International Joint Conference on Computer Science & Software Engineering (JCSSE2007)
May 2-4, 2007

| nstruction Packing for a 32-bit Stack-Based
Pr ocessor

Witcharat Lertteerawattana, Tanes JedsadawararmbRrabbhas Chongstitvatana
Department of Computer Engineering, Chulalongkoniversity
Bangkok 10330, Thailand
email: prabhas@chula.ac.th

Abstract - This work proposed a design and The TS register stores the top of stack value. B
development of a 32-bit stack-based processor for register stores the pointer to the second valughenstack
embedded systems. A reference processor has a 32-bit (below the top of stack)P register, as its name, keeps the
stack-based instruction set. This work proposed a frame pointer.NX and FF registers are used when some
technique of instruction packing which packs several instruction needs a temporary storage during comguhe
instructions into one 32-bit instruction unit. Therefore, result from ALU. TheAAregister stores the array pointer for
the instruction size is reduced. The result of the dynamic memory allocation. The data path consistsne
experiment shows that the proposed technique achieves ALU that connects to the register bank and thelrdsam
around 30% reduction in code size. ALU is connected totbus and tbus connects to the

_) _ ~ register bank.
Keywords Instruction packing, Byte code instruction,

Stack-based processor The PC register is designed with an auto- increment
module, so fetching instruction can be done in oleek
1. INTRODUCTION cycle. It also can be loaded with the vaR@+arg or tbus .

. The memory interface is through Bus Interface WBIiU).
_ A stack-based processor has many advantages sutsh asryq gy connects data inputif) and outputdout) from
instruction set is close to high-level language, data path to memory. Thaiin can be selected fros or FP. ALU is
IS S|r_np_le and it is low cost to 'mp'e.me.”t- Its (_lﬂsantage IS" connected with two multiplexerpl and p2 which p1
the limited performance because its instructionogetrates interfaces to four registefs, SP, FP andNX andp2 links

on the evaluation stack which accesses the menidrig. ith FF and the instructi tval
problem can be reduced with the instruction packind’vI and the instruction argument vaiue.

technique. Instruction packing is the assemblingmainy
instructions into one unit. By reducing the size of
instruction, there will be less instruction fetafirform
memory. This proposed technique is applicable ¢erzeral
stack-based processor because the changes aréndhly
control unit. The proposed processor has been megignd
implemented based on FPGA devices. The cycle ateur
simulation shows that the program size is redudecuta
30% compared to the reference processor.

3. INSTRUCTION PACKING

In the design of the processor’s structure withkpdc
instruction, the first point that needs considemtis the
instruction set. How to put many instructions iiee unit
of instruction so that we can fetch them in ondeyc

The main idea of this design is demonstrated dsvisl
The base instruction set was designed with bytecod
format. The instructions are divided into groupa@ding to
the size of the operand. There are three patterai
operand, one-byte operand and three-byte operasgeasin
Figure 1.

2. REFERENCE PROCESSOR

The reference processor is a 32-bit stack-baseckepsor
[1]. This design is a descendant of an earlier iLt&tack-
based processor [2]. The evaluation stack is kephe
memory. The data path of the reference processimigle.
The processor is aimed to be a teaching tool at th
architectural level. It is not aimed for high perfance.

This reference processor has eight special purpo
registersir, PC, TS, SP, FP, NX, FF andAA

IR : Instruction Register
PC: Program Counter register

In this paper, we call the above pattern as follows

f. Zero operand: S-format (one byte opcode)
. One-byte operand: M-format (one-byte opcode, one-
yte operand)
3. Three-byte operand: L-format (one-byte opcode,ethre
byte operand)

TS : Top of St"’,‘Ck regls.ter As they are variable size instructions and theregfee
SP : Stack Pointer register processor fetches at word boundary, there are masye
FP: Frame Pointer register blank space in the instruction of S-format and Mxfat
NX: First temporary register (each instruction is allocated four bytes in memeren
FF : Second temporary register though the size of those instructions are différent

AA : Array Allocation register

126

Zero operand jmps (medium instruction)
‘ 8 6 2

jmps NW NB

‘ Opcode ‘ Nop ‘ Nop ‘ Nop

One byte operand

‘ Opcode ‘ Operand ‘ Nop ‘ Nop ‘ jmp /jt/ jf (long instruction)
22

8 2>

mp, jt, jf NW NB

Two byte operand

‘ Opcode ‘ Operand ‘
Figure 1. Three pattern of instructions

Figure 3. The modified jump instructions.

The NW(Next Word argument) is an offset value of the
destination word-address. TheB (Next Byte argument)
points to the next byte in the destination wordradd. If a
jump is taken,NB is saved to theBP register. With this
instruction encoding, there are 12 new instruciatterns
as shown in Figure 4.

The proposed design creates new instruction forhaits
can be fetched four-byte at a time. The new fonviththave
better memory space utilization.

Entry type

The new instruction format will be a superset oé th . . .

reference instruction set. The new format defiaefeld Th.e Instruction dechmg has.two. states. The fitrarcof

called “entry type” which determines the packingtea. the first decode state is shown in Figure 5.

The reference processor has 36 instructions hehee t i)) i

instruction encoding requires six bits. For onesbgpcode ~ 1he first decoding stateP is tested first, and then the

there will be the remaining 2 bits for this entgpé. The €Nty type of each byte th&P pointed to is tested. If the

entry type has the encoding as follows: entry type is zero, go to Pre Instruction Fetchtest
prepare to fetch the next instruction. Otherwise,tg the

1. Entry type = 0 means the follow instruction is NOP (No Sécond decoding state (Decode short, medium or long

Operation) and the processor has to fetch a new foothe ~ Instruction).

next instruction.

2. Entrytype= 1 means the follow instruction is S-format. _ After the size of current instruction is known thgte that
3. Entry type = 2 means the follow instruction is M- should be accessed by the first decoding statetermined,

format. BP must be updated to the change inAR®ister. If it is
4. Entrytype= 3 means the instruction is L-format S-format instructionBP is incremented by one. If it is M-
With this entry type, the instruction would have thattern ~ format instructionBP is increment by two. If it is L-format
as follows: instruction,BPis set to 0.

While considering the entry type, it is necessargécode With the new BP register, the control steps for the
the byte header to decide the size of the subdicttn. instruction call and return are changed. They sirewn
Therefore it is important to access each byte yrekhe BP below. First, we describe the control step notatio
(Byte Pointer register) is used to point to theshtytat would

be accessed next. Control step notation
A number of additional registers are included ia ttata Each execution step can be notated as follows:
path. TheBP register and theaRGregister are used to store src -> dst))
the argument value. In the packed instruction tigement it denotes the value transferring from source “srdd
size is variable and the argument position is ixetf destination “dst” where src and dst can be a wireao

register. A wire represents a connection or thetiopitput

Although accessing instruction at the byte-leveh ¢ ©f @ component.
done, there is a problem when performs jump. In an alu@@opb) ->dst
ordinary jump, there are two kinds of jump, M andokmat _denotes the ALU operation “op” that performs on two
(short and long jump). The jump instruction gerlgral MPUtS, a a“nd b and then sends the result valuéhdo
accesses the code segment at word boundary bpadked destination “dst” where dst can be a wire or astegi
instruction needs to access at the byte-level. Mbdified mR(ads) -> dst

. . . R src -> mW(ads)
Jump instructions are shown in Figure 3. the mR(ads) -> dst means reading value from memory

address “ads” and store such value into destina#gister,
‘ 1 byte 2" byte ‘ 3 pyte ‘ 4" byte ;

the src -> mWw(ads) means write value from source
register into memory address “ads”.

“2re—6—> *
‘e1 Ovcode | €2 opcode [e3[opcode [e4] opcode |
P | oroperand | oroperand | oroperand |

Figure 2. The sub- instructions with entry type.

127

L opcode operand

operand

operand

M opcode operand

M opcode

operand

M opcode operand

M opcode operand

S opcode

S opcode

M opcode operand

S opcode

S opcode

S opcode

S opcode

S opcode S opcode

S opcode

S opcode S opcode

S opcode

S-S-M S opcode S opcode

M opcode

operand

S-M-S S opcode

S opcode ‘
‘ M opcode

operand

S opcode

S-M S opcode ‘ M opcode

operand

s-s-s ‘
i

Figure 4. Pattern of packed instructions

The concurrent execution is denotes by writing tham

same line and separated each event from othersioyna
“”. These events are concurrent, the writing ordeeach

event in the same line is irrelevant.

The short hand notation for SP and PC can denates

follows:

SP+1is alu(SP + 1) -> SP
SP-lisalu (SP-1)-> SP
PC+1is PC+1 -> PC
PC+arg is PC+arg -> PC

Here are the control steps for call and returmimsion.

<Call>

SP++

TS->mW(SP), PC++

PC->TS

arg[23:2]->thus->nx->pc,
arg[1:0]->bp, mR[tbus]->ir

irfx:y]->arg, irfy+1:y+2]->bp

alu(SP+arg)->tbus, FP->mW(tbus)

alu(SP+arg)->tbus, tbus->SP->FP/

decide_state

<Return>

sp->ff

alu(fp=ff), ifFalse /retv
ts->pc

alu(fp-arg)->sp
mR(sp)->tssp-1
mR(fp)->fp, 0->bp /fetch

<Returnv>
(return with return value on stack)

alu(fp+1)->tbus, mR(tbus)->ff
ff->pc

alu(fp-arg)->sp

mR(fp)->fp, 0->bp /fetch

4. PERFORMANCE

In the experiment to evaluate the performance ef th

proposed processor, we use a set of benchmarkagmnsgr

Table 1 shows the number of cycles for each prograthe
reference processor compared with the packed oi&iru

processor.

128

“bubble” is a bubble sort program sorting an arcdy20
integers, initially the value in the array is insdending
order and sort to ascending order. “quick” is ackusort
program with a similar input to “bubble”. “hanoi$ a
program to solve Tower of Hanoi problem with 7 disk
“matmul” is a matrix multiplication program; thegat is
two matrices of the size 4 x 4,

Table 1 compares the number of cycles of the two
processors. Table 2 compares the size (in byte)hef
program of the reference processor and the packed
instruction of the proposed processor.

In average, the number of cycles of the proposed
processor is 13.7% more than the reference processo
Comparing the size of program between the reference
processor and the packed-instruction processomabked-
instruction is 29.52% smaller.

The augmented processor is 13.7% slower due to the
increase in the instruction decoding time. The /M
Access time in the FPGA board we used for the arpat
is very fast so the gain in reducing the instructfetch is
offset by the instruction decoding.

However, the number of instruction fetch is obvigus
reduced by 33.83% as show in Table 3.

5. RELATED WORK

The current interest in embedded systems spurs af lo
research activities in instruction packing. The kvor [3, 4]
proposed integrating an instruction register fdedecrease
code size and improve performance. The software and
hardware extension to the instruction register fite
supporting multiple instruction register windowdoals a
greater number of relevant instructions to be atddl for
packing in each function. Others that related t® shack-
based processor are [5, 6]. Our earlier work inrircsion
packing [7] proposed a similar idea presented is plaper
but it supported only the word boundary jump.

6. CONCLUSION

The packed-instruction achieved around 30% redudtio
code size. Although the performance of the progose
processor is lacking due to the delay in instructiecoding,
it is possible to improve the implementation of trexoding
state.

In terms of resources used, the proposed processor
consumes a little more resource than the referpraxeessor
when synthesis on the FPGA devices. The equivajatd
count for this design is 20,699 gates while theenezice
processor consumes 19,853 gates.

Table 1. Comparing the number of cycles.

Program Ref. Packed Inst. | Increased
Processor | Processor (%)
Bubble 59763 69061 15.58
Quick 21103 22373 6.02
Hanoi 52739 63040 19.52
Matmul 72260 91220 20.78

Table 2. Comparing the code size (in byte).

Program Ref. Packed Inst. | Reduced
Processor | Processor (%)
Bubble 316 224 29.11
Quick 540 344 36.30
Hanoi 424 324 23.58
MatMul 784 556 29.08

Table 3. Comparing the number of instruction fetch.

Program Ref. Packed Inst. | Reduced
Processor | Processor (%)
Bubble 12549 8414 32.95
Quick 4542 3134 31.00
Hanoi 11005 8121 26.21
MatMul 15612 8563 45.15

7. REFERENCES

[1] http://lwww.cp.eng.chula.ac.th/~piak/ teaching/enibleigy/sx-
chip.htm

%
4

Sood

bbbd
Sbdd

(2

(3]

(4]

(5]

(6]

(7]

P

A. Burutarchanai, P. Nanthanavoot, C. Aporntewand aR.
Chongstitvatana, “A stack-based processor for mesolefficient
embedded systems”, Proc. of IEEE TENCON 2004, 2N@Jember
2004, Thailand.

S. Hines, G. Tyson, and D. Whalley, “Reducing Instion Fetch
Cost by Packing Instructions into Register WindawBublication
Journal, Computer Science Department, Florida Staterersity,
2005.

S. Hines, J. Green, G. Tyson and D. Whalley, “Imprg Program
Efficiency by Packing Instructions into RegistersPublication
Journal, Computer Science Department, Florida Staterersity,
2005

J. Sharkey, D. Ponomarev, K. Ghose and O. Erginstriiction
Packing: Reducing Power and Delay of the Dynamibe8ualing
Logic”, Department of Computer Science, State Ursitg of New
York, 2005.

D. Yuyuan, “Design of a 16-bit real time stack mssor in FPGA”,
No0.127, Northeastern University, Shenyang 110004&.China,
2005.

P. Nanthanavoot, A. Burutarchanai, and P. Chongstiha,
“Instruction Packing for a 32-bit Resource EffiatgnProcessor”,
National Science and Technology Development AgefitSTDA)
Annual Conference, Thailand, 27-30 March 2005 @ai].

Soad

Figure 5.The flow of decode state for packed-irtoms

129

ebus 1

f arg[23:2]
PC <7jbus o
abus

M - [«—— tbus

A

le—tbus

c

- 1
i
rg

{0, IR[23:16]}
Y i TS
FP
{0, IR[7:0]}
) IR[23:0]
i
B cbus
X arg [1:0]
c

TS

|
:

o
A

w N =~ O

dbus sp
> bus

PC ——» -
tous >

p1

FP

NX

FF

arg ——p

vy

arg[23:2] ——|

ALU

H

y

Figure 6. The complete data path

130

