
Solving Additively Decomposable Functions by
Building Blocks Identification

W. Punyaporn, J. Ponsawat, and P. Chongstitvatana

Department of Computer Engineering,
Chulalongkorn University, Bangkok 10330, Thailand

wandao.p@gmail.com, jiradej.p@student.chula.ac.th, and prabhas@chula.ac.th

Abstract- This paper proposes a way to use Building Blocks

to improve solutions in Genetic Algorithm. Hard problems, for
instance, Additively Decomposable Functions (ADFs) cannot
be effectively solved by a standard algorithm such as Simple
Genetic Algorithm. A single point crossover creates disruption
of good solutions for such problems. We proposed using
Building Blocks Identification and performed appropriate
crossover to solve ADFs. The experiment shows the validity of
the proposed method.

I. INTRODUCTION

Building Blocks (BBs) are an important concept in
Genetic Algorithm, according to the Schema theorem [5],
[6], [9], [10]. BB is composed of two parts of definition.
First, BB is embedded in the solution with high fitness.
Second, properly composing these BBs gives the solution
with higher fitness. However, BBs are not easily identified.
This research proposed an approach to identify BBs in form
of highly-related-group of bits as partitions. The knowledge
of BBs can be used to prevent disruption of highly fit
solutions from crossover operators. When performing
crossover, group of bits in the same BB should not be
divided.

Building Blocks can be identified by computing Chi-
square Matrices and use Partition Algorithm proposed in
[3]. Each element of Chi-square matrices represents the
degree of relation between two bits of selected population.
Partition Algorithm groups bits with high relationship into
BBs.

To validate our hypothesis, we conduct experiments using
problems of Additively Decomposable Functions (ADFs)
(see Section III for the definition) which evidently consisted
of BBs. The proposed method consisted of identifying BBs
and using the knowledge of partitions to perform the
appropriate crossover. This method is tested against a
standard method, Simple Genetic Algorithm (SGA).

ADFs are hard problems for SGA because a single-point
crossover in SGA disrupts good solutions very often. The
proposed method conserves good solutions and composes
them into better solutions.

Many recent papers are still interested in using various
styles of GA to solve ADFs. In [7], GA is modified to use
an adaptive population size. Furthermore, it also uses ADFs
to compare adaptive GA with SGA. Other papers using trap
functions to test the performance of their algorithms such as
[11] and [12].

Some work encouraged finding BBs in order to improve
GA’s functions such as Linkage Learning [8]. Many direct
methods to find BBs are proposed such as [2].

We use the method in [2] to find BBs and show how to
perform crossover using Building Blocks. Similar idea can
be found in [4] where BBs are used to guide updating rules
for probabilistic model building GA. However, our work is
unique in the sense of applying BB concept to perform
crossover directly.

II. BUILDING BLOCK IDENTIFICATION

The algorithm presented in this paper is divided into two
parts, the Chi-Square Matrix construction and the Partition
algorithm (PAR).

A. Chi-square Matrix
The quantity of building blocks inversely relates to

randomness. The Chi-square Matrix [1] is chosen for
measuring randomness because computing the matrix is
simple and fast.

Let M = (mij) be an l× l symmetric matrix of numbers. Let
P be a population or a set of l bit binary strings. The Chi-
square matrix is defined as follows.

mij = ChiSquare(i,j) ; if i ≠ j

= 0 ; otherwise (2.1)

The ChiSquare(i,j) is defined as follows.

∑ −

xy

xy
P

n
njiCount

4/
)4/),((2

 , xy ∈ {00, 01, 10, 11}

 (2.2)
Where the observe frequency Count xy

P (i,j) counts the
number of solutions in which bit i is identical to x and bit j
is identical to y. The expected frequencies of observing
“00,”“01,” “10,” “11” are n/4 where n is the number of
solutions. The common structures (or building-blocks)
appear more often than the expected frequency.
Consequently, the Chi-square of bit variables that are in the
same BB is high. The time complexity of computing the
matrix is O(l2n).

B. Partitioning (PAR) Algorithm
Partitioning (PAR) Algorithm [3] will partition each input

bit into suitable blocks. When performing crossover, bits in
the same partition must not be separated. The PAR input is
an l × l matrix and its outputs the partition:

P = {B0, , B|P|−1}, U
1||

0

−

−

P

i
iB = { 0…… l −1},

Bi ∩ Bj = ∅ for all i ≠ j. (2.3)

International Joint Conference on Computer Science & Software Engineering (JCSSE2007)
 May 2-4, 2007

23

The Bi is called partition subset. There are several
definitions of the desired partition. Algorithm PAR must
have some preconditions.

1. P is a partition.
The members of P are disjoint set.
The union of all members of P is {0, … , l−1}.

2. P ≠ {{0, … , l−1}}.
3. For all B ∈ P such that | B | > 1,

For all i ∈ B, the largest | B | −1 matrix elements in
row i are founded in columns of B \ {i}.

4. For all B ∈ P such that | B | > 1,
Hmax − Hmin < (α Hmax − Lmin) where 0 ≤ α ≤ 1,
Hmax = max({mij | (i , j) ∈ B × B , i ≠ j }) ,
Hmin = min({mij | (i , j) ∈ B × B , i ≠ j }) , and
Lmin = min({mij | i ∈ B , j∈{0,….. l−1} \ B }).

5. There are no partition Px such that for some B ∈ P,
for some B x ∈ Px; P and Px satisfy the first, second,
third and fourth conditions, B ⊂ B x.

All the partition subsets can expand until they satisfy one
of the preconditions above.

M= (mij) denotes l × l Chi-Square matrix. 0≤ i , j ≤ l−1.
Ti and Ri,j denote arrays of numbers indexed by 0≤ i, j ≤
l−1.
A and B are partition subsets. P denotes a partition.
Algorithm PAR(M,α)
P ← ∅ ;
for i = 0 to l − 1 do

if i ∉ B for all B ∈ P then
array T = {matrix elements in row i sorted
in descending order};
for j = 0 to l − 1 do

Ri,j = x where mix = Tj
endfor
A ← {i};
B ← {i};
for j = 0 to l − 3 do

A ← A ∪ {Ri,j};
if A satisfies the third and the
fourth conditions then

B ← A;
endif

endfor
P ← P ∪ {B};

endif
endfor
return P;

C. Crossover Method
The crossover operator can exploit the knowledge of BBs
by choosing appropriate cut points. The cut point should
not separate bits in the same BB (see Fig. 1). To achieve
this, a crossover mask in created for each partition. When
parents exchange bits to create offspring, all bits in the same
partition will be moved together. See the following
example:

Partition <1 2 3 4 1 3 2 4 5 6 7 8 5 4 6>
Mask Bits <0 1 1 1 0 1 1 1 0 1 1 1 0 1 1>

x x x x x x x x x x x x x x x
Parent 1

y y y y y y y y y y y y y y y

Parent 2

0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
Mask Bits

After crossover, the two parents produce two children.

y x x x y x x x y x x x y x x
Child 1

x y y y x y y y x y y y x y y

Child 2

The number in the partition shows the relation between
bits. The same number illustrates the same partition which is
also in the same building block. Flip coin method is used to
choose whether partitions will be removed or remain
unchanged. For instance, if the partition “1” is assigned to 0,
all parts labeled with “1” are also assigned 0. After assign
0/1 to all partitions in each gene, the partitions which are
assigned to 0 must be swapped to their mate. Otherwise,
they remain in the same positions.

Figure 1 illustrates the difference between the crossover
of BB algorithm and the crossover of SGA. The former will
not break into a partition while the latter randomly chooses
the cut point without considering the building block.

(A) Mixing and maintaining BBs

(B) Mixing and losing BBs

Figure 1 Building block characteristics

III. BENCHMARK PROBLEM

To validate the proposed method, a set of benchmark is
tested. The ADFs are chosen because they evidently
consisted of BBs. The standard ADF is Trap function. To
emphasize the effect of BBs, we also construct a modified
version called Shuffle Trap function. The Shuffle Trap
function has "loose-coding" of solution, i.e. bits in a BB is
positioned far apart. Hence the single point crossover is
ineffective against this encoding. It always disrupts the
BBs. The definitions of Trap functions are as follows.

24

m × k-trap function
m × k-trap function is defined as following.

 F km× : B → R, B ∈ B0…B 1−m , Bi ∈ {0,1}k
 (3.1)

 F km× (B0…B 1−m) =)(
1

0
i

m

i
k BF∑

−

=

 (3.2)

Where Fk is k-trap function [11]. The m and k are varied
to produce many test functions. These functions are often
referred to as additively decomposable functions (ADFs).
The optimal solution consists of all “1” bits.

Shuffle m × k-trap function
The shuffle trap function is constructed by spreading bits

of the same building blocks. For instance, normal 4×5-
trap function has building blocks as shown.

11111 xxxxx xxxxx xxxxx

The modulo method is used to construct one building
block. The bits in the same building block are spreading out
every m bits.

1xxx 1xxx 1xxx 1xxx 1xxx

The trap functions are composed of:
a) 20×3- trap function
b) 20×3- shuffle bits trap function
c) 10×4- trap function
d) 10×4- shuffle bits trap function

To find solutions to the problems, the parameters for a)
and b) are set as follows: population size = 15000, max
generation = 500, crossover rate = 0.9, mutation rate is
turned off and threshold (α) in PAR is set to 0.95 while the
parameters for c) and d) are set as follows: population size =
50000, max generation = 500, crossover rate = 0.9, mutation
rate is turned off for BB algorithm while SGA is assigned to
0.3. Threshold required in creating partition subset is set to
0.95.

IV. EXPERIMENTAL RESULT

For comparison, SGA is used to solve for these problems.
Each graph is averaged from 25 independent runs. Figure 2
shows the relation between generations and fitness value in
normal 3×20-trap function. The results illustrate that BB
crossover algorithm performs better with respect to the
mean and maximum fitness value than SGA. When increase
one bit to each trap set in figure 3, the difference is even
more pronounced. BB algorithm first found the optimal
solution in the 60th generation and reached the steady state
in the 140th generation. On the other hand, SGA got stuck in
this deceptive function and cannot reach the optimal
solution.

Figure 2 Simulation result for 20×3-trap function

Figure 3 Simulation result for 10×4-trap function

Figure 4 and 5 represent the results of the shuffle trap

function. Figure 4 clearly shows that BB gains higher
performance than SGA. BB can reach the optimal solution,
while SGA cannot. The situation is even worse for SGA
with the larger size problem. The result is shown in figure 5.

Figure 4 Simulation result for 20×3-shuffle bit trap function

25

Figure 5 Simulation result for 10×4-shuffle bit trap function

From results of the experiments, the proposed algorithm

reaches the optimal solution in earlier generation than SGA
in normal trap function. Moreover, in shuffle trap function,
SGA cannot find the optimal solution while our algorithm
can.

V. CONCLUSION

We show that BB crossover algorithm can solve many
deceptive functions, 20×3-bit trap, shuffle 20×3-bit trap,
10×4-bit trap and shuffle 10×4-bit trap. As a result, our
algorithms perform more effectively than SGA. Future work
will explore the quality of BB algorithms in multiple
objective optimization problems as well as in a wide range
of real-world applications.

REFERENCES
[1] C. Aporntewan and P. Chongstitvatana, A quantitative approach for

validating the building block hypothesis, IEEE Congress of
Evolutionary Computation, Edinburgh, September 2-5, 2005.

[2] C. Aporntewan and P. Chongstitvatana, Chi-square matrix: An
approach for building-block identification. In Proceedings of 9th
Asian Computing Science Conference, December 8-10, 2004, 63–77.

[3] C. Aporntewan and P. Chongstitvatana, Simultaneity matrix for
solving hierarchically decomposable functions. Proceedings of the
Genetic and Evolutionary Computation, Springer-Verlag, Heidelberg,
Berlin,2004, 877–888.

[4] C.F. Lima and K. Sastry, Combining Competent Crossover and
Mutation Operators: a Probabilistic Model Building Approach,
GECCO’05, Washington, DC, USA, June 25–29, 2005.

[5] D. E. Goldberg, Genetic Algorithms in Search Optimization and
Machine Learning. Addison Wesley, Reading, MA, 1989.

[6] D. E. Goldberg, The Design of Innovation: Lessons from and for
Competent Genetic Algorithms. Kluwer Academic Publishers,
Boston, MA, 2002.

[7] F.G. Lobo and C.F. Lima , Revisiting Evolutionary Algorithms with
On-the-Fly Population Size Adjustment, GECCO’06, Seattle,
Washington, USA, July 8–12, 2006, 1241-1248.

[8] G. R. Harik, Learning Linkage, Foundation of Genetic Algorithms 4,
Morgan Kaufmann, San Francisco, 1997, 247-262.

[9] J. H. Holland, Adaptation In Natural and Artificial Systems,
University of Michigan Press, 1975.

[10] J. H. Holland, Building blocks, cohort genetic algorithms, and
hyperplane defined functions. Evolutionary Computation, 8(4),
MITPress, Cambridge, MA, 2000, 373–391.

[11] M. Clergue and P. Collard, GA-hard functions built by combination
of Trap functions. In Proceedings of the 2002 Congress on
Evolutionary Computation, May 12-17, 2002.

[12] S. Nijssen and T. Back, An analysis of the behavior of simplified
evolutionary algorithms on trap functions. IEEE Transactions on
Evolutionary Computation, 7(1), February, 2003.

26

	Processing 47.pdf
	Processing 48.pdf
	Processing 49.pdf
	Processing 50.pdf

