
Soft Comput (2006)
DOI 10.1007/s00500-006-0097-z

ORIGINAL PAPER

Chatchawit Aporntewan · Prabhas Chongstitvatana

Building-block identification by simultaneity matrix

© Springer-Verlag 2006

Abstract This paper presents a study of building blocks
(BBs) in the context of genetic algorithms (GAs). In GAs
literature, the BBs are common structures of high-quality
solutions. The aim is to identify and maintain the BBs while
performing solution recombination. To identify the BBs, we
construct an � × � simultaneity matrix according to a set of
�-bit solutions. The matrix element in row i and column j
denoted by mi j is the degree of dependency between bit i
and bit j . We search for a partition of {0, . . . , �− 1} for the
matrix. The main idea of partitioning is to put i and j of
which mi j is significantly high in the same partition subset.
The partition represents the bit positions of BBs. The par-
tition is exploited in solution recombination so that the bits
governed by the same partition subset are passed together. It
can be shown that by exploiting the simultaneity matrix the
additively decomposable functions can be solved in a poly-
nomial relationship between the number of function evalu-
ations required to reach the optimum and the problem size.
A comparison to the Bayesian optimization algorithm (BOA)
is made. Empirical results show that the BOA uses less
number of function evaluations than that of our algorithm.
However, computing the matrix is ten times faster than con-
structing the Bayesian network.

1 Introduction

This paper presents a line of research in genetic algorithms
(GAs), called building-block identification. The GAs are
probabilistic search and optimization algorithm [7,13]. The
GAs begin with a random population – a set of solutions.

C. Aporntewan (B)
Department of Mathematics, Faculty of Science,
Chulalongkorn University, Bangkok 10330, Thailand
E-mail: Chatchawit.A@chula.ac.th

P. Chongstitvatana
Department of Computer Engineering, Faculty of Engineering,
Chulalongkorn University, Bangkok 10330, Thailand
E-mail: Prabhas.C@chula.ac.th

A solution (or an individual) is represented by a fixed-length
binary string. A solution is assigned a fitness value that indi-
cates the quality of solution. The high-quality solutions are
more likely to be selected to perform solution recombination.
The crossover operator takes two solutions. Each solution is
splited into two pieces. Then, the four pieces of solutions are
exchanged to reproduce two solutions. The population size
is made constant by discarding some low-quality solutions.
An inductive bias of the GAs is that the solution quality can
be improved by composing common structures of the high-
quality solutions. Simple GAs implement the inductive bias
by chopping solutions into pieces. Next, the pieces of solu-
tions are mixed. In GAs literature, the common structures of
the high-quality solutions are referred to as building blocks
(BBs). The crossover operator mixes and also disrupts the
BBs because the cut point is chosen at random (see Fig. 1).
It is clear that the solution recombination should be done,
while maintaining the BBs. As a result, the BBs need to be
identified explicitly.

For some conditions [9, Chaps. 7–11], the success of GAs
can be explained by the schema theorem and the building-
block hypothesis [7,13]. The schema theorem states that the
number of solutions that match the above average, short defin-
ing-length, and low-order schemata grows exponentially. The
optimal solution is hypothesized to be composed of the above
average schemata or the BBs. However, in simple GAs only
short defining-length and low-order schemata are permitted
to the exponential growth. The other schemata are more dis-
rupted due to the crossover. When the good BBs are more
disrupted, it is said to be a GA-hard problem. Trap function
[1] is an adversary function for studying BBs and linkage
problems in GAs [10]. The general k-bit trap functions are
defined as:

Fk(b0 . . . bk−1) =
{

fhigh; if u = k
flow − u flow

k−1 ; otherwise,
(1)

where bi ∈ {0, 1}, u =∑k−1
i=0 bi , and fhigh > flow. Usually,

fhigh is set at k and flow is set at k−1. The additively decom-
posable functions (ADFs), denoted by Fm×k , are defined as:

C. Aporntewan, P. Chongstitvatana

cut point cut point

(B) Mixing and losing BBs.

cut pointcut point

(A) Mixing and maintaining BBs.

Fig. 1 The solutions are mixed by the crossover operator. The BBs are shadowed. The cut point, chosen at random, divides a solution into two
pieces. Then, the pieces of solutions are exchanged. In case (a), the solutions are mixed while maintaining the BBs. In case (b), the BBs are
disrupted

Table 1 A population of highly fit individuals

Individual no. b0b1b2 b3b4b5 b6b7b8 b9b10b11 b12b13b14 Fitness

1 111 111 000 111 000 13.0
2 000 000 111 000 111 12.0
3 111 000 000 111 000 12.0
4 000 000 000 000 111 11.0
5 000 000 000 000 000 10.0

The fitness is the sum of five three-bit trap functions. “111” is the optimum for three-bit trap function. “000” gives more contribution to the fitness
than that of “001,” “010,” “011,” “100,” “101,” and “110.” As a result, the highly fit population is composed of “000” and “111”

Fm×k(K0 . . . Km−1) =
m−1∑
i=0

Fk(Ki), Ki ∈ {0, 1}k . (2)

The m and k are varied to produce a number of test functions.
The ADFs fool gradient-based optimizers to favor zeroes,
but the optimal solution is composed of all ones. Trap func-
tion is a fundamental unit for designing test functions that
resist hill-climbing algorithms. The test functions can be
effectively solved by composing BBs. Several discussions
of the test functions can be found in [6,12,14,32,33].

The BBs are inferred from a population of highly fit indi-
viduals [9, pp. 60–61]. A highly fit population is shown in
Table 1. The fitness function is the sum of five three-bit trap
functions. The dependency between variables bi , bi+1, bi+2
(i = 0, 3, 6, 9, 12) can be detected by means of a statistical
method. An inference might be that the highly fit individuals
are composed of triple zeroes and triple ones. It is said that
the triple zeroes and triple ones are common traits or BBs. We
aim to identify these BBs so that the BBs are maintained in
solution recombination. Consequently, the optimal solution
can be achieved by composing BBs.

Thierens raised the scalability issue of simple GAs [31].
He used the uniform crossover so that the solutions are ran-
domly mixed. The fitness function is the sum of five-bit trap
functions. The analysis shows that either the computational
time grows exponentially with the number of five-bit trap
functions or the population size must be exponentially in-
creased. It is clear that scaling up the problem size requires
information about the BBs so that the solutions are efficiently
mixed. In addition, the performance of simple GAs relies on
the ordering of solution bits. The ordering may not pack the
dependent bits close together. Such an ordering results in
poor BB mixing. Therefore the BBs need to be identified to
improve the scalability issue.

Many strategies in the literature use the bit-reordering
approach to pack the dependent bits close together, for
example, inversion operator [7], messy GAs [8], symbiotic

evolution [21], recombination strategy adaptation [30], adap-
tive linkage crossover [28], and linkage learning [10]. The
bit-reordering approach does not explicitly identify BBs, but
it successfully delivers the optimal solution. Several papers
explicitly identify BBs. An approach is to find a partition of
bit positions. For instance, Table 1 infers the partition:

{{0, 1, 2}, {3, 4, 5}, {6, 7, 8}, {9, 10, 11}, {12, 13, 14}}. (3)

In the case of nonoverlapped BBs, partition is a clear repre-
sentation [2,3,11,15,18,19]. Note that Kargupta [18] com-
putes Walsh’s coefficients which imply the partition. The bits
governed by the same partition subset are passed together to
prevent BB disruption.

Identifying BBs is somewhat related to building a dis-
tribution of solutions [4,5,11,20,23,24]. The basic concept
of optimization by building a distribution is to start with a
uniform distribution of solutions. Next, a number of solu-
tions is drawn according to the distribution. Some good solu-
tions (winners) are selected, and the distribution is adjusted
toward the winners (the winners-like solutions will be drawn
with higher probability in the next iteration). These steps are
repeated until the optimal solution is found or reaching a ter-
mination condition. The work in this category is referred to as
probabilistic model-building genetic algorithms (PMBGAs).
For a particular form of distribution used in the extended
compact genetic algorithm (ECGA), building the distribu-
tion is identical to searching for a partition [11]. The Bayes-
ian optimization algorithm (BOA) uses Bayesian network to
represent a distribution [23]. Pelikan showed that if the prob-
lem is composed of k-bit trap functions, the network will
be fully connected sets of k nodes [26, pp. 54]. In addition,
Bayesian network is able to represent joint distributions in
the case of overlapping BBs. The hierarchical BOA (hBOA)
is the BOA enhanced with decision tree/graph and a nich-
ing method called restricted tournament replacement [26].
The hBOA can solve the hierarchically decomposable func-
tions (HDFs) in a scalable manner. Successful applications

Building-block identification by simultaneity matrix

for BB identification are financial applications [16], distrib-
uted data mining [17], cluster optimization [29], maximum
satisfiability of logic formulas (MAXSAT) and Ising spin
glass systems [27].

The Bayesian network is able to identify common struc-
tures in a population. Nevertheless, building the network
is time-consuming. This paper presents a BB identification
algorithm that is simpler and faster than that of the BOA. The
algorithm is named building-block identification by simul-
taneity matrix (BISM). The BISM input is a set of �-bit
solutions. The BISM output is a partition of {0, . . . , � − 1}.
Algorithm BISM consists of two parts: simultaneity matrix
construction (SMC) and partitioning (PAR) algorithms. The
SMC constructs the matrix according to a set of solutions.
Next, PAR searches for a partition for the matrix. The remain-
der of the paper is organized as follows. Section 2 describes
the SMC algorithm. Section 3 describes the PAR algorithm.
Section 4 presents the experimental results and a comparison
to the BOA. Section 5 concludes the paper.

2 Simultaneity matrix construction algorithm

The SMC input is a set of �-bit binary string denoted by:

S = {s0, . . . , sn−1}, (4)

where si is the i th string, 0 ≤ i ≤ n − 1. The si [j] denotes
the j th bit of si , 0 ≤ j ≤ � − 1. Algorithm SMC outputs
an � × � symmetric matrix of numbers, denoted by M =
(mi j), 0 ≤ i, j ≤ �− 1. The symmetric matrix is made for
the simplicity of writing definitions. In practice, a half of the
matrix is needed. A closed form of mi j is shown in Eq. (5).

mi j =

⎧⎪⎨
⎪⎩

0; if i = j

Count00
S (i, j)× Count11

S (i, j)

+Count01
S (i, j)× Count10

S (i, j); otherwise,

(5)

where Countab
S (i, j) = |{x ∈ {0, . . . , n − 1} : sx [i] = a

and sx [j] = b}| for all 0 ≤ i, j ≤ �− 1, (a, b) ∈ {0, 1}2.
Algorithm SMC is shown in Fig. 2. Step 1 constructs

only the upper triangle of the matrix using Eq. (5). Step 2
perturbs the matrix so that there are no identical elements.
The matrix of which the elements are distinct is greatly help-
ful in partitioning. The perturbation does not totally change
the matrix because each element is incremented by a small
real random number ranging between 0 and 1. The perturba-
tion by adding an integer with a real number is practical for
most programming languages because it is hardly possible to
produce identical random numbers. Step 3 copies the upper
triangle {mi j | i < j} to the lower triangle {mi j | i > j}.
Step 4 returns the simultaneity matrix M = (mi j). The time
complexity of SMC is O(�2n).

A matrix element mi j is proportional to the probability
that two-bit BBs at bit positions i and j will be disrupted by
the uniform crossover. Considering all cases of mixing two-
bit BBs. Mixing “00” with “11” results in “01” and “10.”
Mixing “01” with “10” results in “00” and “11.” Only mixing

in the two cases must be done carefully because the process-
ing BBs will be lost. Mixing two-bit BBs in the other cases
gives the same BBs. Therefore SMC algorithm counts a pair
of two-bit BBs that are complement to each other. To exploit
the matrix, the bits at positions i and j are passed together
every time performing crossover if the matrix element mi j is
significantly high. The three-bit BBs are identified by insert-
ing k to {i, j}. If the matrix elements mi j , m jk , and mik are
significantly high, i, j, k should be in the same partition sub-
set. Larger BBs can be identified in a similar fashion.

Trap functions embedded in the ADFs bias the popu-
lation to two aligned chunks of zeroes and ones, that are
complementary to each other. Certainly, the dependency be-
tween every pair of bits in the chunks is stored in the matrix.
The matrix is not limited to the cases where the two aligned
chunks are complement to each other. In the other cases, the
matrix does not detect unnecessary dependency. For instance,
the bits at positions of {0, 1, 2, 3, 4} are mostly “b0b1000”
and “b0b1111” where bi ∈ {0, 1}. The dependency among
five bits is obvious, but passing the bits governed by {2, 3, 4}
together is sufficient to guarantee that “b0b1000” and
“b0b1111” will exist in the next generation with a high prob-
ability. In summary, the matrix records only dependency that
is actually necessary for preserving BBs.

3 Partitioning algorithm

The PAR input is an � × � simultaneity matrix. The PAR
outputs the partition:

P = {B0, . . . , B|P|−1},
|P|−1⋃
i=0

Bi = {0, . . . , �− 1}, (6)

Bi ∩ B j = ∅ for all i �= j.

The Bi is called partition subset. There are several definitions
of the desired partition, for example, the definitions in the
senses of nonmonotonicity [19], GEMGA [15], Walsh coeffi-
cients [18], and minimal description-length principle [11].
We develop a definition in the sense of simultaneity matrix.
Algorithm PAR searches for a partition P such that

1. P is a partition.
1.1 The members of P are disjoint set.
1.2 The union of all members of P is {0, . . . , �− 1}.

2. P �= {{0, . . . , �− 1}}.
3. For all B ∈ P such that |B| > 1,

3.1 for all i ∈ B, the largest |B| − 1 matrix elements in
row i are founded in columns of B \ {i}.

4. For all B ∈ P ,
4.1 |B| ≤ k where k is a predefined constant.

5. There are no partition Px such that for some B ∈ P , for
some Bx ∈ Px , P and Px satisfy the first, the second, the
third, and the fourth conditions, B ⊂ Bx .

An example of the simultaneity matrix is shown in Fig. 4.
The perturbation is omitted because the values of {mi j | i < j}

C. Aporntewan, P. Chongstitvatana

Fig. 2 Algorithm SMC takes a set of �-bit solutions, S, as input. In step 1, only the upper triangle of the matrix, {mi j | i < j}, is constructed.
Step 2 perturbs the matrix by adding small real random numbers to the matrix elements. Step 3 copies the upper triangle to the lower triangle of
the matrix. Step 4 returns �× � symmetric matrix

Fig. 3 Algorithm PAR takes an �× � symmetric matrix, M = (mi j). The matrix elements {mi j | i < j} are distinct. The output is the partition
of {0, . . . , �− 1}

are distinct. The first condition is obvious. The second con-
dition does not allow the coarsest partition because it is not
useful in solution recombination. The third condition makes
i and j , in which mi j is significantly high, in the same parti-
tion subset. For instance, P1 = {{0, 1, 2}, {3, 4, 5}, {6, 7, 8},
{9, 10, 11}, {12, 13, 14}} satisfies the third condition because
the largest two elements in row 0 are found in columns
of {1, 2}, the largest two elements in row 1 are found in
columns of {0, 2}, the largest two elements in row 2 are
found in columns of {0, 1}, and so on. However, there are
many partitions that satisfy the third condition, for example,
P2 = {{0, 1, 2}, {3, 4, 5, 6, 7, 8}, {9, 10, 11}, {12, 13, 14}}.
There is a dilemma between choosing the fine partition (P1)
and the coarse partition (P2). Choosing the fine partition

prevents the emergence of large BBs, while the coarse par-
tition results in poor mixing. To overcome the dilemma, the
maximum size of a partition subset is bounded by a con-
stant k. By setting k = 3, the partition subset {3, 4, 5} is
preferable to {3, 4, 5, 6, 7, 8}. The fifth condition says choos-
ing the coarsest partition that is consistent with the first, the
second, the third, and the fourth conditions.

Algorithm PAR is shown in Fig. 3. A trace of the algo-
rithm is shown in Table 2. The outer loop processes row 0
to � − 1. In the first step, the columns of the sorted val-
ues in row i are stored in array R[]. For i = 0, R[] =
{2, 1, 8, 6, 12, 5, 4, 7, 3, 10, 13, 11, 9, 14, 0}. Next, the inner
loop tries a number of partition subsets by enlarging A(A←
A ∪ {R[j]}). If A satisfies condition 3.1, A will be saved

Building-block identification by simultaneity matrix

Table 2 A trace of the PAR algorithm

i j A Condition 3.1 B P

0 0 {0, 2} True {0, 2} ∅
0 1 {0, 2, 1} True {0, 2, 1} {{0,1,2}}
3 0 {3, 4} False {3} {{0, 1, 2}}
3 1 {3, 4, 5} True {3, 4, 5} {{0, 1, 2}, {3, 4, 5}}
6 0 {6, 8} True {6, 8} {{0, 1, 2}, {3, 4, 5}}
6 1 {6, 8, 7} True {6, 8, 7} {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}}
9 0 {9, 11} True {9, 11} {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}}
9 1 {9, 11, 10} True {9, 11, 10} {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}, {9, 10, 11}}
12 0 {12, 14} True {12, 14} {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}, {9, 10, 11}}
12 1 {12, 14, 13} True {12, 14, 13} {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}, {9, 10, 11}, {12, 13, 14}}
The PAR input is the matrix in Fig. 4. The partition subset A is enlarged by R[j], but the size of a partition subset is not allowed to be greater than
k = 3. If A satisfies condition 3.1, A will be saved to B. Finally, the partition P becomes {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}, {9, 10, 11}, {12, 13, 14}}

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Row 10

Row 11

Row 12

Row 13

Row 14

 0 70130 61115 62569 61972 63075 62080 61943 61290 60002 61259 63515 60205 61223

70130 0 62233 63643 64586 64432 64146 61489 61774 61260 63214 61133 62010

61115 62233 0 70999 70172 68228 68722 68782 61817 62222 62241 63219 62016 61715

62569 63643 70999 0 71543 68738 68064 63443 63244 62739 65128 62765 62995

61972 62571 70172 71543 68715 68567 68727 62289 62683 62613 63685 62914 62791

63075 64586 68228 68738 68715 0 72764 73739 63571 63877 63976 65485 63230 62969

62080 64432 68722 68474 68567 72764 0 73045 63215 62996 63359 64957 62862 62538

61943 64146 68782 68064 68727 73739 73045 0 63289 63623 63590 66003 63272 63170

61290 61489 61817 63443 62289 63571 63215 63289 0 70259 70527 62390 62794 62619

60002 61774 62222 63244 62683 63877 62996 63623 70259 0 70457 61318 63258 61094

61259 61260 62241 62739 62613 63976 63359 63590 70527 70457 0 63025 61219 63465

63515 63214 63219 65128 63685 65485 64957 66003 62390 61318 63025 0 70316 71092

60205 61133 62016 62765 62914 63230 62862 63272 62794 63258 61219 70316 0 70832

61223 62010 61715 62995 62791 62969 62538 63170 62619 63465 70832 0

68474

61094 71092

70451

61129

61841

62405

63493

61560

63968

60455

61065

60472

62699

60534

60272

Col 1 Col 2 Col 3 Col 4 Col 5 Col 7 Col 8 Col 9 Col10 Col11 Col12 Col13 Col14Col 0

70220

70220 70451 61129 61841 62405 63493 61560 63968 60455 61065 60472 62699 60534 60272 0

62571

 0

Col 6

Fig. 4 The simultaneity matrix is created by executing the SMC algorithm on a highly fit population. The population is randomly composed
of aligned chunks of “000” and “111.” The perturbation is omitted because the elements in the upper triangle are distinct. The elements in the
diagonal are always zero. The matrix is symmetric

to B. Finally, P is the partition that satisfies the five
conditions.

Checking condition 3.1 is the most time-consuming sec-
tion. It can be done in O(�2). The checking is done at most
�2 times. Therefore the time complexity of PAR is O(�4).

4 Experimental results

4.1 Methodology

Most papers report the performance in terms of function
evaluations required to reach the optimum. Such a perfor-
mance measurement is affected by selection method, solution
recombination, and the other factors. At present, research
community does not provide a formal framework for measur-
ing the effectiveness of a BB identification algorithm regard-
less of the other factors we have mentioned. Inevitably, we
have to make a comparison in terms of function evaluations.
We have presented the building-block identification by simul-
taneity matrix (BISM). An optimization algorithm that ex-
ploits the BISM is needed. We customize simple GAs as
follows. Every generation, the simultaneity matrix is con-
structed. The PAR algorithm is executed to find a partition.
Two parents are chosen by the roulette-wheel method. The

solutions are reproduced by a restricted uniform crossover –
bits governed by the same partition subset must be passed
together. The mutation is turned off. The diversity is main-
tained by the rank-space method [34, pp. 520–523]. The
population size is determined empirically by the bisection
method [26, pp. 64]. The bisection method performs binary
search for the minimal population size. There might be 10%
different between the population size used in the experiments
and the minimal population size that ensures the optimal solu-
tion in all independent ten runs.

4.2 A visualization of the simultaneity matrix

To illustrate how the matrix changes over time, a matrix ele-
ment is represented by a square. The square intensity is pro-
portional to the value of matrix element (see Fig. 5). In the
early generation (A), the matrix elements are nearly iden-
tical because the initial population is generated at random.
After that (B), the matrix elements become more distinct.
The solution recombination is more speculative. Multiple
bits are passed together, and therefore forming larger BBs.
Finally (C), the BBs are completely detected. The mixed trap
function is additively composed of five-bit onemax, three-,
four-, five-, six-, and seven-trap functions. Note that the bits

C. Aporntewan, P. Chongstitvatana

(A) 30-bit onemax function (B) 30-bit onemax function (C) 30-bit onemax function

(A) 10x3-trap function (B) 10x3-trap function (C) 10x3-trap function

(A) 6x5-trap function (B) 6x5-trap function (C) 6x5-trap function

(A) mixed-trap function (B) mixed-trap function (C) mixed-trap function

Fig. 5 The simultaneity matrix changes as the population is evolving (onemax, m×3-trap, m×5-trap, and mixed-trap functions). Three snapshots
are taken for each function (A, B, C)

governed by the same BBs do not need to be packed close
together. It is done for the ease of presentation.

4.3 A comparison to the BOA

Our algorithm is compared to the BOA [26, pp. 115–117].
Figures 6, 7, and 8 show the number of function evaluations

required to reach the optimal solution. The linear regression
in log-scale indicates a polynomial relationship between the
number of function evaluations and the problem size. The
degree of polynomial can be approximated by the slope of
linear regression. The parameter k is known beforehand for
the BOA and BISM. The maximum number of incoming
edges, a parameter of the BOA [22], limits the number of

Building-block identification by simultaneity matrix

1e+03

1e+04

1e+05

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

 in
 lo

g
sc

al
e

Problem size (number of bits) in log scale

BISM
BOA

150 200 250100

Fig. 6 Performance comparison between the BOA and BISM (onemax,
k = 1).

1e+04

1e+05

1e+06

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

 in
 lo

g
sc

al
e

Problem size (number of bits) in log scale

BOA

60 120 180 240

BISM

Fig. 7 Performance comparison between the BOA and BISM (m × 3-
trap, k = 3)

1e+04

1e+05

1e+06

100

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

 in
 lo

g
sc

al
e

Problem size (number of bits) in log scale

BISM
BOA

150 200 250

Fig. 8 Performance comparison between the BOA and BISM (m × 5-
trap, k = 5)

incoming edges for every vertice in the Bayesian network.
The default setting is to set the number of incoming edges to
k − 1 for m × k-trap functions. It can be seen that the BOA
and BISM can solve the ADFs in a polynomial time. The
BOA performs better than the BISM. However, the perfor-
mance gap narrows as the problem becomes harder (onemax,
m × 3-trap, and m × 5-trap functions respectively).

We make another comparison in terms of elapsed time.
The elapsed time is an execution time of a call on subrou-
tine constructTheNetwork [22]. The hardware plat-

BOA
BISM

0

10

20

30

40

2 4 6 10

E
la

pe
d

tim
e

(s
ec

.)

8
Maximum number of incoming edges

Fig. 9 Elapsed time required to construct Bayesian network (in the
BOA) and the upper triangle of the matrix (a half of the matrix is needed
because it is symmetric). The problem size and population size are fixed
at 250 and 1,200

1e+01

1e+03

Problem size (number of bits) in log scale

1e+02
E

la
ps

ed
 ti

m
e

(s
ec

.)
 in

 lo
g

sc
al

e

384256 512 640 768 896

hBOA
BISM

Fig. 10 Elapsed time required to construct Bayesian network (in the
hBOA) and the upper triangle of the matrix (a half of the matrix is
needed because it is symmetric). The population size is set at three
times greater than the problem size

form is HP NetServer E800, 1 GHz Pentium-III, 2GB RAM,
and RedHat 8.0 OS. The parameters of the BOA are set at
default. Figure 9 shows that the elapsed time required to con-
struct the network increases with the maximum number of
incoming edges, but the computational time of the matrix is
fixed for a problem size. The difficulty of predetermining the
maximum number of incoming edges is resolved in a later
version of the BOA, called the hierarchical BOA (hBOA)
[25,26]. However, Fig. 10 shows that the hBOA is still time-
consuming. This is because the network gathers all statisti-
cal dependency between bit variables. In contrast, the matrix
records only dependency between two bits that are likely to
be disrupted in the uniform crossover. Therefore the matrix
computation is much faster.

5 Conclusions

The BB identification is indispensable to the scalability of
GAs. We have presented a BB identification by simultane-
ity matrix. The matrix element mi j is proportional to the

C. Aporntewan, P. Chongstitvatana

probability that two-bit BBs at positions i and j will be dis-
rupted by the uniform crossover. The matrix does not detect
all dependency between bit variables. We have shown that
there might be dependency between bits at positions i and j
that cannot be detected by the matrix. Such dependency is
not necessary because the two-bit BBs at positions i and j
are very likely to survive in the next generation regardless of
the solution recombination methods. Exploiting the matrix is
simply passing the bits at positions i and j together if mi j is
significantly high. More formally, we search for a partition of
bit positions. The bits governed by the same partition subset
are passed together every time performing crossover. It can
be shown that the BISM can solve the ADFs in a polynomial
relationship between the number of function evaluations and
the problem size. More importantly, the matrix computation
is simple and fast. Future work is to attack a more difficult
problem, called HDFs [3,32].

References

1. Ackley DH (1987) A connectionist machine for genetic hillclim-
bing. Kluwer, Boston

2. Aporntewan C, Chongstitvatana P (2003) Building-block identifi-
cation by simultaneity matrix. In: Cant-úPaz E et al (eds) Proceed-
ings of genetic and evolutionary computation conference. Springer,
Berlin Heidelberg New York, pp 1566–1567

3. Aporntewan C, Chongstitvatana P (2004) Simultaneity matrix for
solving hierarchically decomposable functions. In: Deb K et al
(eds) Proceedings of genetic and evolutionary computation con-
ference. Springer, Berlin Heidelberg New York, pp 877–888

4. Baluja S (1994) Population-based incremental learning: a method
for integrating genetic search based function optimization and
competitive learning. Technical Report CMU-CS-94-163, Carne-
gie Mellon University, Pittsburgh, PA

5. De Bonet JS, Isbell CL, Viola P (1997) MIMIC: finding optima
by estimating probability densities. In: Mozer MC, Jordan MI,
Petsche T (eds) Advances in neural information processing sys-
tems, vol 9. MIT, Cambridge, pp 424–431

6. De Jong KA, Potter MA, Spears WM (1997) Using problem gener-
ators to explore the effects of epistasis. In: Bäck T (ed) Proceedings
of the 7th international conference on genetic algorithms. Morgan
Kaufmann, San Mateo, pp 338–345

7. Goldberg DE (1989) Genetic algorithms in search optimization and
machine learning. Addison Wesley, Reading

8. Goldberg DE, Korb B, Deb K (1989) Messy genetic algorithms:
motivation, analysis and first results. In: Wolfram S (ed) Complex
systems, vol 3, no 5. Complex Systems Publications, Inc., Cham-
paign, pp 493–530

9. Goldberg DE (2002) The design of innovation: lessons from and
for competent genetic algorithms. Kluwer, Boston

10. Harik GR (1997) Learning linkage. In: Belew RK, Vose MD (eds)
Foundation of genetic algorithms 4. Morgan Kaufmann, San Fran-
cisco, pp 247–262

11. Harik GR (1999) Linkage learning via probabilistic modeling in the
ECGA. Technical Report 99010, Illinois Genetic Algorithms Lab-
oratory, University of Illinois at Urbana-Champaign, Champaign,
IL

12. Heckerman D, Geiger D, Chickering M (1999) Test function gen-
erators as embedded landscapes. In: Banzhaf W, Reeves C (eds)
Foundation of genetic algorithms 5. Morgan Kaufmann, San Fran-
cisco, pp 183–198

13. Holland JH (1975) Adaptation in natural and artificial systems.
University of Michigan Press, Ann Arbor, MI

14. Holland JH (2000) Building blocks, cohort genetic algorithms,
and hyperplane-defined functions. In: Whitley D (ed) Evolutionary
computation, vol 8, no 4. MIT, Cambridge, pp 373–391

15. Kargupta H (1996) The gene expression messy genetic algorithm.
In: Proceedings of the IEEE international conference on evolution-
ary computation. IEEE Press, Piscataway, pp 814–819

16. Kargupta H, Buescher K (1995) The gene expression messy
genetic algorithm for financial applications. In: Proceedings of the
IEEE/IAFE conference on computational intelligence for financial
engineering. IEEE Press, Piscataway, pp 155–161

17. Kargupta H et al (1998) Scalable data mining from distributed,
heterogeneous data, using collective learning and gene expression
based genetic algorithms. WSU Technical Report EECS-98-001,
School of EECS, Washington State University, Pullman, WA

18. Kargupta H, Park B (2001) Gene expression and fast construc-
tion of distributed evolutionary representation. In: Whitley D (ed)
Evolutionary computation, vol 9, no 1. MIT, Cambridge, pp 43–69

19. Munetomo M, Goldberg DE (1999). Linkage identification by non-
monotonicity detection for overlapping functions. In: Whitley D
(ed) Evolutionary computation, vol 7, no 4. MIT, Cambridge, pp
377–398

20. Mühlenbein H, Mahnig T (1999) FDA – A scalable evolutionary
algorithm for the optimization of additively decomposable func-
tions. In: Whitley D (ed) Evolutionary computation, vol 7, no 4.
MIT, Cambridge, pp 353–376

21. Paredis J (1995) The symbiotic evolution of solutions and their
representations. In: Eshelman LJ (ed) Proceedings of the 6th inter-
national conference on genetic algorithms. Morgan Kaufmann,
San Mateo, pp 359–365

22. Pelikan M (1999) A simple implementation of the Bayesian opti-
mization algorithm (BOA) in C++ (version 1.0). Technical Report
99011, Illinois Genetic Algorithms Laboratory, University of Illi-
nois at Urbana-Champaign, Champaign, IL

23. Pelikan M, Goldberg DE, Cantú-Paz E (1999) BOA: The Bayesian
optimization algorithm. In: Banzhaf W et al (eds) Proceedings of
genetic and evolutionary computation conference. vol 1. Morgan
Kaufmann, San Francisco, pp 525–532

24. Pelikan M, Goldberg DE, Lobo F (1999) A survey of optimiza-
tion by building and using probabilistic models. In: Hager WW
(ed) Computational optimization and applications, vol 21, no 1.
Kluwer, Dordrecht, pp 5–20

25. Pelikan M (2000) A C++ implementation of the Bayesian opti-
mization algorithm (BOA) with decision graph. Technical Report
2000025, Illinois Genetic Algorithms Laboratory, University of
Illinois at Urbana-Champaign, Champaign, IL

26. Pelikan M (2002) Bayesian optimization algorithm: from single
level to hierarchy. Doctoral dissertation, University of Illinois at
Urbana-Champaign, Champaign, IL

27. Pelikan M, Goldberg DE (2003). Hierarchical BOA solves ising
spin glasses and MAXSAT. In: Cant-úPaz E et al (eds) Proceed-
ings of genetic and evolutionary computation conference. Springer,
Berlin Heidelberg New York, pp 1271–1282

28. Salman AA, Mehrotra K, Mohan CK (2000) Adaptive linkage
crossover. In: Whitley D (ed) Evolutionary computation, vol 8,
no 3. MIT, Cambridge, pp 341–370

29. Sastry K, Xiao G (2001) Cluster optimization using extended com-
pact genetic algorithm. Technical Report 2001016, Illinois Genetic
algorithms Laboratory, University of Illinois at Urbana-Cham-
paign, Champaign, IL

30. Smith J, Fogarty T (1996) Recombination strategy adaptation via
evolution of gene linkage. In: Proceedings of the IEEE international
conference on evolutionary computation. IEEE Press, Piscataway,
pp 826–831

31. Thierens D (1999) Scalability problems of simple genetic algo-
rithms. In: Whitley D (ed) Evolutionary computation, vol 7, no 4.
MIT, Cambridge, pp 331–352

32. Watson RA, Pollack JB (1999). Hierarchically consistent test prob-
lems for genetic algorithms. In: Angeline PJ, Michalewicz Z, Scho-
enauer M, Yao X, Zalzala, A (eds) Proceedings of congress on
evolutionary computation. IEEE, Piscataway, pp 1406–1413

33. Whitley D, Rana S, Dzubera J, Mathias KE (1996). Evaluating evo-
lutionary algorithms. In Perrault CR, Sandewall E (eds) Artificial
intelligence, vol 85, no 1–2. Elsevier, Amsterdam, pp 245–276

34. Winston PH (1992) Artificial intelligence, 3rd edn. Addison-
Wesley, Reading

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

