
Instruction Packing for a 32-bit Stack-Based
Processor

Witcharat Lertteerawattana, Tanes Jedsadawaranon and Prabhas Chongstitvatana

Department of Computer Engineering, Chulalongkorn University
Bangkok 10330, Thailand

email: prabhas@chula.ac.th

Abstract - This work proposed a design and
development of a 32-bit stack-based processor for
embedded systems. A reference processor has a 32-bit
stack-based instruction set. This work proposed a
technique of instruction packing which packs several
instructions into one 32-bit instruction unit. Therefore,
the instruction size is reduced. The result of the
experiment shows that the proposed technique achieves
around 30% reduction in code size.

Keywords: Instruction packing, Byte code instruction,
Stack-based processor

1. INTRODUCTION

A stack-based processor has many advantages such as its
instruction set is close to high-level language, the data path
is simple and it is low cost to implement. Its disadvantage is
the limited performance because its instruction set operates
on the evaluation stack which accesses the memory. This
problem can be reduced with the instruction packing
technique. Instruction packing is the assembling of many
instructions into one unit. By reducing the size of
instruction, there will be less instruction fetching form
memory. This proposed technique is applicable to a general
stack-based processor because the changes are only in the
control unit. The proposed processor has been designed and
implemented based on FPGA devices. The cycle accurate
simulation shows that the program size is reduced about
30% compared to the reference processor.

2. REFERENCE PROCESSOR

The reference processor is a 32-bit stack-based processor
[1]. This design is a descendant of an earlier 16-bit stack-
based processor [2]. The evaluation stack is kept in the
memory. The data path of the reference processor is simple.
The processor is aimed to be a teaching tool at the
architectural level. It is not aimed for high performance.

This reference processor has eight special purpose
registers: IR, PC, TS, SP, FP, NX, FF and AA

 IR : Instruction Register
 PC : Program Counter register
 TS : Top of Stack register
 SP : Stack Pointer register
 FP : Frame Pointer register
 NX : First temporary register
 FF : Second temporary register
 AA : Array Allocation register

The TS register stores the top of stack value. The SP
register stores the pointer to the second value in the stack
(below the top of stack). FP register, as its name, keeps the
frame pointer. NX and FF registers are used when some
instruction needs a temporary storage during computing the
result from ALU. The AA register stores the array pointer for
dynamic memory allocation. The data path consists of one
ALU that connects to the register bank and the result from
ALU is connected to tbus and tbus connects to the
register bank.

The PC register is designed with an auto- increment
module, so fetching instruction can be done in one clock
cycle. It also can be loaded with the value PC+arg or tbus .
The memory interface is through Bus Interface Unit (BIU).
The BIU connects data input (din) and output (dout) from
to memory. The din can be selected from TS or FP. ALU is
connected with two multiplexers p1 and p2 which p1
interfaces to four registers TS, SP, FP and NX and p2 links
with FF and the instruction argument value.

3. INSTRUCTION PACKING

In the design of the processor’s structure with packed
instruction, the first point that needs consideration is the
instruction set. How to put many instructions into one unit
of instruction so that we can fetch them in one cycle?

The main idea of this design is demonstrated as follows.
The base instruction set was designed with byte-code
format. The instructions are divided into group according to
the size of the operand. There are three patterns: zero
operand, one-byte operand and three-byte operand as seen in
Figure 1.

In this paper, we call the above pattern as follows:

1. Zero operand: S-format (one byte opcode)
2. One-byte operand: M-format (one-byte opcode, one-
byte operand)
3. Three-byte operand: L-format (one-byte opcode, three-
byte operand)

As they are variable size instructions and the reference
processor fetches at word boundary, there are many waste
blank space in the instruction of S-format and M-format
(each instruction is allocated four bytes in memory even
though the size of those instructions are different).

126

International Joint Conference on Computer Science & Software Engineering (JCSSE2007)
 May 2-4, 2007

Figure 1. Three pattern of instructions

The proposed design creates new instruction formats that

can be fetched four-byte at a time. The new format will have
better memory space utilization.

Entry type

The new instruction format will be a superset of the
reference instruction set. The new format defines a field
called “entry type” which determines the packing pattern.
The reference processor has 36 instructions hence the
instruction encoding requires six bits. For one-byte opcode
there will be the remaining 2 bits for this entry type. The
entry type has the encoding as follows:

1. Entry type = 0 means the follow instruction is NOP (No
Operation) and the processor has to fetch a new word for the
next instruction.
2. Entry type = 1 means the follow instruction is S-format.
3. Entry type = 2 means the follow instruction is M-
format.
4. Entry type = 3 means the instruction is L-format
With this entry type, the instruction would have the pattern
as follows:

While considering the entry type, it is necessary to decode
the byte header to decide the size of the sub-instruction.
Therefore it is important to access each byte freely. The BP
(Byte Pointer register) is used to point to the byte that would
be accessed next.

A number of additional registers are included in the data
path. The BP register and the ARG register are used to store
the argument value. In the packed instruction the argument
size is variable and the argument position is not fixed.

Although accessing instruction at the byte-level can be
done, there is a problem when performs jump. In an
ordinary jump, there are two kinds of jump, M and L-format
(short and long jump). The jump instruction generally
accesses the code segment at word boundary but the packed
instruction needs to access at the byte-level. The modified
jump instructions are shown in Figure 3.

Figure 2. The sub- instructions with entry type.

Figure 3. The modified jump instructions.

The NW (Next Word argument) is an offset value of the

destination word-address. The NB (Next Byte argument)
points to the next byte in the destination word-address. If a
jump is taken, NB is saved to the BP register. With this
instruction encoding, there are 12 new instruction patterns
as shown in Figure 4.

The instruction decoding has two states. The flow chart of

the first decode state is shown in Figure 5.

The first decoding state, BP is tested first, and then the
entry type of each byte that BP pointed to is tested. If the
entry type is zero, go to Pre Instruction Fetch state to
prepare to fetch the next instruction. Otherwise, go to the
second decoding state (Decode short, medium or long
instruction).

After the size of current instruction is known the byte that

should be accessed by the first decoding state is determined,
BP must be updated to the change in the ARG register. If it is
S-format instruction, BP is incremented by one. If it is M-
format instruction, BP is increment by two. If it is L-format
instruction, BP is set to 0.

With the new BP register, the control steps for the
instruction call and return are changed. They are shown
below. First, we describe the control step notation.

Control step notation

Each execution step can be notated as follows:
src -> dst

it denotes the value transferring from source “src” to
destination “dst” where src and dst can be a wire or a
register. A wire represents a connection or the input/output
of a component.

alu(a op b) -> dst
denotes the ALU operation “op” that performs on two
inputs, a and b and then sends the result value to the
destination “dst” where dst can be a wire or a register.

mR(ads) -> dst
src -> mW(ads)

the mR(ads) -> dst means reading value from memory
address “ads” and store such value into destination register,
the src -> mW(ads) means write value from source
register into memory address “ads”.

127

Figure 4. Pattern of packed instructions

The concurrent execution is denotes by writing them in

same line and separated each event from others by comma
“,”. These events are concurrent, the writing order of each
event in the same line is irrelevant.

The short hand notation for SP and PC can denotes as
follows:
 SP+1 is alu(SP + 1) -> SP
 SP-1 is alu (SP – 1) -> SP
 PC+1 is PC+1 -> PC
 PC+arg is PC+arg -> PC

Here are the control steps for call and return instruction.

<Call>

SP++
TS->mW(SP), PC++
PC->TS
arg[23:2]->tbus->nx->pc,
 arg[1:0]->bp, mR[tbus]->ir
ir[x:y]->arg, ir[y+1:y+2]->bp
alu(SP+arg)->tbus, FP->mW(tbus)
alu(SP+arg)->tbus, tbus->SP->FP/
decide_state

<Return>

sp->ff
alu(fp=ff), ifFalse /retv
ts->pc
alu(fp-arg)->sp
mR(sp)->tssp-1
mR(fp)->fp, 0->bp /fetch

<Returnv>
(return with return value on stack)

alu(fp+1)->tbus, mR(tbus)->ff
ff->pc
alu(fp-arg)->sp
mR(fp)->fp, 0->bp /fetch

4. PERFORMANCE

In the experiment to evaluate the performance of the
proposed processor, we use a set of benchmark programs.
Table 1 shows the number of cycles for each program of the
reference processor compared with the packed instruction
processor.

“bubble” is a bubble sort program sorting an array of 20
integers, initially the value in the array is in descending
order and sort to ascending order. “quick” is a quick sort
program with a similar input to “bubble”. “hanoi” is a
program to solve Tower of Hanoi problem with 7 disks.
“matmul” is a matrix multiplication program; the input is
two matrices of the size 4 × 4.

Table 1 compares the number of cycles of the two
processors. Table 2 compares the size (in byte) of the
program of the reference processor and the packed
instruction of the proposed processor.

In average, the number of cycles of the proposed

processor is 13.7% more than the reference processor.
Comparing the size of program between the reference
processor and the packed-instruction processor, the packed-
instruction is 29.52% smaller.

The augmented processor is 13.7% slower due to the
increase in the instruction decoding time. The memory
access time in the FPGA board we used for the experiment
is very fast so the gain in reducing the instruction fetch is
offset by the instruction decoding.

However, the number of instruction fetch is obviously
reduced by 33.83% as show in Table 3.

5. RELATED WORK

The current interest in embedded systems spurs a lot of
research activities in instruction packing. The work in [3, 4]
proposed integrating an instruction register file to decrease
code size and improve performance. The software and
hardware extension to the instruction register file for
supporting multiple instruction register windows allows a
greater number of relevant instructions to be available for
packing in each function. Others that related to the stack-
based processor are [5, 6]. Our earlier work in instruction
packing [7] proposed a similar idea presented in this paper
but it supported only the word boundary jump.

6. CONCLUSION

The packed-instruction achieved around 30% reduction in
code size. Although the performance of the proposed
processor is lacking due to the delay in instruction decoding,
it is possible to improve the implementation of the decoding
state.

In terms of resources used, the proposed processor
consumes a little more resource than the reference processor
when synthesis on the FPGA devices. The equivalent gate
count for this design is 20,699 gates while the reference
processor consumes 19,853 gates.

Table 1. Comparing the number of cycles.

Program Ref.
Processor

Packed Inst.
Processor

Increased
(%)

Bubble 59763 69061 15.58
Quick 21103 22373 6.02
Hanoi 52739 63040 19.52
Matmul 72260 91220 20.78

128

Table 2. Comparing the code size (in byte).
Program Ref.

Processor
Packed Inst.
Processor

Reduced
(%)

Bubble 316 224 29.11
Quick 540 344 36.30
Hanoi 424 324 23.58
MatMul 784 556 29.08

Table 3. Comparing the number of instruction fetch.

Program Ref.
Processor

Packed Inst.
Processor

Reduced
(%)

Bubble 12549 8414 32.95

Quick 4542 3134 31.00

Hanoi 11005 8121 26.21

MatMul 15612 8563 45.15

7. REFERENCES

[1] http://www.cp.eng.chula.ac.th/~piak/ teaching/embed/chip/sx-

chip.htm

[2] A. Burutarchanai, P. Nanthanavoot, C. Aporntewan and P.
Chongstitvatana, “A stack-based processor for resource efficient
embedded systems”, Proc. of IEEE TENCON 2004, 21-24 November
2004, Thailand.

[3] S. Hines, G. Tyson, and D. Whalley, “Reducing Instruction Fetch
Cost by Packing Instructions into Register Windows”, Publication
Journal, Computer Science Department, Florida State University,
2005.

[4] S. Hines, J. Green, G. Tyson and D. Whalley, “Improving Program
Efficiency by Packing Instructions into Registers”, Publication
Journal, Computer Science Department, Florida State University,
2005

[5] J. Sharkey, D. Ponomarev, K. Ghose and O. Ergin, “Instruction
Packing: Reducing Power and Delay of the Dynamic Scheduling
Logic”, Department of Computer Science, State University of New
York, 2005.

[6] D. Yuyuan, “Design of a 16-bit real time stack processor in FPGA”,
No.127, Northeastern University, Shenyang 110004, P.R.China,
2005.

[7] P. Nanthanavoot, A. Burutarchanai, and P. Chongstitvatana,
“Instruction Packing for a 32-bit Resource Efficiency Processor”,
National Science and Technology Development Agency (NSTDA)
Annual Conference, Thailand, 27-30 March 2005 (in Thai).

Figure 5.The flow of decode state for packed-instructions

129

+

Figure 6. The complete data path

130

