

Abstract— This paper presents a hardware implementation
of evolvable block-based neural network (BBNN) amd a kind of
EDAs called cellular compact genetic algor ithm (CCGA) in
FPGA. The CCGA and BBNN have cellular -like and ar ray-like
structures which are suitable for hardware implementation.
The implemented hardware demonstrates the completely
intr insic online evolution in hardware without software running
on microprocessors. This work contr ibutes to the field of
evolvable hardware by proposing CCGA and a layer -based
architecture to an integration of BBNN and CCGA as a kind of
evolvable hardware. In addition, the proposed CCGA
efficiently solves the scalable issues by scaling up to the size of
BBNN. The presented approach demonstrates a new kind of
evolvable hardware.

I. INTRODUCTION

volvable hardware (EH) is the integration of

evolutionary computation and programmable hardware

devices. The objective of evolvable hardware is to create

“autonomous” reconfiguration of hardware structures in

order to improve performance [1-3]. Recent research trend in

EH directs towards functional approaches to the design of

extrinsic and intrinsic EH [4,5]. For extrinsic EH, the

evolutionary process is performed off-line. Then the results

are downloaded into the hardware. On the contrary, for the

intrinsic EH, the evolutionary process is performed wholly or

partly in hardware [6-8].

The key concept of our focused evolvable hardware is to

regard the configuration bits of programmable hardware

architecture as the chromosomes of genetic algorithm (GA)

[1,3,9]. By optimizing a fitness function to achieve a desired

hardware function, the GA becomes a key to autonomous

hardware configuration. There are a number of methods and

techniques that propose to apply the genetic algorithm (GA)

and evolutionary algorithms (EA) to be implemented in

hardware for evolvable hardware (EH), especially

implementation into FPGAs [10-13]. However, in order to

accomplish the intrinsically on-line evolving in hardware and

to utilize hardware resource efficiently pose a challenging

research issue of how to modify or invent efficient and

improved GA or EA algorithms that can be effectively

implemented into hardware [13,14].

 Yutana Jewajinda is with the National Electronics and Computer

Technology Center, National Science and Technology Development

Agency, Bangkok, Thailand (e-mail: yutana.jewajinda@ nectec.or.th).

Prabhas Chongstitvatana is with the Department of Computer

Engineering, Chulalongkorn University, Bangkok, Thailand (e-mail:

prabhas@chula.ac.th).

Estimation of distribution algorithm (EDA) is a family of

evolutionary algorithms. EDA uses probability distribution

to guide the search, thus a probability model is learned from

the best individuals in each generation, and then

subsequently sampled to generate the new population.

Cellular Compact Genetic Algorithm (CCGA) is an EDAs

that operates on probability vectors [15,16]. CCGA is

developed from cooperative compact genetic algorithms

[14]. In addition, Cellular CGA is also derived from the

parallel EDAs [17-19]. Due to Cellular CGA employs two

dimensional array structure like cellular automata, it is

suitable for FPGA and hardware implementation [25]. The

key feature of Cellular CGA is the capability to scale up to

the problem size which is normally the limitation of genetic

algorithms especially for hardware implementation.

Evolutionary artificial neural networks (EANN) use

evolution to adapt the network structure and internal

configuration simultaneously [20]. Since the goal of

evolvable hardware is to change hardware architecture and

functions without human intervention, EANN can be

regarded as a class of evolvable hardware. Block-based

neural network (BBNN) model provide simultaneous

optimization of network structure and connection weights.

The BBNN consists of a two-dimensional array with support

integer weights and fixed-point arithmetic. The BBNN

structure is suitable to be implemented in hardware

especially using field programmable logic arrays (FPGAs).

In addition, BBNN was successfully evolved using genetic

algorithms to optimize weight and structure [21]. However,

in the past research, the genetic algorithm for BBNN was

done in software off-line on computer system or on-chip

embedded processor [21]. This approach demands higher

cost and larger FPGA since it needs on-chip processor and

cannot deliver high performance online training in hardware.

This paper presents an FPGA implementation of a cellular

compact genetic algorithm and block-based neural network.

We propose cellular compact GA (CCGA) and the layer-

based architecture, a new integration in hardware between

cellular compact genetic algorithm and blocked-base neural

network. The layer-based architecture for evolvable

hardware consists of two layers. The top layer is for cellular

genetic algorithms for evolving weight and structure. The

bottom layer is the block-based neural network. With the

cellular-like models of both block-base neural network and

cellular compact genetic algorithm, this layer-based

approach to hardware implementation provides modular

FPGA Implementation of a Cellular Univar iate Estimation of
Distr ibution Algor ithm and Block-Based Neural Network as an

Evolvable Hardware

Yutana Jewajinda and Prabhas Chongstitvatana

E

3365

978-1-4244-1823-7/08/$25.00 c©2008 IEEE

block design in hardware and reduces interconnection length

since the cellular cells only communicate to their neighbors.

In addition, the cells of both block-based neural network and

cellular compact genetic algorithm only interact with their

neighbors.

 The rest of this paper is organized as follows. Section II

describes the cellular compact genetic algorithm. In Section

III, the blocked-base neural network is described. Section IV

presents the layer-based architecture. The FPGA

implementation of cellular compact genetic algorithm and

BBNN layers are presented in Section V. Section VI

describes XOR problem as a case study. The paper

concludes with a summary in Section VII.

Fig. 1. Topology of compact GA

II. CELLULAR COMPACT GENETIC ALGORITHM

The concept of cellular compact GA is to partition the

search space into smaller sub-space. These smaller search

spaces are then searched by separate GAs whose fitness is

evaluated by combining solutions found by each of the GAs.

The basic idea behind cellular compact genetic algorithm is

to parallelize or divide a large problem into smaller tasks and

to solve the task simultaneously using multiple genetic

algorithms [27]. With this approach, the CCGA can scale up

to the problem size and address scalability issue. The CCGA

consists of uniform cellular compact genetic algorithm cells

connected in a cellular automata space in which each CGA

cell only exchange probability vectors to its neighbors.

A. CCGA topology

Fig. 1 illustrates the topology of the cellular compact GA.

The topology of the proposed CCGA resembles the cellular

automata (CA) system that cells only interact with their

neighbors. However, the interactions between CA cells occur

by exchanging the probability vectors instead of mating

between individuals of sub-population directly. With this

proposed CA topology, the hardware realization of the

algorithm is not complicated to be implemented in term of

scalability and signal wiring that greatly contribute to the

increasing performance of the implemented digital circuit. In

addition, CA architecture has capability of self-evolving and

self-replicating [22]. Moreover, CA-like architecture can be

practically and efficiently implemented into FPGAs or other

reconfigurable devices because of the architecture of array of

logic block [14].

 Each coarse grained CCGA cell has a probability vector

which represents a sub-population. Every CCGA cell is

identical. In Fig. 1, Each CCGA cell with four neighbors

exchanges probability vectors and key information between

its neighbors. Every CCGA cell keeps adjusting its own

probability vector toward the best probability. The

confidence counter (CC) is introduced to help each cell

evaluates recombination method of the probability vector

from its neighbors. The key parameters for CCGA topology

is the number of the neighbors of each cell.

1. Initialize probability vector
for i := 1 to L do p[i] := 0.5;

2. Generate two individuals from the vector
a := generate(p);

b := generate(p);

3 Let them compete
Winner, loser := evaluate(a, b);

4. Update the probability vector toward the better one
for i := 1 to L do
if winner[i] != loser[i] then

if winner[i] = 1 then p[i] += 1/N
else p[i] -= 1/N

5. Check if the probability vector has converged
for i := 1 to L do
if p[i] > 0 and p[i] < 1 then goto step 2

6. P represents the final solution

Fig. 2. Pseudocode of compact GA

B. CCGA Algorithm

The fundamental of the CCGA is the compact GA [23].

The compact GA represents the population as a probability

distribution over the set of solutions. Each bit of the

probability vector keep being adjusted according to the

result of the tournament selection. The pseudocode of the

compact GA is shown in Fig. 2.

Fig. 3 shows the pseudocode of the cellular compact GA.

After probability vector of each cell in the cellular automata

space is initialized to the mid-point range, two individuals

are generated from the probability vector, then compete

similar to a normal compact GA. The proposed algorithm is

different from the normal compact GA and the cooperative

compact GA [14] in four ways:

 (1) The cellular-like topology employs uniform cell

type. This allows flexibility and ease of implementation.

 (2) The confidence toward the better probability vector

is calculated as confident counters and passed directly to

neighbor cells. In Fig. 3, the step 3, 4 and 5 are modified to

the normal compact GA.

 (3) Improved probability vector combination by local

search and adaptive combination in step 6 shown in Fig. 3.

3366 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

This combination scheme provides a solution to the greedy

search characteristic of the cooperative compact genetic

algorithm [14,18]. The local search is implemented through

the use the confident counter that keeps the frequency of the

updating to the probability vector of each cellular compact

GA cell. The higher confident counter values contribute to

higher chance to reach the better solution The probability

vector combination use the following equation:

 Where is an adaptive weight calculated from the best

confident counter among neighbors

 is a new inner probability vector of a

CCGA cell

 is the best incoming probability vector from

neighbors

 (4) Adaptive migration rate of the probability vector for

each CCGA cell using confident counter. Since the updating

rate of each CCGA cell depends on its confident counter

which is different for each cell. This contributes to the

different rate to exchange the probability vector.

C. Hardware Design

 A CCGA cell is designed by adding additional modules to

the hardware of the normal compact GA hardware. Fig. 4

shows the hardware design of the N-bit module of a CCGA

cell. The design of CCGA bit-module is based on the design

proposed in [14] integrated with the communication unit

(COMM), the confident counter unit (CC) and the

probability vector combination unit (VCOMBIN). In Fig. 4,

the hardware design consists of four main blocks. The first

block is the CCGA bit-module which can be cascaded to

form N-bit chromosome. The second block is the additional

units to compact GA hardware which consists of the

confident counter (CC) and the communication unit COMM.

The third block is the probability vector combination unit

VCOMBIN. The fourth block is a simple finite state machine

acts as the main controller for the whole block. The detail of

these three additional modules is described as follows

COMM is a finite state machine that controls sending and

receiving the probability vector as an 8-bit package between

cells. For a chromosome of N-bit length, the compact GA

needs to have N-bit of probability vector which each bit of

the probability vector is represented as 8-bit. Thus, for N-bit

length chromosome, N packages of 8-bit will be sent and

received between cells by the COMM units of each cell.

CC is the confident counter designed as a 5-bit counter.

During fitness evaluation, the counter is incremented every

time when the fitness of the winner is better than the current

best fitness. The value of the counter is passed to the

neighbor cells with the current probability vector

VCOMBIN is the hardware block that implements the step

6 of the pseudocode in Fig. 3. A hardware part of the block

consists of comparators and multiplexers for comparing

incoming confident counter. The multiplication of β with the

probability is implemented using shift register instead of

using multipliers which occupy more hardware resource.

With shift register implementation, the β values will be

scaled down to multiple of 2. After multiplication, the values

will be added using 8-bit adder. FSM_CONTROL is a finite

state machine that controls.

L is chromosome length
N is population size
cc is Confident Counter
CA is Cellular Automata space

for each cell I in CA do in parallel
Initialize each p[I]

For i := 1 to L do
[i] = 0.5;

Initialize cc
cc := 0;

end parallel for
for each cell i in CA do in parallel

while not done do
1. Generate two individual from the vector

a := generate ();
b := generate ();

2. Let them compete
Winner, loser := compete (a, b);

3. Update the probability vector toward
better one and Increment Confidence Counter
3.1. Update probability vector

for i := 1 to L do

if winner[i] != loser[i] then

if winner[i] = 1

then p[i] += 1/N

else p[i] -= 1/N

3.2 Increment Confidence Counter
cc: = cc + 1;

4. Check if cc reaches a target level then
Send p and cc to the neighbor cell

5. Receives p and cc from neighbors
6. Use the adaptive convex recombination

with the received p from the neighbor
and its own p
6.1 Select the highest cc from neighbors

ccmax := 0;

for i := 1 to M do

if (cc[i] > ccmax)
ccmax := cc[i];
pccmax := p[i]

6.2 Convert ccmax to β : 0 ≤ β ≤ 1
β := MAP(1/ ccmax)

6.3. Update pl with β

for i := 1 to L do
pl[i] := β pl[i] + (1 - β) pccmax[i]

7. Check if the vector has converged
for i := 1 to L do

if p[i] > 0 and p[i] < 1 then

goto step 1
8. p represents the final solution

end while
end parallel for

Fig. 3. Pseudocode of cellular compact GA

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 3367

Fig. 4. Hardware design of a cellular compact GA cell

III. BLOCK-BASED NEURAL NETWORK

A. Architecture of the Block-Based Neural Network

The Block-based neural network was proposed by S. W

Moon et al in [20]. The BBNN model consists of a 2-D array

of basic blocks. Each block is a basic processing element

that corresponds to a feedforward neural network with four

variable input/output nodes. Fig. 5 represents the structure of

the BBNN model of m x n size with m row or stage and n

column labeled as Bij The label i denotes the stage. The last

stage is denoted m. Any block in the BBNN is connected to

its neighbors. The first row of blocks B11, B12 to B1n is the

input layer and the blocks Bm1, Bm2, … Bmn form the output

layer. An input signal x = (x1, x2,…, xn) propagates through

the blocks to produce network output y = (y1, y2, …, y3).

BBNN can implement both feedforward and feedback

network configuration. A feedback configuration of BBNN

architecture may cause a longer signal propagation delay.

BBNN of size m x n can represent the input-output

characteristics of any Multilayer perception (MLP) network

for n ≤ 5.

A block of BBNN consists of four nodes. These four

nodes can be configured to represent four different types of

internal configurations. Fig. 6 shows four types of internal

configurations of one input and three outputs(1/3), three

inputs and one output (3/1), and two inputs and two outputs

(2/2). The four nodes inside a BBNN block are connected

with each other through weights. A weight w ij denotes a

connection from node i to node j. A BBNN block can have

up to seven connection weights and three the biases. For the

case of two inputs and two outputs (2/2), there are four

weights and two biases. The 1/3 case has three weights and

three biases. There are three weights and one bias for 3/1

case. Generalization capability of BBNN network emerges

through various internal configuration of a BBNN block.

Fig.5. Structure of BBNNs

Fig.6. Four different internal configurations of a BBNN block (a) 1/3, (b)

3/1, (c) 2/2, (d) 2/2

If signal u i is the input and v j is the output of the block.

The output v j of a block is computed with an activation

function h as follows.

I and J are sets for input and output node, respectively. The

term bj is the bias of the jth node. The activation function can

be linear or nonlinear function. For hardware implementation

direct implementation of nonlinear activation function

requires more hardware resources. A more practical

approach would be a piecewise-linear approximation of the

non-linear activation function or using lookup tables.

3368 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

B. BBNN Hardware Implementation

 In [21], Merchant et al. propose the design of Smart

Block-based Neuron (SBbN) that can be configured on-the-

fly to emulate four types of the internal configuration modes

of a BBNN neuron. However, the detail design of the SBbN

is not presented. SBbN supports gray mode which the block

is inactive and only pass the inputs to outputs.

 In this paper, we propose the link-multiplexed block-based

Neuron (LMBbN). This idea is similar to layer-multiplexed

in [24]; however, in [24] the goal is to multiplex each layers

of feed-forward network. The LMBbN is derived from the

analysis of a basic block of block-based neural network

which is shown in Fig. 7. In Fig. 7, there two types of routing

switch: L and S types. These switches and four nodes form

seven paths or “link” between two nodes. The architecture

of the link-multiplexed BBNN is shown in Fig. 8. With this

LMBbN, we can reduce number of multipliers by sharing it

with other links since there are a limited number of hard-

macro multipliers inside DSP blocks of FPGAs.

Fig.7. a BBNN block

Fig.8.. Link-multiplexed BBNN block

Hardware design of the general neuron is shown in Fig. 9.

The main controller receives configuration type. With

configuration type, the general neuron can be configured to

support case a, b, c, and d.

Fig.9. Block level hardware of LMBbN neuron with three inputs

 When design the LMBbN block in Xilinx FPGA Virtex-5,

we utilized the DSP hard macro inside the FPGA to

implement the multiply-accumulate (MAC) function tospeed

up the MAC operations. For the other blocks, we designed

the register banks, activation using piece-wise linear

approximation, and the FSM control block. There are two

register banks: weight registers and bias registers. The FSM

block control loading of weight and bias registers and DSP

MAC according to 2-bit configuration type.

From Fig. 9, if we use fractional weight format size 10-bit

for weights. The total number of bits to configure one

LMBbN block with the proposed hardware implementation

is 102 bits.

• Seven of 10-bit for weights

• Three of 10-bit for biases

• 2-bit for config-type

IV. LAYER-BASED ARCHITECTURE

 In this section, we propose the Layer-based architecture for

evolvable hardware based on the block-based neural network

and the cellular compact GA. From Section III, to evolve the

block-based neural network with one block using 10-bit

fractional number, we need 102-bits genetic algorithms.

However, to apply a block-based neural network to solve

real-world problems, the more number of BBNN block will

be required, for example if a BBNN network sized 3 x 4, it

requires 1224-bits GA to evolve. The larger size of BBNN,

the wider bits requires for GA. This turns to be the

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 3369

scalability problem for genetic algorithm. To solve this

problem, we propose to use cellular genetic algorithm

implemented in hardware since the CCGA can scale up with

problem size since it has array-like architecture as the BBNN

model. Fig. 10 shows the concept of the layer-based

architecture.

 From Fig. 10, the BBNN occupies different layer from the

cellular compact GA. These two layers interact to each other

between nodes of BBNN and CCGA. Fig. 11 shows the

layer-based architecture with the eight nodes for each BBNN

and CCGA layers. If l is the problem size that is the number

of node of the BBNN, with np CCGA nodes, then each

CCGA node contains l / np probability vectors.

Fig.10. Layer-based architecture for evolvable hardware based on BBNN

and CCGA

V. FPGA IMPLEMENTATION RESULTS

We implemented the both BBNN and CCGA nodes in

Xilinx ML501 Boards which has Virtex-5 LX50. The code

was design and coded in synthesizable Verilog HDL.

ModelSim Version 6.2 was used for simulation. Xilinx ISE

9.1 was used for FPGA implementation. For our initial tests

of the implementation, “one max” problem with 32-bit was

used to verify the operation of the CCGA. The simulation

result is shown in Fig. 12. The hardware was also tested with

F1 and F2 functions as follows:

when -2.048 < .

 In Fig. 13 and Fig. 14, the simulation shows the

comparison results between normal compact GA and cellular

compact GA. The CCGA contains two CCGA nodes, each

has 32-bit probability vectors while CGA has only one node

with one 32-bit probability vector. The performance of

CCGA outperforms the normal CGA term of speed and

quality of the search results.

Table I shows the FPGA hardware resources required for

BBNN and CCGA. Each BBNN block was implemented

using 10-bit fractional number. We designed one 25x18

multiplier using DSP block and a Finite State Machine

(FSM) to control how to multiplex computation between the

four sub-nodes of a basic BBNN block. There are ten data

inputs to a BBNN blocks. These are seven weights (w13,

w12, w14, w43, w42, w34, and w32) and three biases (b2,

b3, and b4). We implemented each CCGA that has 102-bit

which each bit represented by an 8-bit probability vector.

Due to one CCGA node supports 102-bit, the size of one

CCGA node is about four times the size of a BBNN node as

shown in Table I since the largest block of BBNN is the

MAC which is already a hard macro in Xilinx Virtex-5

FPGA.

Fig.11. 2 x 4 BBNN layer and CCGA

 From Table I, the speed for each BBNN and CCGA node

is about 300Mhz regardless of the size of matrix like 1x1,

2x2, or even 3x3. The reason is that each node of BBNN and

CCGA is quite independent in term of hardware

implementation especially CCGA since each 8-bit

probability vector of one bit of CCGA was parallelized in

hardware implementation. In our implementation, each

BBNN only requires one DSP hard macro in Xilinx FPGA.

This saving can allow implementing more nodes of BBNN in

one FPGA.

 Fig.12. 32-bit ”OneMax” simulation results

VI. A CASE-STUDY

To demonstrate the capability of integration between BBNN

and CCGA, we implemented a 2 x1 BBNN network which

has three BBNN nodes and evolving the weights with three

nodes of CCGA to solve the XOR problem with two inputs,

x1 and x2, and one output, y1. The “off” is when x or y has

value < 0.0625 and > 0.9375 when “on”. Each CCGA has

102-bit which supports ten outputs; each has 10-bit, for

seven weights and three biases for one BBNN node and two

bits for four configuration types. In Fig 15 shows the block

3370 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

diagram of BBNN and CCGA to solve the XOR problem.

The error calculation block computes using following

equations:

Where, N and no are number of training data and output. djk

and yjk are desired and actual output respectively.

Fig. 17 shows the hardware simulation results of training

of the XOR problem. For one training pattern, the BBNN

takes 60 clock cycles while CCGA takes only 3 clock cycles.

At 549 epoch, the training was achieved with fitness 0.998

using 18-bit precision fixed point arithmetic. The number of

bit in neural network has an impact on the performance of

the hardware [26]. Fig. 16 shows a configuration of three

BBNN Blocks that give the best fitness.

 Fig.13. F1 simulation results

 Fig.14. F2 simulation results

TABLE I

FPGA HARDWARE RESOURCE XILINX VIRTEX-5 LX50

Network
size

FPGA resources for BBNN and CCGA on

Xilinx Ver tex-5 LX50

 BBNN CCGA

1x1

Slice Registers

used Flip-Flops
341 621

Slice LUTs

used as Logic
263 1,932

DSP48Es 1 0

Total equivalent

gate count
4,562 18,224

Maximum

Frequency
290Mhz 290Mh

2x2

Slice Registers

used Flip-Flops
1326

1,642

Slice LUTs

used as Logic
974 5,506

DSP48Es 3 0

Total equivalent

gate count
17,317 49,204

Maximum

Frequency
280Mhz 280Mh

3x3

Slice Registers

used Flip-Flops
3,262 5,130

Slice LUTs

used as Logic
2,300 16,549

DSP48Es 9 0

Total equivalent

gate count
36,952 147,614

Maximum

Frequency
270Mhz 270Mhz

Fig.15. Block diagram of BBNN and CCGA for XOR

VII. CONCLUSION

In this paper, an approach to training BBNN in hardware

using the cellular compact genetic algorithm which is a kind

of EDAs is presented. We propose the cellular compact GA

and the layer-based architecture for integration between the

block-based neural network and cellular genetic algorithm in

hardware. With the layer-based architecture, evolvable

hardware based-on the integration between BBNN and

CCGA is feasible and effective since both have array.like

architecture. This approach provides a solution for

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 3371

scalability of genetic algorithm since CCGA can scale up to

the size of the BBNN by adding more CCGA nodes without

sacrifice the speed in term of clock period and cycles. The

XOR problem was used as an example of the approach. It

has been implemented in hardware and can classify the data

successfully. The more difficult classification problems can

be solved in real-time with this kind of evolvable hardware.

We believe that the more hardware resource in future FPGA

will create more applications of the block-based neural

network and the cellular compact GA for real world

problems.

 Fig.16. a structure of XOR that has fitness value of 0.998

Fig.17. Fitness value in training process of XOR

REFERENCES

[1] T. Higuchi, Y. Liu and X. Yao, “Introduction to evolvable hardware”,

Evolvable Hardware, pp. 1-17, Springer 2006.

[2] J. F. Miller and P. Thomson, “Aspects of digital evolution:

evolvability and architecture,” Proc. Parallel Problem Solving From

Nature, Amsterdam Netherland, 1998, pp. 927–936

[3] P. Haddow and G. Tufte, “An evolvable hardware FPGA for adaptive

hardware,” Proc. IEEE Congress on Evolutionary Compution, San

Diego, CA, 2000, pp. 533-560.

[4] S. L. Smith, D.P. Crouch and A. M. Tyrrel, “Evolving image

processing operations for an evolvable hardware environment,” Proc.

Evolvable systems: from biology to Hardware ICES2003, 2003, pp.

332–343.

[5] L. Sekanina, “Virtual reconfigurable circuits for real-world

applications of evolvable hardware,” Proc. Evolvable systems:

from biology to Hardware ICES2003, 2003, pp. 332–343.

[6] T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, H. Murakawa, I.

Iajitani, E. Takahashi, K. Toda, M. Salami, N. Kajihara, and N. Oesu,

“Real-world applications of analog and digital evolvable hardware,”

IEEE Transactions on Evolutionary Computation, vol. 3, pp. 220-335,

Sept. 1999.

[7] G. Hollingworth, S. Smith, and A.M. Tyrrell, “Safe intrinsic evolution

of virtex devices,” Proc. NASA/DoD Conference on Evolvable Hard-

ware, July 2000, pp. 195-202.

[8] H. Liu, J.F. Miller, and A.M. Tyrrell, “Intrinsic Evolvable Hardware

Implemenatation of a robust biological development model for digital

systems, Proc. NASA/DoD Conference on Evolvable Hardware, July

2005, pp. 87-92.

[9] Y. Zhang, S. L. Smith, and A. M. Tyrrell, “Digital circuit design

using intrinsic evolvable hardware,” Proc. NASA/DoD Conference on

Evolvable Hardware,July 2004, pp. 55-62.

[10] S. Scott and A. Seth, “HGA: A hardware-based genetic algorithm,”

Proc. ACM/SIGGA 3rd Int. Symp. Field-Programmable Gate Ar-

ray,1995, pp. 1-12.

[11] T. Kajitai et al, “A gate level EHW chip: implementating ga

operations and reconfigurable hardware on a single LSI,” Proc. Int.

Conf. Evolvable System, 1998, pp. 1-12.

[12] C. Aporntewan and P. Chongstitvatana, “A hardware implementation

of the compact genetic algorithm,” Proc. IEEE Congress on

Evolutionary Computation, Seoul, Korea, 2001, pp. 624-629.

[13] J. C. Gallagher, S. Vigraham, and G. Kramer “A family of compact

genetic algorithms for intrinsic Evolvable Hardware,” IEEE

Transactions on Evolutionary Computation, vol. 8, pp. 111-126, April

2004.
[14] Y. Jewajinda and P. Chongstitvatana, “A cooperative approach to

compact genetic algorithm for evolvable hardware,” Proc. IEEE

Congress on Evolutionary Computation, 2006, pp. 624–629.

[15] P. Larranaga and J. A. Lozano, Estimation of Distribution

Algorithms: A New Tool for Evolutionary Computation, Kluwer

Academic Publishers, 2001.

[16] M. Pelikan, K. Sastry, and E. Cantu-Paz, Scalable Optimization via

Probabilistic Modeling, Springer, 2006

[17] C.W. Ahn, D.E. Goldberg, and R. Ramakhrishna, “Multiple-deme

parallel estimation of distribution algorithms: basic framework and

application. In Proceedings of Parallel Processing and Applied

Mathematics, PPAM 2003, LNCS 2774, pp544-551, Springer, 2004

[18] L. DelaOssa et al., “Improving model combination through local

search in parallel univariate EDAs,” Proc. IEEE Congress on

Evolutionary Computation, 2006, vol 2, pp. 624–629.

[19] K. Sastry, D.E. Goldberg, and X. Liora “Towards billion-bit

optimization via a parallel estimation of distribution algorithm,” Proc.

GECCO 2004, 2004, pp. 412-413.

[20] S. W Moon and S. G. Kong, “Block-based neural networks,” IEEE

Transaction on Neural Networks, vol 12, pp. 307-317,2001

[21] S. Merchant et al., “FPGA implementation of evolvable block-based

neural network,” Proc. IEEE Congress on Evolutionary

Computation, 2006, vol 2, pp. 3129–3136.

[22] M. Sipper, Evolution of parallel cellular machines: the cellular pro-

gramming approach, Berlin: Springer-Verlag, 1997.

[23] G. Harik, F. Lobo, and D. Goldberg “The compact genetic algorithm,”

IEEE Transactions on Evolutionary Computation , vol. 3, pp. 287-

309, Nov. 1999.

[24] S. Himavathi et. al, “Feedforward neural network implementation in

FPGA using layer multiplexing for effective resource utilization,”

IEEE Transaction on Neural Networks, vol 18, no. 3, pp. 880-888,

2007

[25] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-

Submicron FPGAs, Boston, Springer, 1999.

[26] A. W. Savich et. al, “The impact of arithmetic representation on

implementing MLP-BP on FPGAs: a study,” IEEE Transaction on

Neural Networks, vol 18, no. 1, pp. 240-252, 2007

[27] E. Cantu-Paz, Efficient and accurate parallel genetic algorithms,

Boston, MA:Kluwer Academic Publisher, 2000.

3372 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

