
  

Abstract— This paper proposes using a decision contour 
derived from real options analysis, which is an evaluation tool 
for investment under uncertainty, to suggest an optimal 
stopping time of the compact genetic algorithm on the trap 
problem. The proposed criterion provides a stopping 
boundary, where termination is optimal on one side and 
continuation is on the other. A generic stopping function is 
formulated with an exercise region that scales well. The new 
stopping policy helps save on computational effort, and the 
evolutionary process reaches a higher solution quality when the 
reset method is incorporated. The proposed technique can be 
applied to analyze other problems. 

I. INTRODUCTION 
TOPPING criterion is a common setting condition in 
many learning algorithms. It plays an important role in 

deciding when to obtain an appropriate solution. However, 
identifying a suitable criterion is critical because it affects 
solution quality. Since evolutionary algorithms provide no 
reliable stopping criterion [1], practitioners use some 
heuristics to set bounds of running the algorithms. No one 
knows whether the genetic algorithms will finish soon, later 
or never. The problem is whether we should terminate the 
algorithm or try to wait for solution. Therefore, this paper 
suggests a new approach to optimally terminate the 
algorithm using a contour derived from real options 
analysis. This contour provides a stopping boundary, where 
termination is optimal on one side and continuation is on the 
other. If the current fitness value falls into the stopping 
region, the algorithm should decide to stop because, with the 
current population, it is unlikely to achieve a better result. 

The proposed criterion is different from few theoretical 
stopping criteria of the genetic algorithms in the literature. 
We will classify them in three main domains: the traditional 
stopping criteria, the theoretical upper bound, and the cost-
benefit stopping criteria. 

1) The Traditional Stopping Criteria    
Michalewicz [2] and Zielinski et al. [3] identified the 

following kinds of termination conditions employed for 
genetic algorithms. 

- An upper limit on the number of generations is reached. 
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- An upper limit on the number of fitness function 
evaluations is reached. 

- The optimum is reached. 
- The chance of achieving significant changes in the next 

generation is relatively slim. 
- The algorithm terminates when the movement of 

individuals is below a threshold. 
- The algorithm terminates when the individuals are close 

to each other. 
- The algorithm uses several criteria in combination. 

 

The current trends of these traditional stopping criteria 
move towards the employment of adaptive termination 
conditions instead of using a fixed number of iterations [4] 
because the search space in a real world problem is large 
and complex. There are some research works that modify 
these basic criteria to a specific problem. For example, 
Hernandez et al. [5] proposed a stopping criterion that is 
applied to a generic evolutionary algorithm (GEA) using 
coupling from the past generation. It checks whether the 
equilibrium distribution has been reached and concludes that 
the GEA should stop once it reaches stationary state where 
the underlying populations are the same for all the 
realizations. Meyer and Feng [6] proposed a fuzzy stopping 
criterion for a genetic algorithm which provides an 
evaluation of the genetic algorithm’s real-time performance. 
The performance level is estimated using past population 
fitness and the acceptance parameters can be modified 
during the genetic algorithm process. The iteration is 
stopped when the estimated value is above a user-defined 
acceptance level. 

2) The Theoretical Upper Bound Stopping Criteria  
Several researchers propose the stopping criteria of the 

genetic algorithms based on a level of confidence that an 
optimal solution is found. The number of iterations required 
in a genetic algorithm can be obtained by a convergence 
analysis. Aytug and Koehler [7-8] estimated an upper bound 
of the number of iterations required to achieve a level of 
confidence to guarantee that a simple genetic algorithm 
converges. This model is based on Markov chain given by 
Nix and Vose [9]. Pendharkar and Koehler [10] extended 
this work to provide the bound based on the average 
performance that differs from the worst case performance 
bound presented in [7-8].  
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3) The Cost-Benefit Stopping Criteria 
Hulin [11] proposed the loss minimization criterion that 

considers the effect of two losses: the cost of computational 
time and the cost of obtaining a suboptimal solution. The 
algorithm will terminate if the total loss is expected to 
increase. The cost distribution model is estimated using 
Bayes' formula and is assumed that the prior distribution 
follows a Dirichlet distribution. The essential assumption of 
this work is that the cost distribution of two successive 
generations is similar. Therefore, if this assumption is false, 
the loss minimization should not be used. 

This paper presents a different approach to analyze an 
optimal stopping time by using the real options approach. 
The optimal stopping problem is an important class of a 
stochastic control problem that arises in economics and 
finance, such as finding optimal exercise rules for financial 
options. Fortunately, there are similarities in the problem of 
finding an optimal stopping time in genetic algorithms and 
finding optimal exercise rules for financial options. The 
concept behind this technique is that finding an optimal 
stopping time of the algorithm can be viewed as deciding 
when to exercise a call option. To explore this approach, 
Rimcharoen et al. [12] proposed finding optimal stopping 
time in the compact genetic algorithm. Using this special 
class of genetic algorithms, the compact genetic algorithm 
[13], the underlying uncertainty can be viewed as a 
probability distribution. This distribution automatically 
captures the underlying uncertainty of the problem, which 
can be simulated to obtain an evolutionary process of the 
algorithm. This forms a basis in using the real options 
valuation in order to determine when it is worth stopping the 
algorithm. In this paper, we present some contours, or so 
called exercise region, that suggest boundaries of preference 
fitness values in each generation. If the solution’s models do 
not satisfy these bounds, the algorithm should decide to 
stop. Only appropriate distribution model should continue. 
We also substantiate the proposed criterion with an analysis 
on scalability of a trap problem. We formulate a generic 
stopping function with the exercise regions that scale well, 
and show that the new stopping policy can help save on 
computational effort when stopping early and the 
evolutionary process reaches a higher solution quality when 
the reset method is incorporated.  

The paper is organized as follows. We introduce the 
concept of real options and the compact genetic algorithm in 
section II and III. Section IV describes detailed techniques 
of using option-based methodology to find optimal stopping 
time of the algorithm. Section V shows how to formulate the 
stopping policy of the trap problem as an example. Section 
VI presents the results and analysis of using the proposed 
criterion on various problem sizes. Finally, the concluding 
remarks of this study are in section VII.  

II. REAL OPTIONS 
Real options approach is a financial concept that applies 

financial option theory to investments in real assets (as 
opposed to financial assets that are traded in the market). A 
financial option is the right, but not an obligation, to buy or 
sell an asset. An option that gives the holder the right to 
purchase an asset at a specified price is a call option, while 
an option that gives the holder the right to sell an asset at a 
specified price is a put option. The financial options are 
useful for managing risks in the financial world. For 
example, a call option can limit possible loss by paying an 
upfront premium to have this right, or it can open the 
possibility of unlimited gains. Black and Scholes [14], and 
Merton [15] have inspired the rapid development in 
financial option pricing. For example, the two basic methods 
for pricing financial options are the binomial lattice [16] and 
the Black-Scholes formula [14].   

The financial option concept was extended to real assets 
when Myers [17] identified the fact that many corporate real 
assets can be viewed as call options. The real options 
approach addresses an investment decision problem by 
analyzing not only the expected net present value (NPV), 
but also considering the value of an option to wait, expand, 
abandon, etc.  

One of the techniques to find an option value is a dynamic 
programming method. The idea of dynamic programming is 
to split a whole sequence of decisions into two parts: the 
immediate choice and the remaining decisions. The detailed 
technique is described in Dixit and Pindyck [18]. 

The value Ft(xt) is the expected net present value (NPV) 
when the firm makes all the decisions optimally from this 
point onwards. The value function called Bellman equation 
or the fundamental of optimality is shown in (1). 
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At each period t, choices available to the firm are 
represented by the control variable(s) ut. The value ut must 
be chosen using only the information available at the time t, 
namely xt. When the firm chooses the control variables ut, it 
gets an immediate profit flow πt(xt, ut). The discount factor 
between any two periods is 1/(1+ρ), where ρ is the discount 
rate. The term εt[Ft+1(xt+1)] is the expected value from time 
t+1 on called a continuation value.  

An optimal stopping time is found by selecting the 
maximum value between the termination payoff Ω(x) and 
the continuation value. The Bellman equation becomes 
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From (2), there is a payoff value as a function of x 
achieved by termination and a payoff value as a function of 
x achieved through continuation. The x values that produce 
the boundary payoff values, where termination is optimal on 
one side and continuation is on the other, form an exercise 
region. 

III. THE COMPACT GENETIC ALGORITHM 
This section gives an overview of the compact genetic 
algorithm [13]. It reduces the size and power requirements of 
the system by representing the population as a probability 
vector rather than a collection of bitstrings. At each 
generation, the compact genetic algorithm samples 
individuals according to the probabilities specified in the 
probability vector. The individuals are evaluated and the 
probability vector is updated towards the better individual. 
The pseudocode of this algorithm is shown below.  
 
  1)  initialize probability vector (p) 
     for i := 1 to l do p[i] := 0.5; 
 

  2)  generate two individuals from the vector 
     a := generate(p); 
     b := generate(p); 
 

  3)  let them compete 
     winner, loser := compete(a, b); 
 

  4)  update the probability vector towards the better one 
     for i := 1 to l do 
           if winner[i] ≠ loser[i] then 
              if winner[i] = 1 then  p[i] := p[i] + 1/n 
                                        else  p[i] := p[i] – 1/n; 
 

  5)  check if the vector has converged 
     for i := 1 to l do 
            if p[i] > 0 and p[i] < 1 then 
              return to step 2; 

 
The parameters are the updating step size(n) and 

chromosome length(l). Notice that the parameter n is related 
to the population size in the simple genetic algorithm. The 
detail is provided in the original paper [13].   

IV. FINDING OPTIMAL STOPPING TIME USING OPTION-
BASED METHODOLOGY 

This section provides an overview of the proposed 
methodology. We employ the real options approach to 
determine when to stop running a genetic algorithm, which 
is analogous to deciding when to exercise a call option. In 
each generation, the algorithm can stop or continue running. 
If the algorithm decides to stop, the payoff from stopping is 
obtained. If the algorithm decides to continue, further 
computation may add value, but it also incurs a 
computational cost. To determine when to terminate, the 
algorithm needs to know the probability distribution of the 

fitness value (underlying uncertainty) and the payoff model 
(value function of option). At every generation, we compute 
the expected payoff from stopping and continuing using the 
underlying uncertainty and the value function of option. The 
algorithm should continue if the expected payoff from 
continuing is higher than that of stopping. The stop or 
continue decision is solved starting from the last time step 
and working backward to the first generation, as in dynamic 
programming.  

The methodology of finding an optimal stopping time in 
genetic algorithm described above can be summarized in the 
following process. 

1) Modeling Underlying Uncertainty 
In this step, we need to know the movement of fitness 

values in each generation. We can obtain this distribution by 
running the genetic algorithms many times. For example, 
suppose the average fitness value in the first generation is 
5.0. Assume that in the first run the fitness value increases to 
6.0 and the second run the fitness value falls to 4.0. The 
fitness movement of these two runs can be shown in Fig. 1. 

 
 

 
 
 
 

 
 

Fig. 1.  The fitness movement 
 

From this example, it means that the average fitness value 
in the second generation is 6.0 with probability 0.5 and 4.0 
with probability 0.5. 

2) Defining the Value Function of Option 
In this step, we formulate the function that indicates the 

value of a solution in each generation. The termination 
payoff and the computational cost is defined specific to the 
problem. 
 For example, assume that one fitness value is worth 100 
dollars and computing one generation costs 50 dollars. The 
value function of option is 

 

F(x)  =  max{ fitness_value * 100, ε[F(x′) | x]−50 }. 
 

The first term of the maximization is the value if the 
algorithm stops now; thus, we receive the outcome that is 
the value of the current fitness value. The second term is the 
value if the algorithm continues. We choose the maximum 
of these terms as a policy to stop or continue the algorithm, 
when we reach x. 

3) Calculating the Option Value According to the Value Function 
of Option 

Using the probability distribution of the fitness value in 
step 1) and the value function of option in step 2), we can 
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calculate the option value in each generation by working 
backward from the last time step. The option value of the 
above example is shown in Fig. 2. 

Given that the termination payoffs in the last time step are 
600 and 400 dollars when the fitness values are 6.0 and 4.0 
respectively, we work backward one time step. In this 
generation, the termination payoff is 500 dollars for the 
fitness value of 5.0 whereas the continuation value is 450 
dollars. Therefore, the algorithm should stop and gets 500 
dollars. 
 

 
 
 
 
 
 
 
 

 
Fig. 2.  Calculating option values 

 

4) Summarizing an Option Value and an Exercise Policy 
From step 3, we obtain the maximum values that may 

arise from stopping or continuing the algorithm. The 
underlying values, where the termination is optimal on one 
side and continuation is on the other, produce the boundary 
which forms the exercise region  

V. THE OPTIMAL STOPPING CRITERION OF DECEPTIVE 
PROBLEM 

Deceptive problem [19] is a difficult test problem for a 
genetic algorithm. The general k-bit trap function is defined 
as: 
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fhigh is set at k and flow is set at k-1. The test function m×Fk is 
defined as: 
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This function fools gradient-based optimizers to favor 
zeroes, but the optimal solution is composed of all ones. The 
k and m may vary to produce a number of test functions.  

In this section, we apply the methodology described in 
section IV to model the optimal stopping policy of trap 

problem. We study the stopping regions on problems of 3 
and 4-trap and vary size with 5, 10 and 15 copies. A generic 
function that represents the behavior of this problem is then 
formulated. The experiments of using the proposed criterion 
on various problem sizes, such as 5-trap, are also provided 
in the next section.  

As mentioned earlier, to find the optimal stopping time 
using the real options approach, the underlying uncertainty 
of the problem and the value function of option must be 
defined. In section A, we describe how to model underlying 
uncertainty of the compact genetic algorithm. Section B 
provides the value function of option. Exercise regions and 
the stopping function of trap problem are presented in 
section C.  

A. Modeling Underlying Uncertainty 
The underlying uncertainty of the compact genetic 

algorithm is naturally its fitness value. According to the 
algorithm, when a candidate solution is sampled, it is 
evaluated and the fitness value is assigned. In order to 
characterize change in the fitness value in the compact 
genetic algorithm, the algorithm is simulated many times, 
and statistics of the fitness movement are collected. 
Generally, the fitness value will increase over time, as the 
solution is evolved. 

To model uncertainty in the real options application, the 
general process is to identify the key uncertainties and to 
model them using a stochastic process that fits the problem, 
such as a geometric Brownian motion or a mean-reverting 
process. In the compact genetic algorithm, however, the 
uncertainty can be viewed as the change of the fitness value 
in each step. We can find the probability of occurrence of 
these values and use it to characterize the underlying 
uncertainty of the genetic algorithm.  

In the preliminary experiment, we model the uncertainty of 
the compact genetic algorithm by observing the fitness 
values from many runs and keeping track of them over time. 
Because the underlying uncertainty of this problem can be 
automatically obtained by simulating the compact genetic 
algorithm, we do not need to employ any particular 
stochastic process, such as a geometric Brownian motion or 
a mean-reverting process. We can construct a probability 
tree of the compact genetic algorithm straightforwardly. 
Using this method, real options can be applied to a wide 
variety of applications that use the learning method 
including the genetic algorithms. 

By running the compact genetic algorithm, we have fitness 
values in each generation (time step). We accumulate the 
possible changes of fitness values in each generation over 
many runs and then calculate the probability of all possible 
values in each state. For example, in a 5 x 3-trap problem, 
the possible average values are 0.0, 0.5, 1.0, .., 14.0, 14.5, 
and 15.0. The step size of these values is 0.5 because the 
compact genetic algorithm has population of two, so the 
average fitness of two individuals ends with .0 or .5. 

5.0 

6.0 

4.0 

0.5 

0.5 

max{600, 0} = 600 

max{400, 0} = 400 

max{500, 450} = 500 
max{500, (0.5*600 + 0.5*400) −50}  



Therefore, this problem has 31 possible values. Fig. 3 shows 
the lattice of all possible values along with their associated 
transitional probability. 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Lattice of a 5 x 3-trap problem 
 

B. Value Function of Option 
The underlying uncertainty of the compact genetic 

algorithm depends on a probability vector. In each time step, 
two individuals are sampled from the distribution and fitness 
values of these candidates are assigned by the evaluation 
routine. The probability vector drives these values, and the 
algorithm uses these values to update the probability vector 
according to the best candidate. A certain cost per one 
sampling is assigned in order to account for an effort spent 
in running the algorithm. The average fitness of these 
candidates is used as a representative fitness value. As the 
candidate solutions are sampled from the probability vector, 
there is a chance that one sampling is good and the other is 
bad. Therefore, we use the average value to be a 
representative of the information in order to neutralize the 
event. 

Let π(x) denote the profit, and Ω(x) is the termination 
payoff. We apply the Bellman equation (2), where the value 
function is 
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The termination payoff is shown in (5) 

 
Ω(x)  =  g(x) * v                               (5) 

 
where g(x) is the fitness value of x, and v is the price. We 
illustrate the method with a simple example. In this case, 
there is no profit and discounting. Equation (2) becomes 

{ }]|)'([),(max)( xxFxxF εΩ= .               (6) 
Note that in this experiment we do not use the discount 

factor because in each state the compact genetic algorithm 
takes a few milliseconds to run; thus, the future value is not 
distinguishable from the present value. We also ignore the 
profit term π(x) because the compact genetic algorithm does 
not produce any immediate profit flow. The solution value is 

obtained from the fitness value at the time the algorithm 
terminates.    

To implement this idea, we assume that one fitness value 
is worth one unit price and no computation cost. We 
formulate the option value of this case as below: 
 

F(x)  =  max { g(x), ε[F(x′) | x] }.                   (7) 
 

In this trap problem, we assume artificial values in order to 
test the model. However, in the real-world problem, the 
fitness value’s worth and the algorithm cost can be 
determined according to the application. For example, in a 
bin packing problem, we know how a profit depends on the 
number of pieces packed into the bin. Thus, equation (7) can 
be adapted to real-world parameter values. 

C. Formulating the stopping function 
We construct the stopping regions on problem of 3 and 4-

trap using the methodology mentioned earlier. The exercise 
regions are shown in Fig. 4. 

To formulate the stopping boundary of the trap problem, 
first, we solve this problem with the compact genetic 
algorithm and keep track of the probability distribution of 
each fitness value over time. The probabilities are averaged 
over 10,000 runs. We use these data to construct a lattice of 
the fitness distribution. Second, we calculate an option value 
according to (6) using a dynamic programming approach. 
The option values are averaged over 100 runs. Finally, we 
summarize an option value and an exercise policy. 

Using the behavior from 5, 10 and 15 copies of 3 and 4 
trap, the generic function that represents the stopping 
criterion of trap problem is formulated. The boundary is 
approximated with a linear function by calculating slope 
from any two points. We denote some coordinates in order 
to represent intervals of the function in Fig. 5. 

This stopping policy is formulated as a function of 
chromosome length (l) and generation (x) using the slope-
intercept form of the line in (8). 

 

 y = mx + c                                     (8) 
 

where  m is slope 
   c  is y-intercept 
 

 In case that the upper bound is approximated from 
coordinate (0, α) and (α1, β1), the slope is (β1-α)/α1. Y-
intercept of this function is α obviously. 
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Fig. 5.  Points’ notation 
 

Substitute these into equation (8), the upper bound where 
x less than α1 is obtained. If 1 2xα α≤ < , the upper bound is 
approximated from (α1, β1) and (α2, β2), this bound is 

2 1
1 1

2 1
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−
. When 2 3xα α≤ < ,  the upper bound is 

approximated from (α2, β2) and (α3, l), this bound is 
2

2 2
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( )l xβ α β
α α

−
− +

−
. The values of α and β are estimated 

from data in Fig. 4 when the sizes of problem change. It is 
interesting to note that for a trap problem, this trend is 
linear. We formulate the upper bound function in (9), where 
k is trap size, m is the number of trap copies and l is 
chromosome length. 
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Using the same method, the lower bound function is 

shown in (10). 
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where  α = (0.37m + 0.88)k 
α1 = (68.70m + 1482.99) / k 

    α2 = 32.00m + 549.33 
    α3 = 33.50m + 796.33 
    α4 = (0.18m – 0.87)k 

β1 = (0.91m + 0.23)k 
β2 = (0.81m – 0.47)k 
β3 = (0.74m – 0.63)k 
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                          (a) 5 x 3-trap                                                                (b) 10 x 3-trap                                                                 (c) 15 x 3-trap 
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                       (d) 5 x 4-trap                                                               (e) 10 x 4-trap                                                                  (f) 15 x 4-trap 

Fig. 4.   The plots illustrate the exercise regions of running trap problem on 5, 10 and 15 copies of 3 and 4 trap. On the top, (a) – (c) are 5 x 3, 10 x 3 and 15 x 
3 trap problem. On the bottom, (d) – (f) are 5 x 4, 10 x 4 and 15 x 4 trap problrm. The stopping regions are the area where the fitness value rises above the 
upper threshold and where the fitness value falls below the lower threshold. If the fitness value falls into the stopping region, the algorithm should decide to 
stop because with the current population, it is unlikely to achieve a better result. 



TABLE I 
COMPARISON OF THE PROPOSED CRITERION 

m x k-trap cGA  with Traditional Stopping cGA with Early Stopping cGA with Reset Method 
 Eval. Best fit. Avg. fit. Eval. Best fit. Avg. fit. Eval. Best fit. Avg. fit. 

5 x 3-trap 971 15* 13.15 108 14 10.84 986 15* 13.16 
10 x 3-trap 1345 29 25.36 78 22 18.00 1350 28 25.54 
20 x 3-trap 1809 55 49.98 66 38 30.73 1801 54 49.93 
30 x 3-trap 2175 81 74.74 124 71 44.36 2194 81 75.19 
5 x 4-trap 889 18 15.49 483 18 14.77 917 20* 16.47 

10 x 4-trap 1252 34 30.62 521 31 25.74 1329 38 31.28 
20 x 4-trap 1757 66 61.66 867 64 49.99 1831 74 62.55 
30 x 4-trap 2165 99 92.59 912 97 70.54 2238 100 93.61 
5 x 5-trap 874 20 20.00 601 20 19.20 905 25* 20.55 

10 x 5-trap 1210 40 39.99 636 41 34.10 1286 50* 40.62 
20 x 5-trap 1731 82 79.95 887 81 64.17 1803 99 80.51 
30 x 5-trap 2147 122 119.58 1052 121 92.88 2231 125 119.67 

 * Optimal solution 
 

 
VI. EXPERIMENTS WITH VARIOUS SIZES 

To explore how to use the proposed criterion, we apply 
these functions to test on various sizes of trap problem. We 
test the proposed criterion compared with the compact 
genetic algorithm that stops when the probability fully 
converges. Using early stopping, the algorithm stops when 
the fitness value falls into the stopping region. With the reset 
method, the algorithm stops when the probability fully 
converges. The results in table I are averaged over 100 runs. 

In the experiments, we employ the stopping region as a 
policy to stop running the algorithm. It suggests that it is 
unlikely to achieve a good solution when the fitness value 
falls into the stopping region. Thus, the algorithm will stop 
when an average fitness value falls into this region, and we 
call this an early stopping. Using early stopping can save 
computational effort when the fitness value is unlikely to 
lead to optimality. Table I shows that using the early 
stopping can save the number of function evaluations while 
the best solution is close to the compact genetic algorithm 
that uses traditional stopping criterion. 

To improve the solution quality further, this paper also 
presents a technique called the reset method. This is another 
way of using the proposed criterion. Instead of using early 
stopping, the reset technique provides a chance of reaching a 
higher solution quality by reversing the probability vector. 
When the fitness values fall into the stopping region, it 
implies that the updating process may go wrong. Thus, we 
should try to search the other way. A simple approach to 
jump to other search points is adjusting the probability. 

We suggest reversing the probability vector. Each 
dimension of the probability vector is reversed by 1 minus 
probability in that dimension. Using this approach, the 
algorithm can explore the solution in the counterpart and if 
the solution in that area is not good, the fitness value will 
fall into the stopping region and the probability vector is 
reversed again.  This methodology provides an opportunity 

to search more candidate solutions when the model seems to 
go bad. From the experiment results in table 1, the reset 
method mostly provides a higher solution quality than the 
traditional compact genetic algorithm that uses traditional 
stopping criterion. Moreover, it tends to reach some optimal 
solutions when the trap size grows. This suggests that, for 
the trap problem, exploring different candidates when the 
fitness value is in the stopping region can be more effective 
than using the traditional or early stopping method, 
specifically when the problem is hard. 

One of the insights of this study is to better understand the 
behavior of fitness movement in the compact genetic 
algorithm. The continuation region, the area between upper 
and lower bounds, indicates the values that have a chance to 
reach optimal. In the trap problem the last part of the 
continuation region that leads to the optimal narrows down. 
With fitness distribution over time, this opens up to an 
analysis of problem hardness. Furthermore, when the 
problem size grows, the exercise region tends to scale well 
according to the linear function in the previous section. 

Obviously the exercise contours vary with the ratio of 
gain/cost (in eq. 6).  To observe the sensitivity of these 
contours, we vary the computational cost where the ratio of 
gain/cost are 10:1 and 1:1.  The results are shown in Fig. 6 
and Fig. 7.  They show that when the evaluating cost is 
expensive with respect to the gain, it is preferable to accept 
the solution even though they are not very good because the 
future computation is expensive (Fig. 7).  When the sampled 
solution seems to be good, it should be accepted and stop 
running.  In the case that the computation cost is low (Fig. 6) 
the decision is different.  The continuation region is larger. 
There are higher chances to continue with the current 
solution to improve the solution because it is beneficial.        
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Fig. 6.   The plots illustrate the exercise regions of gain10cost1 on 5, 10 and 15 copies of 3 trap (a)-(c). The threshold is lower than running without cost. 
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Fig. 7.   The plots illustrate the exercise regions of gain1cost1 on 5, 10 and 15 copies of 3 trap (a)-(c). The threshold is shifted down when the cost is higher. 
 

 
VII. CONCLUSION 

The proposed stopping policy is obtained using real 
options analysis. It provides a boundary for deciding 
whether to continue or to stop the algorithm. The stopping 
function of the trap problem is illustrated as an example of 
applying this methodology. Using the proposed stopping 
criterion, the algorithm stops early and saves on the number 
of function evaluations. Furthermore, when utilizing the 
reset method, it can achieve a higher solution quality. The 
proposed methodology would be more beneficial to a harder 
problem. Experiments using the boundary function 
estimated from 3- and 4-trap shows that we can reach an 
optimal solution of some copies of 5-trap. The capability in 
solving other problems should be investigated in future 
works. 
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