertainty can be viewed as a probability distribution. This 
forms a basis in using the real options approach in order to 
find values to determine when it is worth stopping running 
the algorithm.  

There are many research works in genetic algorithms 
and real options. Most earlier research used genetic 
algorithms or genetic programming as a computational 
technique in the option pricing model. For example, Chen 
and Lee [5] studied the application of genetic algorithms to 
option pricing. Chidambaran, Lee and Trigueros [6] 
proposed a new methodology that used genetic 
programming to approximate the relationship between the 
price of a stock option and the properties of the underlying 
stock price. Chen, Yeh and Lee [7] also provided some 
initial evidences of the empirical relevance of genetic 
programming to option pricing. The pricing formulas are 
derived from genetic programming and then compared with 
the Black-Scholes model.  In the next year, Chen, Lee and 
Yeh [8] proposed an extended version of hedging derivative 
securities with genetic programming. Chidambaran [9] used 
Monte Carlo simulations to generate stock and option price 
data to develop a genetic option pricing program. Lazo, 
Pacheco and Vellasco [10] proposed finding an optimal 
decision rule for oil field development. In this research, the 
Monte Carlo simulation was employed in the genetic 
algorithm for simulating the possible paths of oil prices. 
Contrary with those research works, this paper proposes 
applying real options to a computational problem. The 



         

approach opens up a new direction of analyzing the optimal 
stopping time in terms of investment.         

The paper is organized as follows. Section 2 introduces 
the concept of real options, and section 3 describes detailed 
techniques of the compact genetic algorithm. Section 4 
defines the test problems used in the experiments. Section 5 
shows how to model the underlying uncertainty of the 
problems. The real options valuation function is formulated 
in section 6. Section 7 presents the results and analysis. 
Finally, the concluding remarks of this study are in section 
8. 

 

2  The Real Options Approach 
Real options are a financial concept that applies 

financial options theory to investments in real assets (as 
opposed to financial assets that are traded in the market). A 
financial option is the right, but not an obligation, to buy or 
sell an asset. An option that gives the holder the right to 
purchase an asset at a specified price is a call option, while 
an option that gives the holder the right to sell is a put 
option. The financial options are useful for managing risks 
in the financial world. The financial option concept was 
extended to real assets when Myers [11] identified the fact 
that many corporate real assets can be viewed as call 
options. The real options approach addresses an investment 
decision problem by analyzing not only the expected net 
present value (NPV), but also considering the value of an 
option to wait, expand, abandon, etc.  

One of the techniques to find an option value is a 
dynamic programming method. The idea of dynamic 
programming is to split a whole sequence of decision into 
two parts: the immediate choice and the remaining decision. 
The detailed technique is described in Dixit and Pindyck 
[12]. 

The value Ft(xt) is the expected net present value (NPV) 
when the firm makes all the decisions optimally from this 
point onwards. The value function called Bellman equation 
or the fundamental of optimality is shown in equation (1). 
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At each period t, choices available to the firm are 
represented by the control variable(s) u. The value ut must 
be chosen using only the information available at the time t, 
namely xt. When the firm chooses the control variables ut, it 
gets an immediate profit flow πt(xt, ut). The discount factor 
between any two periods is 1/(1+ρ), where ρ is the discount 
rate. The term εt[Ft+1(xt+1)] is the expected value from time 
t+1 on called a continuation value. 

An optimal stopping time is found by selecting the 
maximum value between the termination payoff Ω(x) and 
the continuation value. The Bellman equation becomes 









+
+= ]|)'([

1
1)(),(Ωmax)( xxFε
ρ

xπxxF .    (2) 

From equation (2), there are some payoff values as a 
function of x achieved by termination, and other payoff 
values as a function of x achieved through continuation. The 
x values that produce the boundary payoff values form an 
exercise region with termination being optimal on one side 
and continuation on the other. 

 

3  The Compact Genetic Algorithm 
This section gives an overview of the compact genetic 

algorithm, its characteristics and its algorithm. The genetic 
algorithms, the branches of evolutionary computation, are 
based upon the principle of natural evolution and the 
principle of the survival of the fittest. Evolutionary 
computation techniques abstract these evolutionary 
principles into algorithms. In an evolutionary algorithm, a 
representation scheme is chosen by a researcher to define a 
set of solutions that form the search space for the algorithm. 
The representation of genetic algorithm is a fixed-length bit 
string and that of the compact genetic algorithm is a 
probability vector. In general genetic algorithm, a number of 
candidate solutions are created and evaluated using a fitness 
function that is specific to the problem being solved. A 
number of solutions are chosen to be parents for creating 
new individuals or offspring. The survivors are selected 
from the original population and the offspring to form a new 
population of the next generation using their fitness values.  

The compact genetic algorithm (cGA), proposed by 
Harik, Lobo and Goldberg [13], is a special class of genetic 
algorithms. The pseudocode of cGA is shown in figure 1.  
 

1)   initialize probability vector 
   for i := 1 to l do p[i] := 0.5; 
 

2)   generate two individuals from the vector 
   a := generate(p); 
   b := generate(p); 
 
3)   let them compete 
   winner, loser := compete(a, b); 
 

4)   update the probability vector towards  
  the better one 

   for i := 1 to l do 
           if winner[i] ≠ loser[i] then 
              if winner[i] = 1 then  p[i] := p[i] + 1/n 
                                        else  p[i] := p[i] – 1/n; 
 

5)   check if the vector has converged 
   for i := 1 to l do 
            if p[i] > 0 and p[i] < 1 then 
              return to step 2; 

 
Figure 1.  Pseudocode of the cGA 



         

The parameters are population size(n) and chromosome 
length(l). The cGA represents the population as a 
probability distribution over the set of solution; thus, the 
whole population needs not to be stored. In each generation, 
cGA samples individuals according to the probabilities 
specified in the probability vector. The individuals are 
evaluated and the probability vector is updated towards the 
better individuals.  The cGA has an advantage of using a 
small amount of memory and achieving comparable quality 
with approximately the same number of fitness evaluations 
as a simple genetic algorithm.  

For example, the update method of the compact genetic 
algorithm is shown in figure 2, assuming a step size of 0.25. 

 
 

 
 
 

Figure 2.  Updating method in the cGA 

 

4  Description of Test Problems 
In these experiments, we choose a 10-bit one-max 

problem and a 3x5 bit trap problem as the test problems. 
One-max is a simple test problem or a toy problem for a 
genetic algorithm. This problem finds a maximum value 
where all bits are one. The fitness value is assigned 
according to the number of bits that are one in the 
chromosome. Thus, the maximum value is equal to the 
chromosome length. An example is shown in table 1.  

 

Table 1. Example of one-max problem 
 

Chromosome String Fitness 
1011100010 5 
1110010101 6 
0010001011 4 
1111100000 5 
1111111111 10 

 
The trap problem [14] is a difficult test problem for a 

genetic algorithm. The general k-bit trap function is defined 
as: 
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where bi ∈ {0, 1}, u = ∑ −
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This function fools gradient-based optimizers to favor 
zeroes, but the optimal solution is composed of all ones. The 
k and m may vary to produce a number of test functions. For 
example, a 3x5 bit trap function is shown in table 2. 

 

Table 2.  Example of the 3x5 bit trap function  
 

Ind. b0b1b2 b3b4b5 b6b7b8 b9b10b11 b12b13b14 Fit. 

1 111 111 000 111 000 13.0 
2 000 000 111 000 111 12.0 
3 111 111 011 111 111 12.0 
4 111 000 000 111 000 12.0 
5 111 001 010 111 111 11.0 
6 000 000 000 000 111 11.0 
7 111 001 110 111 111 10.0 
8 000 000 000 000 000 10.0 

 

5  Modeling Underlying Uncertainty 
The underlying uncertainty of the compact genetic 

algorithm is naturally its fitness value. According to the 
algorithm, when a candidate solution is sampled from the 
probability distribution, it is evaluated and the fitness value 
is assigned. This value is associated with the distribution. In 
order to characterize change in the fitness value in the 
compact genetic algorithm, the algorithm is simulated many 
times, statistics of the fitness movement are collected. 
Generally, the fitness value will increase over time, as the 
probability distribution is evolved. 

To model the uncertainty in the real options application, 
the general process is to identify the key uncertainties and to 
model them using a stochastic process that fits the problem, 
such as a geometric brownian motion or a mean-reverting 
process. In the compact genetic algorithm, however, the 
uncertainty can be viewed as the change of the fitness value 
in each step. At the beginning, the average fitness value of a 
10-bit one-max problem is 5.0 because we initialize the 
probability vector with a uniform distribution. In the next 
step, this fitness may rise from 5.0 to 6.0, 7.0, …, 10.0  or 

Vector P generates two samples 

0.5 0.5 0.5 0.5 
0  1  1  1

1  0  1  0

Fitness

3

2

- 0.25 + 0.25 + 0.25 

0.25 0.75 0.5 0.75 

P 

New P 
if  winner[i] ≠ loser[i]  then 
       if  winner[i] = 1  then 

            p[i] = p[i] + stepsize 
          else 
            p[i] = p[i] - stepsize 



         

fall to 4.0, 3.0, …, 0.0. We can find the probability of 
occurrence of these values and use it to characterize the 
underlying uncertainty of the compact genetic algorithm.  

In this work, we model the uncertainty of the compact 
genetic algorithm by observing the fitness values from many 
runs and keeping track of them over time. Because the 
underlying uncertainty of this problem can be automatically 
obtained by simulating the compact genetic algorithm, we 
do not need to employ any particular stochastic process, 
such as a geometric brownian motion or a mean-reverting 
process. We can construct a probability tree of the compact 
genetic algorithm straightforwardly. Using this method, real 
options can be applied to a wide variety of applications that 
use the learning method including the genetic algorithm. 

By running the compact genetic algorithm, we have 
fitness values in each generation (time step). We accumulate 
the possible changes of fitness values in each generation 
over many runs and then calculate the probability of all 
possible values in each state. For example, in a 10-bit one-
max problem, the possible average values are 0.0, 0.5, 1.0, 
.., 9.0, 9.5, and 10.0. The range of these values is increased 
by 0.5 because the compact genetic algorithm has two 
populations, so the average fitness of two individuals ends 
with .0 or .5. Therefore, a 10-bit one-max problem has 21 
possible values. Figure 3 shows the lattice of all possible 
values along with their associated probability. 

 

 

 

 
Figure 3.  Lattice of a 10-bit one-max problem 

 
6  Value Function of Option 

This paper proposes applying the real options analysis to 
the compact genetic algorithm. We select the compact 
genetic algorithm because the uncertainty can be directly 
represented. The underlying uncertainty depends on a 
probability vector. In each time step, two individuals are 
sampled from the distribution and fitness values of these 
candidates are assigned by the evaluation routine. The 
probability vector drives these values, and the algorithm 
uses these values to update the probability vector according 

to the best candidate. A certain cost per one sampling is 
assigned in order to account for an effort spent in running 
the algorithm. The average fitness of these candidates is 
used as a representative fitness value. As the candidate 
solutions are sampling from the probability vector, there is a 
chance that one sampling is good and the other is bad. 
Therefore, we use the average value to be a representative of 
the information in order to neutralize the event. 

Let π(x) denote the profit, and Ω(x) is the termination 
payoff. We apply the Bellman equation, where the value 
function is 
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The termination payoff is shown in equation (6). 
 

Ω(x)  =  g(x) * v                                   (6) 
 

Where g(x) is the fitness value of x, and v is the price. 
We illustrate the method with a simple example. In this 
case, there is no profit and discounting. Equation (5) 
becomes 

 

{ }]|)'([),(max)( xxFxxF εΩ= .               (7) 
 

Note that in this work we do not use the discount factor 
because in each state the compact genetic algorithm takes a 
few milliseconds to run; thus, the future value is not 
distinguishable from the present value. We also ignore the 
profit term π(x) because the compact genetic algorithm does 
not produce any immediate profit flow. The solution value 
is obtained from the fitness value at the time the algorithm 
terminates.    

To implement this idea, we assume that one sampling 
costs one dollar and one fitness value is worth 100 dollars. 
The compact genetic algorithm samples two individuals, so 
it must pay two dollars in each generation. Here, the 
termination payoff is the fitness value multiplied by 100 
dollars and the continuation must pay two dollars for a new 
sampling because the compact genetic algorithm requires 
two evaluations per time step. We formulate the option 
value of this case as below: 

 

F(x)  =  max { g(x)*100, ε[F(x′) | x] - 2 }.         (8) 
 

In these benchmark problems, we assume artificial cost 
and price in order to test the model. However, in the real-
world problem, the fitness value’s worth and the algorithm 
cost can be determined according to the application. For 
example, in a bin packing problem, we know how a profit 
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depends on the number of pieces packed into the bin. Thus, 
equation (8) can be adapted to real-world parameter values. 

 

7  Results and Analysis 
For preliminary studies, we use a 10-bit one-max 

problem and a 3x5 bit trap problem as the test examples. 
First, we solve these problems with the compact genetic 
algorithm and keep track of the probability distribution of 
each fitness value over time. The probabilities are averaged 
over 10,000 runs. The number of generations or time steps 
is set to 100. We use these data to construct a lattice of the 
fitness distribution. Second, we calculate an option value 
according to equation (5) using a dynamic programming 
approach. The option values are averaged over 100 runs. 
Finally, we summarize an option value and an exercise 
policy. We also calculate the standard deviation (sd) of the 
option values obtained over 100 runs and plot the values of 
± 1sd in the graph to illustrate the confidence level in the 
answer.  Figure 4 shows the exercise region of a 10-bit one-
max problem.  
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Figure 4.  Exercise region of a 10-bit one-max problem 

 
As shown in figure 4, the algorithm should decide to 

stop the search when the fitness value rises above the upper 
threshold because the fitness value is already high and it is 
not worth the sampling cost to continue. If the fitness value 
is lower than the lower threshold, the algorithm should also 
decide to stop because with the current population, it is 
unlikely to achieve a better result relative to the cost 
required. In this problem, the option values play an 
important role for an algorithm in deciding whether to stop 
or continue. If an option has a positive value, the algorithm 
will decide to put an effort to search for more samplings. On 
the other hand, if an option has no value, the algorithm will 
terminate or reset. This decision helps the algorithm to 
avoid useless effort and time spent on a valueless sampling.  

Most people use the genetic algorithm to find an optimal 
solution regardless of time and effort used to achieve it. 
However, from efficiency standpoint, the algorithm should 
trade off between effort and solution improvement in 
deciding when to stop. The real options approach shows that 
we can analyze the optimal stopping time for running the 
algorithm. In the above experiment, we show a preliminary 
result that employs the real options approach in determining 
the optimal stopping time of the compact genetic algorithm 
in a simple problem. Next, we also show the experiment in a 
more difficult problem, namely the trap problem.  

In the trap problem, a nearly optimal solution deludes 
the compact genetic algorithm into the trap. Therefore, the 
probability of success is less than the one-max problem. 
We test the proposed technique with the trap problem 
besides the one-max problem.  First, we run the problem 
with the compact genetic algorithm and keep the 
probability distribution of each fitness value over time. The 
probabilities are averaged over 10,000 runs. Then, we use 
these data to construct a lattice of fitness distribution.  
Using this lattice, we can calculate an option value 
according to equation (5) using a dynamic programming 
approach. The option values are averaged over 100 runs. 
Finally, the option value and the exercise policy are 
obtained. Figure 5 illustrates the exercise region of the 3x5 
bit trap problem. 
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 There are many differences between the exercise 
regions of the two problems. In a one-max problem, the 
threshold is clearer than the trap problem. The exercise 
threshold of the one-max problem confirms that the solution 
quality in this problem is gradually improving. It guarantees 
that the compact genetic algorithm will achieve the optimal 
solution if the fitness value lies within a continuation region. 
On the other hand, the fitness value in the trap problem can 
be fluctuating. The solution may fall in a trap. Thus, 
although the fitness value falls into the continuation region, 
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it does not guarantee to achieve the optimality. The upper 
bound threshold of the trap problem does not reach the 
optimal solution. This characteristic also shows a rarity of 
finding an optimal solution in a hard problem.       

From figure 4 and figure 5, the exercise regions suggest 
that, at the beginning, the one-max problem requires a 
higher solution quality for stopping than the trap problem. 
This is because good solutions abound in the one-max 
problem. On the other hand, good solutions in the trap 
problem are rare. The one-max problem has a large area of 
lower stopping region than the trap problem. This denotes 
that for a relatively easy problem, if the population cannot 
improve its quality fast enough, the algorithm should not 
continue. On the contrary, the harder trap problem attempts 
to keep a lower-fitness solution in order to maintain 
diversity. 

Note that the standard deviation of the upper threshold in 
the one-max problem drops to zero toward the end. Since 
the upper bound is at the optimal fitness and the 
continuation region converges toward this optimal value, 
this explains an important insight that the compact genetic 
algorithm guarantees the optimal solution in the one-max 
problem, given that the evaluations stay in the continuation 
region.           

  

8  Concluding Remarks 
This paper proposes applying the real options technique 

to finding an optimal stopping decision for running the 
compact genetic algorithm. The novelty of this work lies in 
introducing a new methodology to determine an optimal 
stopping time of a machine-learning algorithm. In the 
experiment, we show preliminary results from employing 
the real options approach to analyze the 10-bit one-max 
problem and the 3x5 trap problem. The results illustrate that 
the proposed technique can provide a stopping strategy for 
the algorithm. For the studied problems with the compact 
genetic algorithm, the exercise regions are broken into three 
areas. Specifically, the algorithm should stop the search 
when the fitness value rises above the upper threshold or 
when the fitness value falls below the lower threshold. This 
methodology can also be used to analyze the characteristic 
of other learning algorithms, such as neural networks or 
other variations of genetic algorithms.  
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