
 

 

 

  

Abstract— This paper  presents a hardware implementation 
of evolvable block-based neural network (BBNN) amd a kind of 
EDAs called cellular  compact genetic algor ithm (CCGA) in 
FPGA.  The CCGA and BBNN have cellular -like and ar ray-like 
structures which are suitable for  hardware implementation. 
The implemented hardware demonstrates the completely 
intr insic online evolution in hardware without software running 
on microprocessors. This work contr ibutes to the field of 
evolvable hardware by proposing CCGA and a layer -based 
architecture to an integration of BBNN and CCGA as a kind of 
evolvable hardware.  In addition,  the proposed CCGA 
efficiently solves the scalable issues by scaling up to the size of 
BBNN. The presented approach demonstrates a new kind of 
evolvable hardware. 

I. INTRODUCTION 

volvable hardware (EH) is the integration of 

evolutionary computation and programmable hardware 

devices. The objective of evolvable hardware is to create 

“autonomous” reconfiguration of hardware structures in 

order to improve performance [1-3]. Recent research trend in 

EH directs towards functional approaches to the design of 

extrinsic and intrinsic EH [4,5]. For extrinsic EH, the 

evolutionary process is performed off-line. Then the results 

are downloaded into the hardware. On the contrary, for the 

intrinsic EH, the evolutionary process is performed wholly or 

partly in hardware [6-8]. 

The key concept of our focused evolvable hardware is to 

regard the configuration bits of programmable hardware 

architecture as the chromosomes of genetic algorithm (GA) 

[1,3,9]. By optimizing a fitness function to achieve a desired 

hardware function, the GA becomes a key to autonomous 

hardware configuration. There are a number of methods and 

techniques that propose to apply the genetic algorithm (GA) 

and evolutionary algorithms (EA) to be implemented in 

hardware for evolvable hardware (EH), especially 

implementation into FPGAs [10-13].  However, in order to 

accomplish the intrinsically on-line evolving in hardware and 

to utilize hardware resource efficiently pose a challenging 

research issue of how to modify or invent efficient and 

improved GA or EA algorithms that can be effectively 

implemented into hardware [13,14]. 
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Estimation of distribution algorithm (EDA) is a family of 

evolutionary algorithms. EDA uses probability distribution 

to guide the search, thus a probability model is learned from 

the best individuals in each generation, and then 

subsequently sampled to generate the new population. 

Cellular Compact Genetic Algorithm (CCGA) is an EDAs 

that operates on probability vectors [15,16]. CCGA is 

developed from cooperative compact genetic algorithms 

[14]. In addition, Cellular CGA is also derived from the 

parallel EDAs [17-19]. Due to Cellular CGA employs two 

dimensional array structure like cellular automata, it is 

suitable for FPGA and hardware implementation [25]. The 

key feature of Cellular CGA is the capability to scale up to 

the problem size which is normally the limitation of genetic 

algorithms especially for hardware implementation.  

Evolutionary artificial neural networks (EANN) use 

evolution to adapt the network structure and internal 

configuration simultaneously [20]. Since the goal of 

evolvable hardware is to change hardware architecture and 

functions without human intervention, EANN can be 

regarded as a class of evolvable hardware. Block-based 

neural network (BBNN) model provide simultaneous 

optimization of network structure and connection weights. 

The BBNN consists of a two-dimensional array with support 

integer weights and fixed-point arithmetic. The BBNN 

structure is suitable to be implemented in hardware 

especially using field programmable logic arrays (FPGAs). 

In addition, BBNN was successfully evolved using genetic 

algorithms to optimize weight and structure [21]. However, 

in the past research, the genetic algorithm for BBNN was 

done in software off-line on computer system or on-chip 

embedded processor [21]. This approach demands higher 

cost and larger FPGA since it needs on-chip processor and 

cannot deliver high performance online training in hardware.  

This paper presents an FPGA implementation of a cellular 

compact genetic algorithm and block-based neural network. 

We propose cellular compact GA (CCGA) and the layer-

based architecture, a new integration in hardware between 

cellular compact genetic algorithm and blocked-base neural 

network. The layer-based architecture for evolvable 

hardware consists of two layers. The top layer is for cellular 

genetic algorithms for evolving weight and structure. The 

bottom layer is the block-based neural network.  With the 

cellular-like models of both block-base neural network and 

cellular compact genetic algorithm, this layer-based 

approach to hardware implementation provides modular 

FPGA Implementation of a Cellular  Univar iate Estimation of 
Distr ibution Algor ithm and Block-Based Neural Network as an 

Evolvable Hardware 

Yutana Jewajinda and Prabhas Chongstitvatana 

E

3365

978-1-4244-1823-7/08/$25.00 c©2008 IEEE



 

 

 

block design in hardware and reduces interconnection length 

since the cellular cells only communicate to their neighbors. 

In addition, the cells of both block-based neural network and 

cellular compact genetic algorithm only interact with their 

neighbors. 

   The rest of this paper is organized as follows. Section II 

describes the cellular compact genetic algorithm. In Section 

III, the blocked-base neural network is described. Section IV 

presents the layer-based architecture. The FPGA 

implementation of cellular compact genetic algorithm and 

BBNN layers are presented in Section V. Section VI 

describes XOR problem as a case study. The paper 

concludes with a summary in Section VII. 

 

 

Fig. 1. Topology of compact GA 

II. CELLULAR COMPACT GENETIC ALGORITHM 

The concept of cellular compact GA is to partition the 

search space into smaller sub-space. These smaller search 

spaces are then searched by separate GAs whose fitness is 

evaluated by combining solutions found by each of the GAs. 

The basic idea behind cellular compact genetic algorithm is 

to parallelize or divide a large problem into smaller tasks and 

to solve the task simultaneously using multiple genetic 

algorithms [27]. With this approach, the CCGA can scale up 

to the problem size and address scalability issue. The CCGA 

consists of uniform cellular compact genetic algorithm cells 

connected in a cellular automata space in which each CGA 

cell only exchange probability vectors to its neighbors. 

A. CCGA topology 

Fig. 1 illustrates the topology of the cellular compact GA. 

The topology of the proposed CCGA resembles the cellular 

automata (CA) system that cells only interact with their 

neighbors. However, the interactions between CA cells occur 

by exchanging the probability vectors instead of mating 

between individuals of sub-population directly. With this 

proposed CA topology, the hardware realization of the 

algorithm is not complicated to be implemented in term of 

scalability and signal wiring that greatly contribute to the 

increasing performance of the implemented digital circuit. In 

addition, CA architecture has capability of self-evolving and 

self-replicating [22]. Moreover, CA-like architecture can be 

practically and efficiently implemented into FPGAs or other 

reconfigurable devices because of the architecture of array of 

logic block [14].  

     Each coarse grained CCGA cell has a probability vector 

which represents a sub-population. Every CCGA cell is 

identical. In Fig. 1, Each CCGA cell with four neighbors 

exchanges probability vectors and key information between 

its neighbors. Every CCGA cell keeps adjusting its own 

probability vector toward the best probability. The 

confidence counter (CC) is introduced to help each cell 

evaluates recombination method of the probability vector 

from its neighbors. The key parameters for CCGA topology 

is the number of the neighbors of each cell.  

 

1.  Initialize probability vector
for i := 1 to L do p[i] := 0.5;

2.  Generate two individuals from the vector
a := generate(p);

b := generate(p);

3    Let them compete    
Winner, loser := evaluate(a, b);

4.   Update the probability vector toward the better one 
for i := 1 to L do
if winner[i]  != loser[i] then

if winner[i] = 1 then p[i] += 1/N
else p[i] -= 1/N

5.    Check if the probability vector has converged 
for i := 1 to L do
if p[i] > 0 and p[i] < 1 then goto step 2

6.     P represents the final solution

 

Fig. 2. Pseudocode of compact GA 

 

B. CCGA Algorithm 

The fundamental of the CCGA is the compact GA [23]. 

The compact GA represents the population as a probability 

distribution over the set of solutions. Each bit of the 

probability vector  keep being adjusted according to the 

result of the tournament selection. The pseudocode of the 

compact GA is shown in Fig. 2. 

Fig. 3 shows the pseudocode of the cellular compact GA. 

After probability vector of each cell in the cellular automata 

space is initialized to the mid-point range, two individuals 

are generated from the probability vector, then compete 

similar to a normal compact GA. The proposed algorithm is 

different from the normal compact GA and the cooperative 

compact GA [14] in four ways:   

        (1) The cellular-like topology employs uniform cell 

type. This allows flexibility and ease of implementation.  

        (2) The confidence toward the better probability vector 

is calculated as confident counters and passed directly to 

neighbor cells. In Fig. 3, the step 3, 4 and 5 are modified to 

the normal compact GA. 

        (3) Improved probability vector combination by local 

search and adaptive combination in step 6 shown in Fig. 3. 
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This combination scheme provides a solution to the greedy 

search characteristic of the cooperative compact genetic 

algorithm [14,18]. The local search is implemented through 

the use the confident counter that keeps the frequency of the 

updating to the probability vector of each cellular compact 

GA cell. The higher confident counter values contribute to 

higher chance to reach the better solution The probability 

vector combination use the following equation: 

 

                

 

 Where  is an adaptive weight calculated from the best  

confident  counter among neighbors 

              is a new inner probability vector of a 

CCGA cell 

        is the best incoming probability vector from 

neighbors  

 (4) Adaptive migration rate of the probability vector for 

each CCGA cell using confident counter.  Since the updating 

rate of each CCGA cell depends on its confident counter 

which is different for each cell. This contributes to the 

different rate to exchange the probability vector.  

C. Hardware Design 

     A CCGA cell is designed by adding additional modules to 

the hardware of the normal compact GA hardware. Fig. 4 

shows the hardware design of the N-bit module of a CCGA 

cell. The design of CCGA bit-module is based on the design 

proposed in [14] integrated with the communication unit 

(COMM), the confident counter unit (CC) and the 

probability vector combination unit (VCOMBIN). In Fig. 4, 

the hardware design consists of four main blocks. The first 

block is the CCGA bit-module which can be cascaded to 

form N-bit chromosome. The second block is the additional 

units to compact GA hardware which consists of the 

confident counter (CC) and the communication unit COMM. 

The third block is the probability vector combination unit 

VCOMBIN. The fourth block is a simple finite state machine 

acts as the main controller for the whole block. The detail of 

these three additional modules is described as follows 

COMM is a finite state machine that controls sending and 

receiving the probability vector as an 8-bit package between 

cells. For a chromosome of N-bit length, the compact GA 

needs to have N-bit of probability vector which each bit of 

the probability vector is represented as 8-bit. Thus, for N-bit 

length chromosome, N packages of 8-bit will be sent and 

received between cells by the COMM units of each cell. 

CC is the confident counter designed as a 5-bit counter. 

During fitness evaluation, the counter is incremented every 

time when the fitness of the winner is better than the current 

best fitness. The value of the counter is passed to the 

neighbor cells with the current probability vector 

VCOMBIN is the hardware block that implements the step 

6 of the pseudocode in Fig. 3. A hardware part of the block 

consists of comparators and multiplexers for comparing 

incoming confident counter. The multiplication of β with the 

probability is implemented using shift register instead of 

using multipliers which occupy more hardware resource. 

With shift register implementation, the β values will be 

scaled down to multiple of 2. After multiplication, the values 

will be added using 8-bit adder.  FSM_CONTROL is a finite 

state machine that controls. 

 

L is chromosome length
N is population size
cc is Confident Counter
CA is Cellular Automata space

for each cell I in CA do in parallel
Initialize each p[I]

For   i   := 1   to L do
[i] = 0.5;

Initialize cc
cc := 0;

end parallel for
for each cell i  in  CA do in parallel

while not done do
1.   Generate two individual from the vector

a := generate ();
b := generate ();

2.    Let them compete
Winner, loser := compete (a, b);

3.    Update the probability vector toward 
better one and Increment Confidence Counter
3.1. Update probability vector

for i := 1 to L do

if winner[i]  != loser[i] then

if winner[i] = 1 

then p[i] += 1/N

else p[i] -= 1/N

3.2 Increment Confidence Counter
cc: = cc + 1;

4.   Check if cc reaches a target level then
Send p and cc to the neighbor cell

5.   Receives  p and cc from neighbors
6.   Use the adaptive convex recombination  

with the received p from the neighbor 
and its own p
6.1  Select the highest cc from neighbors

ccmax := 0;

for i := 1 to M do

if (cc[i] > ccmax )
ccmax := cc[i];
pccmax := p[i]

6.2  Convert  ccmax to  β : 0  ≤  β  ≤  1
β  := MAP( 1/ ccmax)    

6.3. Update pl with β 

for i := 1 to L do
pl[i] := β pl[i] + (1 - β ) pccmax[i]

7.   Check if the vector has converged
for i := 1 to L do

if p[i] > 0 and p[i] < 1 then   

goto step 1
8.   p represents the final solution

end while
end parallel for

Fig. 3. Pseudocode of cellular compact GA 
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Fig. 4. Hardware design of a cellular compact GA cell 

III. BLOCK-BASED NEURAL NETWORK 

A. Architecture of the Block-Based Neural Network 

The Block-based neural network was proposed by S. W 

Moon et al in [20]. The BBNN model consists of a 2-D array 

of basic blocks. Each block is a basic processing element 

that corresponds to a feedforward  neural network with four 

variable input/output nodes. Fig. 5 represents the structure of 

the BBNN model of m x n size with m row or stage and n 

column labeled as Bij  The label i denotes the stage. The last 

stage is denoted m.  Any block in the BBNN is connected to 

its neighbors. The first row of blocks B11, B12 to B1n  is the 

input layer and the blocks Bm1, Bm2, … Bmn form the output 

layer. An input signal x = (x1, x2,…, xn) propagates through 

the blocks to produce network output y = (y1, y2, …, y3).  

BBNN can implement both feedforward and feedback 

network configuration. A feedback configuration of BBNN 

architecture may cause a longer signal propagation delay. 

BBNN of size m x n can represent the input-output 

characteristics of any Multilayer perception (MLP) network 

for n ≤ 5.  

A block of BBNN consists of four nodes. These four 

nodes can be configured to represent four different types of 

internal configurations. Fig. 6 shows four types of internal 

configurations of one input and three outputs(1/3), three 

inputs and one output (3/1), and two inputs and two outputs 

(2/2). The four nodes inside a BBNN block are connected 

with each other through weights. A weight w ij denotes a 

connection from node i to node j.  A BBNN block can have 

up to seven connection weights and three the biases. For the 

case of two inputs and two outputs (2/2), there are four 

weights and two biases. The 1/3 case has three weights and 

three biases. There are three weights and one bias for 3/1 

case. Generalization capability of BBNN network emerges 

through various internal configuration of a BBNN block. 

  

Fig.5. Structure of BBNNs 
 

 

Fig.6. Four different internal configurations of a BBNN block (a) 1/3, (b) 

3/1, (c) 2/2, (d) 2/2 

If signal u i is the input and v j is the output of the block. 

The output v j of a block is computed with an activation 

function h as follows. 

 
I and J  are sets for input and output node, respectively. The 

term bj is the bias of the jth node. The activation function can 

be linear or nonlinear function. For hardware implementation 

direct implementation of nonlinear activation function 

requires more hardware resources. A more practical 

approach would be a piecewise-linear approximation of the 

non-linear activation function or using lookup tables. 
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B. BBNN Hardware Implementation 

    In [21], Merchant et al. propose the design of Smart 

Block-based Neuron (SBbN) that can be configured on-the-

fly to emulate four types of the internal configuration modes 

of a BBNN neuron. However, the detail design of the SBbN 

is not presented.  SBbN supports gray mode which the block 

is inactive and only pass the inputs to outputs. 

    In this paper, we propose the link-multiplexed block-based 

Neuron (LMBbN). This idea is similar to layer-multiplexed 

in [24]; however, in [24] the goal is to multiplex each layers 

of feed-forward network. The LMBbN is derived from the 

analysis of a basic block of block-based neural network 

which is shown in Fig. 7. In Fig. 7, there two types of routing 

switch: L and S types. These switches and four nodes form 

seven paths or “link” between two nodes.  The architecture 

of the link-multiplexed BBNN is shown in Fig. 8. With this 

LMBbN, we can reduce number of multipliers by sharing it 

with other links since there are a limited number of hard-

macro multipliers inside DSP blocks of FPGAs.   

 

Fig.7. a BBNN block 

 

 

Fig.8.. Link-multiplexed BBNN block 

 

Hardware design of the general neuron is shown in Fig. 9. 

The main controller receives configuration type. With 

configuration type, the general neuron can be configured to 

support case a, b, c, and d.  

 

Fig.9. Block level hardware of LMBbN neuron with three inputs 

 When design the LMBbN block in Xilinx FPGA Virtex-5, 

we utilized the DSP hard macro inside the FPGA to 

implement the multiply-accumulate (MAC) function tospeed 

up the MAC operations. For the other blocks, we designed 

the register banks, activation using piece-wise linear 

approximation, and the FSM control block. There are two 

register banks: weight registers and bias registers. The FSM 

block control loading of weight and bias registers and DSP 

MAC according to 2-bit configuration type. 

From Fig. 9, if we use fractional weight format size 10-bit 

for weights. The total number of bits to configure one 

LMBbN block with the proposed hardware implementation 

is 102 bits.  

• Seven of 10-bit for weights 

• Three of 10-bit for biases 

• 2-bit for config-type 

IV. LAYER-BASED ARCHITECTURE  

  In this section, we propose the Layer-based architecture for 

evolvable hardware based on the block-based neural network 

and the cellular compact GA. From Section III, to evolve the 

block-based neural network with one block using 10-bit 

fractional number, we need 102-bits genetic algorithms. 

However, to apply a block-based neural network to solve 

real-world problems, the more number of BBNN block will 

be required, for example if a BBNN network sized 3 x 4, it 

requires 1224-bits GA to evolve. The larger size of BBNN, 

the wider bits requires for GA. This turns to be the 
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scalability problem for genetic algorithm. To solve this 

problem, we propose to use cellular genetic algorithm 

implemented in hardware since the CCGA can scale up with 

problem size since it has array-like architecture as the BBNN 

model. Fig. 10 shows the concept of the layer-based 

architecture. 

    From Fig. 10, the BBNN occupies different layer from the 

cellular compact GA.  These two layers interact to each other 

between nodes of BBNN and CCGA.  Fig. 11 shows the 

layer-based architecture with the eight nodes for each BBNN 

and CCGA layers.  If l is the problem size that is the number 

of node of the BBNN, with np CCGA nodes,  then each 

CCGA node contains  l  / np  probability vectors. 

 

  

Fig.10. Layer-based architecture for evolvable hardware based on BBNN 

and CCGA 

V. FPGA IMPLEMENTATION RESULTS 

We implemented the both BBNN and CCGA nodes in 

Xilinx ML501 Boards which has Virtex-5 LX50. The code 

was design and coded in synthesizable Verilog HDL. 

ModelSim Version 6.2 was used for simulation. Xilinx ISE 

9.1 was used for FPGA implementation.  For our initial tests 

of the implementation, “one max” problem with 32-bit was 

used to verify the operation of the CCGA. The simulation 

result is shown in Fig. 12. The hardware was also tested with 

F1 and F2 functions as follows: 

 
                 

when  -2.048  < . 

    In Fig. 13 and Fig. 14, the simulation shows the 

comparison results between normal compact GA and cellular 

compact GA. The CCGA contains two CCGA nodes, each 

has 32-bit probability vectors while CGA has only one node 

with one 32-bit probability vector. The performance of 

CCGA outperforms the normal CGA term of speed and 

quality of the search results. 

Table I shows the FPGA hardware resources required for 

BBNN and CCGA.  Each BBNN block was implemented 

using 10-bit fractional number. We designed one 25x18 

multiplier using DSP block and a Finite State Machine 

(FSM) to control how to multiplex computation between the 

four sub-nodes of a basic BBNN block.  There are ten data 

inputs to a BBNN blocks. These are seven weights (w13, 

w12, w14, w43, w42, w34, and w32) and three biases (b2, 

b3, and b4). We implemented each CCGA that has 102-bit 

which each bit represented by an 8-bit probability vector.  

Due to one CCGA node supports 102-bit, the size of one 

CCGA node is about four times the size of a BBNN node as 

shown in Table I since the largest block of BBNN is the 

MAC which is already a hard macro in Xilinx Virtex-5 

FPGA. 

 

Fig.11. 2 x 4 BBNN layer and CCGA 

 

      From Table I, the speed for each BBNN and CCGA node 

is about 300Mhz regardless of the size of matrix like 1x1, 

2x2, or even 3x3. The reason is that each node of BBNN and 

CCGA is quite independent in term of hardware 

implementation especially CCGA since each 8-bit 

probability vector of one bit of CCGA was parallelized in 

hardware implementation. In our implementation, each 

BBNN only requires one DSP hard macro in Xilinx FPGA. 

This saving can allow implementing more nodes of BBNN in 

one FPGA. 

                                  Fig.12. 32-bit ”OneMax” simulation results 

VI. A CASE-STUDY 

To demonstrate the capability of integration between BBNN 

and CCGA, we implemented a 2 x1 BBNN network which 

has three BBNN nodes and evolving the weights with three 

nodes of CCGA to solve the XOR problem with two inputs, 

x1 and x2, and one output, y1. The “off” is when x or y has 

value < 0.0625 and > 0.9375 when “on”. Each CCGA has 

102-bit which supports ten outputs; each has 10-bit, for 

seven weights and three biases for one BBNN node and two 

bits for four configuration types. In Fig 15 shows the block 
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diagram of BBNN and CCGA to solve the XOR problem. 

The error calculation block computes using following 

equations: 

 

 

 

 
 

Where, N and no are number of training data and output.  djk 

and yjk are desired and actual output respectively. 

Fig. 17 shows the hardware simulation results of training 

of the XOR problem. For one training pattern, the BBNN 

takes 60 clock cycles while CCGA takes only 3 clock cycles. 

At 549 epoch, the training was achieved with fitness 0.998 

using 18-bit precision fixed point arithmetic. The number of 

bit in neural network has an impact on the performance of 

the hardware [26]. Fig. 16 shows a configuration of three 

BBNN Blocks that give the best fitness. 

 

 
       Fig.13. F1 simulation results 

      Fig.14. F2 simulation results  

 

 

 

 

 

TABLE I 

FPGA HARDWARE RESOURCE XILINX VIRTEX-5 LX50 

 

Network 
size 

 
FPGA resources for  BBNN and CCGA on 

Xilinx Ver tex-5 LX50 
 

  BBNN CCGA 

 

1x1 

Slice Registers 

used Flip-Flops 
341 621 

Slice LUTs 

used as Logic 
263 1,932 

DSP48Es 1 0 

Total equivalent 

gate count 
4,562 18,224 

Maximum 

Frequency 
290Mhz 290Mh 

 

2x2 

Slice Registers 

used Flip-Flops 
1326 

          

1,642 

Slice LUTs 

used as Logic 
974 5,506 

DSP48Es 3 0 

Total equivalent 

gate count 
17,317 49,204 

Maximum 

Frequency 
280Mhz 280Mh 

 

3x3 

Slice Registers 

used Flip-Flops 
3,262 5,130 

Slice LUTs 

used as Logic 
2,300 16,549 

DSP48Es 9 0 

Total equivalent 

gate count 
36,952 147,614 

Maximum 

Frequency 
270Mhz 270Mhz 

 

 

 
Fig.15. Block diagram of BBNN and CCGA for XOR 

 

VII. CONCLUSION 

In this paper, an approach to training BBNN in hardware 

using the cellular compact genetic algorithm which is a kind 

of EDAs is presented. We propose the cellular compact GA 

and the layer-based architecture for integration between the 

block-based neural network and cellular genetic algorithm in 

hardware. With the layer-based architecture, evolvable 

hardware based-on the integration between BBNN and 

CCGA is feasible and effective since both have array.like 

architecture. This approach provides a solution for 
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scalability of genetic algorithm since CCGA can scale up to 

the size of the BBNN by adding more CCGA nodes without 

sacrifice the speed in term of clock period and cycles. The 

XOR problem was used as an example of the approach. It 

has been implemented in hardware and can classify the data 

successfully. The more difficult classification problems can 

be solved in real-time with this kind of evolvable hardware. 

We believe that the more hardware resource in future FPGA 

will create more applications of the block-based neural 

network and the cellular compact GA for real world 

problems. 

 

 
 

   Fig.16. a structure of XOR that has fitness value of 0.998 

 

 
Fig.17. Fitness value in training process of XOR 
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