

Abstract— This paper proposes using a decision contour
derived from real options analysis, which is an evaluation tool
for investment under uncertainty, to suggest an optimal
stopping time of the compact genetic algorithm on the trap
problem. The proposed criterion provides a stopping
boundary, where termination is optimal on one side and
continuation is on the other. A generic stopping function is
formulated with an exercise region that scales well. The new
stopping policy helps save on computational effort, and the
evolutionary process reaches a higher solution quality when the
reset method is incorporated. The proposed technique can be
applied to analyze other problems.

I. INTRODUCTION
TOPPING criterion is a common setting condition in
many learning algorithms. It plays an important role in

deciding when to obtain an appropriate solution. However,
identifying a suitable criterion is critical because it affects
solution quality. Since evolutionary algorithms provide no
reliable stopping criterion [1], practitioners use some
heuristics to set bounds of running the algorithms. No one
knows whether the genetic algorithms will finish soon, later
or never. The problem is whether we should terminate the
algorithm or try to wait for solution. Therefore, this paper
suggests a new approach to optimally terminate the
algorithm using a contour derived from real options
analysis. This contour provides a stopping boundary, where
termination is optimal on one side and continuation is on the
other. If the current fitness value falls into the stopping
region, the algorithm should decide to stop because, with the
current population, it is unlikely to achieve a better result.

The proposed criterion is different from few theoretical
stopping criteria of the genetic algorithms in the literature.
We will classify them in three main domains: the traditional
stopping criteria, the theoretical upper bound, and the cost-
benefit stopping criteria.

1) The Traditional Stopping Criteria
Michalewicz [2] and Zielinski et al. [3] identified the

following kinds of termination conditions employed for
genetic algorithms.

- An upper limit on the number of generations is reached.

S. Rimcharoen, D. Sutivong and P. Chongstitvatana are with the

Department of Computer Engineering, Faculty of Engineering,
Chulalongkorn University, Thailand (e-mail: suni16@hotmail.com,
daricha.s@chula.ac.th and prabhas@chula.ac.th).

- An upper limit on the number of fitness function
evaluations is reached.

- The optimum is reached.
- The chance of achieving significant changes in the next

generation is relatively slim.
- The algorithm terminates when the movement of

individuals is below a threshold.
- The algorithm terminates when the individuals are close

to each other.
- The algorithm uses several criteria in combination.

The current trends of these traditional stopping criteria
move towards the employment of adaptive termination
conditions instead of using a fixed number of iterations [4]
because the search space in a real world problem is large
and complex. There are some research works that modify
these basic criteria to a specific problem. For example,
Hernandez et al. [5] proposed a stopping criterion that is
applied to a generic evolutionary algorithm (GEA) using
coupling from the past generation. It checks whether the
equilibrium distribution has been reached and concludes that
the GEA should stop once it reaches stationary state where
the underlying populations are the same for all the
realizations. Meyer and Feng [6] proposed a fuzzy stopping
criterion for a genetic algorithm which provides an
evaluation of the genetic algorithm’s real-time performance.
The performance level is estimated using past population
fitness and the acceptance parameters can be modified
during the genetic algorithm process. The iteration is
stopped when the estimated value is above a user-defined
acceptance level.

2) The Theoretical Upper Bound Stopping Criteria
Several researchers propose the stopping criteria of the

genetic algorithms based on a level of confidence that an
optimal solution is found. The number of iterations required
in a genetic algorithm can be obtained by a convergence
analysis. Aytug and Koehler [7-8] estimated an upper bound
of the number of iterations required to achieve a level of
confidence to guarantee that a simple genetic algorithm
converges. This model is based on Markov chain given by
Nix and Vose [9]. Pendharkar and Koehler [10] extended
this work to provide the bound based on the average
performance that differs from the worst case performance
bound presented in [7-8].

Optimal Stopping Time of Compact Genetic Algorithm on Deceptive
Problem Using Real Options Analysis

Sunisa Rimcharoen, Daricha Sutivong and Prabhas Chongstitvatana

S

3) The Cost-Benefit Stopping Criteria
Hulin [11] proposed the loss minimization criterion that

considers the effect of two losses: the cost of computational
time and the cost of obtaining a suboptimal solution. The
algorithm will terminate if the total loss is expected to
increase. The cost distribution model is estimated using
Bayes' formula and is assumed that the prior distribution
follows a Dirichlet distribution. The essential assumption of
this work is that the cost distribution of two successive
generations is similar. Therefore, if this assumption is false,
the loss minimization should not be used.

This paper presents a different approach to analyze an
optimal stopping time by using the real options approach.
The optimal stopping problem is an important class of a
stochastic control problem that arises in economics and
finance, such as finding optimal exercise rules for financial
options. Fortunately, there are similarities in the problem of
finding an optimal stopping time in genetic algorithms and
finding optimal exercise rules for financial options. The
concept behind this technique is that finding an optimal
stopping time of the algorithm can be viewed as deciding
when to exercise a call option. To explore this approach,
Rimcharoen et al. [12] proposed finding optimal stopping
time in the compact genetic algorithm. Using this special
class of genetic algorithms, the compact genetic algorithm
[13], the underlying uncertainty can be viewed as a
probability distribution. This distribution automatically
captures the underlying uncertainty of the problem, which
can be simulated to obtain an evolutionary process of the
algorithm. This forms a basis in using the real options
valuation in order to determine when it is worth stopping the
algorithm. In this paper, we present some contours, or so
called exercise region, that suggest boundaries of preference
fitness values in each generation. If the solution’s models do
not satisfy these bounds, the algorithm should decide to
stop. Only appropriate distribution model should continue.
We also substantiate the proposed criterion with an analysis
on scalability of a trap problem. We formulate a generic
stopping function with the exercise regions that scale well,
and show that the new stopping policy can help save on
computational effort when stopping early and the
evolutionary process reaches a higher solution quality when
the reset method is incorporated.

The paper is organized as follows. We introduce the
concept of real options and the compact genetic algorithm in
section II and III. Section IV describes detailed techniques
of using option-based methodology to find optimal stopping
time of the algorithm. Section V shows how to formulate the
stopping policy of the trap problem as an example. Section
VI presents the results and analysis of using the proposed
criterion on various problem sizes. Finally, the concluding
remarks of this study are in section VII.

II. REAL OPTIONS
Real options approach is a financial concept that applies

financial option theory to investments in real assets (as
opposed to financial assets that are traded in the market). A
financial option is the right, but not an obligation, to buy or
sell an asset. An option that gives the holder the right to
purchase an asset at a specified price is a call option, while
an option that gives the holder the right to sell an asset at a
specified price is a put option. The financial options are
useful for managing risks in the financial world. For
example, a call option can limit possible loss by paying an
upfront premium to have this right, or it can open the
possibility of unlimited gains. Black and Scholes [14], and
Merton [15] have inspired the rapid development in
financial option pricing. For example, the two basic methods
for pricing financial options are the binomial lattice [16] and
the Black-Scholes formula [14].

The financial option concept was extended to real assets
when Myers [17] identified the fact that many corporate real
assets can be viewed as call options. The real options
approach addresses an investment decision problem by
analyzing not only the expected net present value (NPV),
but also considering the value of an option to wait, expand,
abandon, etc.

One of the techniques to find an option value is a dynamic
programming method. The idea of dynamic programming is
to split a whole sequence of decisions into two parts: the
immediate choice and the remaining decisions. The detailed
technique is described in Dixit and Pindyck [18].

The value Ft(xt) is the expected net present value (NPV)
when the firm makes all the decisions optimally from this
point onwards. The value function called Bellman equation
or the fundamental of optimality is shown in (1).

1 1
1() max (,) [()]

1
t

t t t t t t t t
u

F x x u F xπ ε
ρ + +

⎧ ⎫
= +⎨ ⎬

+⎩ ⎭
 (1)

At each period t, choices available to the firm are
represented by the control variable(s) ut. The value ut must
be chosen using only the information available at the time t,
namely xt. When the firm chooses the control variables ut, it
gets an immediate profit flow πt(xt, ut). The discount factor
between any two periods is 1/(1+ρ), where ρ is the discount
rate. The term εt[Ft+1(xt+1)] is the expected value from time
t+1 on called a continuation value.

An optimal stopping time is found by selecting the
maximum value between the termination payoff Ω(x) and
the continuation value. The Bellman equation becomes

⎭
⎬
⎫

⎩
⎨
⎧

+
+=]|)'([

1
1)(),(Ωmax)(xxFε
ρ

xπxxF
. (2)

From (2), there is a payoff value as a function of x
achieved by termination and a payoff value as a function of
x achieved through continuation. The x values that produce
the boundary payoff values, where termination is optimal on
one side and continuation is on the other, form an exercise
region.

III. THE COMPACT GENETIC ALGORITHM
This section gives an overview of the compact genetic
algorithm [13]. It reduces the size and power requirements of
the system by representing the population as a probability
vector rather than a collection of bitstrings. At each
generation, the compact genetic algorithm samples
individuals according to the probabilities specified in the
probability vector. The individuals are evaluated and the
probability vector is updated towards the better individual.
The pseudocode of this algorithm is shown below.

 1) initialize probability vector (p)
 for i := 1 to l do p[i] := 0.5;

 2) generate two individuals from the vector
 a := generate(p);
 b := generate(p);

 3) let them compete
 winner, loser := compete(a, b);

 4) update the probability vector towards the better one
 for i := 1 to l do
 if winner[i] ≠ loser[i] then
 if winner[i] = 1 then p[i] := p[i] + 1/n
 else p[i] := p[i] – 1/n;

 5) check if the vector has converged
 for i := 1 to l do
 if p[i] > 0 and p[i] < 1 then
 return to step 2;

The parameters are the updating step size(n) and

chromosome length(l). Notice that the parameter n is related
to the population size in the simple genetic algorithm. The
detail is provided in the original paper [13].

IV. FINDING OPTIMAL STOPPING TIME USING OPTION-
BASED METHODOLOGY

This section provides an overview of the proposed
methodology. We employ the real options approach to
determine when to stop running a genetic algorithm, which
is analogous to deciding when to exercise a call option. In
each generation, the algorithm can stop or continue running.
If the algorithm decides to stop, the payoff from stopping is
obtained. If the algorithm decides to continue, further
computation may add value, but it also incurs a
computational cost. To determine when to terminate, the
algorithm needs to know the probability distribution of the

fitness value (underlying uncertainty) and the payoff model
(value function of option). At every generation, we compute
the expected payoff from stopping and continuing using the
underlying uncertainty and the value function of option. The
algorithm should continue if the expected payoff from
continuing is higher than that of stopping. The stop or
continue decision is solved starting from the last time step
and working backward to the first generation, as in dynamic
programming.

The methodology of finding an optimal stopping time in
genetic algorithm described above can be summarized in the
following process.

1) Modeling Underlying Uncertainty
In this step, we need to know the movement of fitness

values in each generation. We can obtain this distribution by
running the genetic algorithms many times. For example,
suppose the average fitness value in the first generation is
5.0. Assume that in the first run the fitness value increases to
6.0 and the second run the fitness value falls to 4.0. The
fitness movement of these two runs can be shown in Fig. 1.

Fig. 1. The fitness movement

From this example, it means that the average fitness value
in the second generation is 6.0 with probability 0.5 and 4.0
with probability 0.5.

2) Defining the Value Function of Option
In this step, we formulate the function that indicates the

value of a solution in each generation. The termination
payoff and the computational cost is defined specific to the
problem.
 For example, assume that one fitness value is worth 100
dollars and computing one generation costs 50 dollars. The
value function of option is

F(x) = max{ fitness_value * 100, ε[F(x′) | x]−50 }.

The first term of the maximization is the value if the
algorithm stops now; thus, we receive the outcome that is
the value of the current fitness value. The second term is the
value if the algorithm continues. We choose the maximum
of these terms as a policy to stop or continue the algorithm,
when we reach x.

3) Calculating the Option Value According to the Value Function
of Option

Using the probability distribution of the fitness value in
step 1) and the value function of option in step 2), we can

5.0

6.0

4.0

0.5

0.5

calculate the option value in each generation by working
backward from the last time step. The option value of the
above example is shown in Fig. 2.

Given that the termination payoffs in the last time step are
600 and 400 dollars when the fitness values are 6.0 and 4.0
respectively, we work backward one time step. In this
generation, the termination payoff is 500 dollars for the
fitness value of 5.0 whereas the continuation value is 450
dollars. Therefore, the algorithm should stop and gets 500
dollars.

Fig. 2. Calculating option values

4) Summarizing an Option Value and an Exercise Policy
From step 3, we obtain the maximum values that may

arise from stopping or continuing the algorithm. The
underlying values, where the termination is optimal on one
side and continuation is on the other, produce the boundary
which forms the exercise region

V. THE OPTIMAL STOPPING CRITERION OF DECEPTIVE
PROBLEM

Deceptive problem [19] is a difficult test problem for a
genetic algorithm. The general k-bit trap function is defined
as:

()
⎪⎩

⎪
⎨
⎧

−
−

=
=− otherwise

1

if

;

;
... ow

ow

high

10

k
fuf

kuf
bbF l

l
kk

 (3)

where bi ∈ {0, 1}, u = ∑ −

=

1

0

k

i ib , and fhigh > flow. Usually,

fhigh is set at k and flow is set at k-1. The test function m×Fk is
defined as:

() () { }
1

0 1
0

0,1... ,
m

k
k m k i i

i

m F B B F B B
−

−
=

× = ∈∑ (4)

This function fools gradient-based optimizers to favor
zeroes, but the optimal solution is composed of all ones. The
k and m may vary to produce a number of test functions.

In this section, we apply the methodology described in
section IV to model the optimal stopping policy of trap

problem. We study the stopping regions on problems of 3
and 4-trap and vary size with 5, 10 and 15 copies. A generic
function that represents the behavior of this problem is then
formulated. The experiments of using the proposed criterion
on various problem sizes, such as 5-trap, are also provided
in the next section.

As mentioned earlier, to find the optimal stopping time
using the real options approach, the underlying uncertainty
of the problem and the value function of option must be
defined. In section A, we describe how to model underlying
uncertainty of the compact genetic algorithm. Section B
provides the value function of option. Exercise regions and
the stopping function of trap problem are presented in
section C.

A. Modeling Underlying Uncertainty
The underlying uncertainty of the compact genetic

algorithm is naturally its fitness value. According to the
algorithm, when a candidate solution is sampled, it is
evaluated and the fitness value is assigned. In order to
characterize change in the fitness value in the compact
genetic algorithm, the algorithm is simulated many times,
and statistics of the fitness movement are collected.
Generally, the fitness value will increase over time, as the
solution is evolved.

To model uncertainty in the real options application, the
general process is to identify the key uncertainties and to
model them using a stochastic process that fits the problem,
such as a geometric Brownian motion or a mean-reverting
process. In the compact genetic algorithm, however, the
uncertainty can be viewed as the change of the fitness value
in each step. We can find the probability of occurrence of
these values and use it to characterize the underlying
uncertainty of the genetic algorithm.

In the preliminary experiment, we model the uncertainty of
the compact genetic algorithm by observing the fitness
values from many runs and keeping track of them over time.
Because the underlying uncertainty of this problem can be
automatically obtained by simulating the compact genetic
algorithm, we do not need to employ any particular
stochastic process, such as a geometric Brownian motion or
a mean-reverting process. We can construct a probability
tree of the compact genetic algorithm straightforwardly.
Using this method, real options can be applied to a wide
variety of applications that use the learning method
including the genetic algorithms.

By running the compact genetic algorithm, we have fitness
values in each generation (time step). We accumulate the
possible changes of fitness values in each generation over
many runs and then calculate the probability of all possible
values in each state. For example, in a 5 x 3-trap problem,
the possible average values are 0.0, 0.5, 1.0, .., 14.0, 14.5,
and 15.0. The step size of these values is 0.5 because the
compact genetic algorithm has population of two, so the
average fitness of two individuals ends with .0 or .5.

5.0

6.0

4.0

0.5

0.5

max{600, 0} = 600

max{400, 0} = 400

max{500, 450} = 500
max{500, (0.5*600 + 0.5*400) −50}

Therefore, this problem has 31 possible values. Fig. 3 shows
the lattice of all possible values along with their associated
transitional probability.

Fig. 3. Lattice of a 5 x 3-trap problem

B. Value Function of Option
The underlying uncertainty of the compact genetic

algorithm depends on a probability vector. In each time step,
two individuals are sampled from the distribution and fitness
values of these candidates are assigned by the evaluation
routine. The probability vector drives these values, and the
algorithm uses these values to update the probability vector
according to the best candidate. A certain cost per one
sampling is assigned in order to account for an effort spent
in running the algorithm. The average fitness of these
candidates is used as a representative fitness value. As the
candidate solutions are sampled from the probability vector,
there is a chance that one sampling is good and the other is
bad. Therefore, we use the average value to be a
representative of the information in order to neutralize the
event.

Let π(x) denote the profit, and Ω(x) is the termination
payoff. We apply the Bellman equation (2), where the value
function is

⎭
⎬
⎫

⎩
⎨
⎧

+
+=]|)'([

1
1)(),(Ωmax)(xxFε
ρ

xπxxF
.

The termination payoff is shown in (5)

Ω(x) = g(x) * v (5)

where g(x) is the fitness value of x, and v is the price. We
illustrate the method with a simple example. In this case,
there is no profit and discounting. Equation (2) becomes

{ }]|)'([),(max)(xxFxxF εΩ= . (6)
Note that in this experiment we do not use the discount

factor because in each state the compact genetic algorithm
takes a few milliseconds to run; thus, the future value is not
distinguishable from the present value. We also ignore the
profit term π(x) because the compact genetic algorithm does
not produce any immediate profit flow. The solution value is

obtained from the fitness value at the time the algorithm
terminates.

To implement this idea, we assume that one fitness value
is worth one unit price and no computation cost. We
formulate the option value of this case as below:

F(x) = max { g(x), ε[F(x′) | x] }. (7)

In this trap problem, we assume artificial values in order to
test the model. However, in the real-world problem, the
fitness value’s worth and the algorithm cost can be
determined according to the application. For example, in a
bin packing problem, we know how a profit depends on the
number of pieces packed into the bin. Thus, equation (7) can
be adapted to real-world parameter values.

C. Formulating the stopping function
We construct the stopping regions on problem of 3 and 4-

trap using the methodology mentioned earlier. The exercise
regions are shown in Fig. 4.

To formulate the stopping boundary of the trap problem,
first, we solve this problem with the compact genetic
algorithm and keep track of the probability distribution of
each fitness value over time. The probabilities are averaged
over 10,000 runs. We use these data to construct a lattice of
the fitness distribution. Second, we calculate an option value
according to (6) using a dynamic programming approach.
The option values are averaged over 100 runs. Finally, we
summarize an option value and an exercise policy.

Using the behavior from 5, 10 and 15 copies of 3 and 4
trap, the generic function that represents the stopping
criterion of trap problem is formulated. The boundary is
approximated with a linear function by calculating slope
from any two points. We denote some coordinates in order
to represent intervals of the function in Fig. 5.

This stopping policy is formulated as a function of
chromosome length (l) and generation (x) using the slope-
intercept form of the line in (8).

 y = mx + c (8)

where m is slope
 c is y-intercept

 In case that the upper bound is approximated from
coordinate (0, α) and (α1, β1), the slope is (β1-α)/α1. Y-
intercept of this function is α obviously.

15.00
14.50
14.00
.
.

1.00
0.50
0.00

15.00
14.50
14.00
.
.

1.00
0.50
0.00

15.00
14.50
14.00
.
.

1.00
0.50
0.00

15.00
14.50
14.00
.
.

1.00
0.50
0.00

…

 t t+1 t+2 … tn

Fig. 5. Points’ notation

Substitute these into equation (8), the upper bound where
x less than α1 is obtained. If 1 2xα α≤ < , the upper bound is
approximated from (α1, β1) and (α2, β2), this bound is

2 1
1 1

2 1

()xβ β α β
α α

−
− +

−
. When 2 3xα α≤ < , the upper bound is

approximated from (α2, β2) and (α3, l), this bound is
2

2 2
3 2

()l xβ α β
α α

−
− +

−
. The values of α and β are estimated

from data in Fig. 4 when the sizes of problem change. It is
interesting to note that for a trap problem, this trend is
linear. We formulate the upper bound function in (9), where
k is trap size, m is the number of trap copies and l is
chromosome length.

1 1
1

1

2 1
1 1 1 2

2 1

2
2 2 2 3

3 2

() ;

_ () ;

() ;

x x

upper bound x x

l x x

⎧ − +
<⎪

⎪
⎪ −

= − + ≤ <⎨
−⎪

⎪ −
− + ≤ <⎪

−⎩

β α αα α
α

β β α β α α
α α

β α β α α
α α

 (9)

Using the same method, the lower bound function is

shown in (10).

3 4 4 2
2

2

3
2 3 2 3

3 2

3

() ;

_ () ;

;

x x

llower bound x x

l x

β α α α α
α

β α β α α
α α

α

− +⎧ <⎪
⎪

−⎪
= − + ≤ ≤⎨ −⎪

⎪ ≥
⎪
⎩

(10)

where α = (0.37m + 0.88)k
α1 = (68.70m + 1482.99) / k

 α2 = 32.00m + 549.33
 α3 = 33.50m + 796.33
 α4 = (0.18m – 0.87)k

β1 = (0.91m + 0.23)k
β2 = (0.81m – 0.47)k
β3 = (0.74m – 0.63)k

(α1, β1)

(0, α)

(0, α4)

(α2, β2)

(α2, β3)

(α3, l)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fi
tn

es
s

V
al

ue

Generation

upper threshold
lower threshold

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fi
tn

es
s

V
al

ue

Generation

upper threshold
lower threshold

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fi
tn

es
s

V
al

ue

Generation

upper threshold
lower threshold

 (a) 5 x 3-trap (b) 10 x 3-trap (c) 15 x 3-trap

 0

 5

 10

 15

 20

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fi
tn

es
s

V
al

ue

Generation

upper threshold
lower threshold

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fi
tn

es
s

V
al

ue

Generation

upper threshold
lower threshold

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fi
tn

es
s

V
al

ue

Generation

upper threshold
lower threshold

 (d) 5 x 4-trap (e) 10 x 4-trap (f) 15 x 4-trap

Fig. 4. The plots illustrate the exercise regions of running trap problem on 5, 10 and 15 copies of 3 and 4 trap. On the top, (a) – (c) are 5 x 3, 10 x 3 and 15 x
3 trap problem. On the bottom, (d) – (f) are 5 x 4, 10 x 4 and 15 x 4 trap problrm. The stopping regions are the area where the fitness value rises above the
upper threshold and where the fitness value falls below the lower threshold. If the fitness value falls into the stopping region, the algorithm should decide to
stop because with the current population, it is unlikely to achieve a better result.

TABLE I
COMPARISON OF THE PROPOSED CRITERION

m x k-trap cGA with Traditional Stopping cGA with Early Stopping cGA with Reset Method
 Eval. Best fit. Avg. fit. Eval. Best fit. Avg. fit. Eval. Best fit. Avg. fit.

5 x 3-trap 971 15* 13.15 108 14 10.84 986 15* 13.16
10 x 3-trap 1345 29 25.36 78 22 18.00 1350 28 25.54
20 x 3-trap 1809 55 49.98 66 38 30.73 1801 54 49.93
30 x 3-trap 2175 81 74.74 124 71 44.36 2194 81 75.19
5 x 4-trap 889 18 15.49 483 18 14.77 917 20* 16.47

10 x 4-trap 1252 34 30.62 521 31 25.74 1329 38 31.28
20 x 4-trap 1757 66 61.66 867 64 49.99 1831 74 62.55
30 x 4-trap 2165 99 92.59 912 97 70.54 2238 100 93.61
5 x 5-trap 874 20 20.00 601 20 19.20 905 25* 20.55

10 x 5-trap 1210 40 39.99 636 41 34.10 1286 50* 40.62
20 x 5-trap 1731 82 79.95 887 81 64.17 1803 99 80.51
30 x 5-trap 2147 122 119.58 1052 121 92.88 2231 125 119.67

 * Optimal solution

VI. EXPERIMENTS WITH VARIOUS SIZES

To explore how to use the proposed criterion, we apply
these functions to test on various sizes of trap problem. We
test the proposed criterion compared with the compact
genetic algorithm that stops when the probability fully
converges. Using early stopping, the algorithm stops when
the fitness value falls into the stopping region. With the reset
method, the algorithm stops when the probability fully
converges. The results in table I are averaged over 100 runs.

In the experiments, we employ the stopping region as a
policy to stop running the algorithm. It suggests that it is
unlikely to achieve a good solution when the fitness value
falls into the stopping region. Thus, the algorithm will stop
when an average fitness value falls into this region, and we
call this an early stopping. Using early stopping can save
computational effort when the fitness value is unlikely to
lead to optimality. Table I shows that using the early
stopping can save the number of function evaluations while
the best solution is close to the compact genetic algorithm
that uses traditional stopping criterion.

To improve the solution quality further, this paper also
presents a technique called the reset method. This is another
way of using the proposed criterion. Instead of using early
stopping, the reset technique provides a chance of reaching a
higher solution quality by reversing the probability vector.
When the fitness values fall into the stopping region, it
implies that the updating process may go wrong. Thus, we
should try to search the other way. A simple approach to
jump to other search points is adjusting the probability.

We suggest reversing the probability vector. Each
dimension of the probability vector is reversed by 1 minus
probability in that dimension. Using this approach, the
algorithm can explore the solution in the counterpart and if
the solution in that area is not good, the fitness value will
fall into the stopping region and the probability vector is
reversed again. This methodology provides an opportunity

to search more candidate solutions when the model seems to
go bad. From the experiment results in table 1, the reset
method mostly provides a higher solution quality than the
traditional compact genetic algorithm that uses traditional
stopping criterion. Moreover, it tends to reach some optimal
solutions when the trap size grows. This suggests that, for
the trap problem, exploring different candidates when the
fitness value is in the stopping region can be more effective
than using the traditional or early stopping method,
specifically when the problem is hard.

One of the insights of this study is to better understand the
behavior of fitness movement in the compact genetic
algorithm. The continuation region, the area between upper
and lower bounds, indicates the values that have a chance to
reach optimal. In the trap problem the last part of the
continuation region that leads to the optimal narrows down.
With fitness distribution over time, this opens up to an
analysis of problem hardness. Furthermore, when the
problem size grows, the exercise region tends to scale well
according to the linear function in the previous section.

Obviously the exercise contours vary with the ratio of
gain/cost (in eq. 6). To observe the sensitivity of these
contours, we vary the computational cost where the ratio of
gain/cost are 10:1 and 1:1. The results are shown in Fig. 6
and Fig. 7. They show that when the evaluating cost is
expensive with respect to the gain, it is preferable to accept
the solution even though they are not very good because the
future computation is expensive (Fig. 7). When the sampled
solution seems to be good, it should be accepted and stop
running. In the case that the computation cost is low (Fig. 6)
the decision is different. The continuation region is larger.
There are higher chances to continue with the current
solution to improve the solution because it is beneficial.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fi
tn

es
s

Va
lu

e

Generation

upper threshold
lower threshold

 (a) 5 x 3-trap

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fi
tn

es
s

Va
lu

e

Generation

upper threshold
lower threshold

 (b) 10 x 3-trap

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fi
tn

es
s

Va
lu

e

Generation

upper threshold
lower threshold

 (c) 15 x 3-trap

Fig. 6. The plots illustrate the exercise regions of gain10cost1 on 5, 10 and 15 copies of 3 trap (a)-(c). The threshold is lower than running without cost.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fi
tn

es
s

Va
lu

e

Generation

upper threshold
lower threshold

 (a) 5 x 3-trap

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fi
tn

es
s

Va
lu

e

Generation

upper threshold
lower threshold

 (b) 10 x 3-trap

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fi
tn

es
s

Va
lu

e

Generation

upper threshold
lower threshold

 (c) 15 x 3-trap

Fig. 7. The plots illustrate the exercise regions of gain1cost1 on 5, 10 and 15 copies of 3 trap (a)-(c). The threshold is shifted down when the cost is higher.

VII. CONCLUSION

The proposed stopping policy is obtained using real
options analysis. It provides a boundary for deciding
whether to continue or to stop the algorithm. The stopping
function of the trap problem is illustrated as an example of
applying this methodology. Using the proposed stopping
criterion, the algorithm stops early and saves on the number
of function evaluations. Furthermore, when utilizing the
reset method, it can achieve a higher solution quality. The
proposed methodology would be more beneficial to a harder
problem. Experiments using the boundary function
estimated from 3- and 4-trap shows that we can reach an
optimal solution of some copies of 5-trap. The capability in
solving other problems should be investigated in future
works.

REFERENCES
[1] P. Larranaga and J. Lozano, “An Estimation of Distribution

Algorithms: A New Tool for Evolutionary Computation,” Kluwer
Academic Publishers, 2001.

[2] Z Michalewicz, “Genetics Algorithms + Data Structures = Evolution
Programs,” Springer-Verlag, NY, 1996.

[3] K. Zielinski, D. Peters and R. Laur, “Stopping criteria for single-
objective optimization,” in Proceeding of the Third International
Conference on Computational Intelligence, Robotics and Autonomous
Systems, 2005.

[4] M. Safe, J. Carballido, I. Ponzoni and N. Brignole, “On stopping
criteria for genetic algorithms,” SBIA, 2004.

[5] G. Hernandez, K. Wilder, F. Nino and J. Garcia, “Toward a self-
stopping evolutionary algorithm using coupling from the past,” in
Proceeding of the 2005 Conference on Genetic and Evolutionary
Computation, 2005.

[6] L. Meyer and X. Feng, “A fuzzy stop criterion for genetic algorithms
using performance estimation,” In proceedings of the Third IEEE
Conference on Fuzzy Systems, 1994.

[7] H. Aytug and G. J. Koehler, “Stopping criterion for finite length
genetic algorithms,” INFORMS Journal on Computing, 1996.

[8] H. Aytug and G. J. Koehler, “New stopping criterion for genetic
algorithm,” European Journal of Operational Research, 2000.

[9] A. E. Nix and M. D. Vose, “Modeling genetic algorithms with Markov
chains,” Annals Mathematics and Artificial Intelligence, 1992.

[10] P. C. Pendharkar and G. J. Koehler, “A general steady state
distribution based stopping criteria for finite length genetic
algorithms,” European Journal of Operational Research, 2006.

[11] M. Hulin, “An optimal stop criterion for genetic algorithms: A
bayesian approach,” in Proceeding of the International conference on
Genetic Algorithms, 1997.

[12] S. Rimcharoen, D. Sutivong and P. Chongstitvatana, “Real option
approach to finding optimal stopping time in compact genetic
algorithm,” In Proceeding of IEEE International Conference on
Systems, Man, and Cybernetics, 2006.

[13] G. R. Harik, F. G. Lobo and D. E. Goldberg, “The compact genetic
algorithm,” IEEE Trans. on Evolutionary Computation, 1999.

[14] F. Black and M. Scholes, “The pricing of options and corporate
liabilities,” Journal of Political Economy, 1973, 81: 637-654.

[15] R. C. Merton, “Theory of rational option pricing,” Bell Journal of
Economics and Management Science, 1973, 4: 141-183.

[16] J. C. Cox, S. A. Ross and M. Rubinstein, “Option pricing: a simplified
approach,” Journal of Financial Economics, 1979.

[17] S. C. Myers, “Determinants of corporate borrowing,” Journal of
Financial Economics, 1977, 5(2): 147-175.

[18] A. K. Dixit and R. S. Pindyck, “Investment under uncertainty,”
Princeton University Press, Princeton, NJ, 1994.

[19] D. E. Goldberg, “Simple genetic algorithms and the minimal,
deceptive problem,” In L. Davis (ed.), Genetic Algorithms and
Simulated Annealing, Morgan Kaufmann Publisher, 1987, 74-88.

