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Abstract

Testing whether a given grasp achieves force closure is a fundamental problem in grasping. Unfortunately,

most of the force closure testing methods avoid dealing with the true quadratic friction cones by resorting to

some linear approximation which unavoidably sacrifices completeness and accuracy. This paper presents a

method, considering the true nonlinear friction cone, that can be used as a filter that quickly reject non force

closure grasps. The method is based on a necessary condition stating that a force closure grasp must be able

to generate wrenches that positively span the force space and the torque space separately. The geometric re-

lationship between the friction cones and the corresponding force space and torque space is analyzed to help

construct an efficient test of the condition. Due to the superior speed of the test over a complete method, the

overall performance improvement is paramount. In our experiment, speed up factor of 20 or greater can be

achieved when testing a large number of grasps on various test objects.

1 INTRODUCTION

Grasping has been an active research area in robotics since the pioneering works of Salisbury and Roth [1, 2].

Recommended survey can be found in [3, 4]. Shared amongst all grasping problems is one central question:

whether an object can be securely grasped. It is widely accepted that a secure grasp must be able to resist any

external disturbance. The term force closure is introduced to represent such property. Apparently, synthesis of

force closure grasps emerges naturally as one of the most dominant problems in grasping (see [5] for a past

survey). Another topic of equal importance is the grasp analysis problem: given a grasp, determine its quality.

Since all grasp synthesis methods require their results to satisfy particular properties such as force closure, grasp

analysis is essentially a key into the grasp synthesis problem. Grasp synthesis and grasp analysis are intrinsically

related.

While typical grasp synthesis frameworks rely on tightly integrating and embedding grasp analysis methods,

some recently proposed grasp synthesis approaches rely on separable grasp analysis method explicitly. This new

trend, which further emphasizes the role of grasp analysis, has become an attractive choice for the grasp synthesis

problems in which the grasped object is modeled by discrete representation of its boundary such as point cloud



or discretized curves (see [6, 7, 8, 9] for some examples). This representation naturally serves the real-world

grasping applications in which the object model is not provided in advance and has to be acquired through some

sensory devices. The underlying idea is to systematically search for an optimal grasping configuration in the

finite space of such representation such that each candidate configuration is tested for desirability by a grasp

analysis method. Different methods under this scheme vary by applying different search policy. A method based

on hill climbing or branch and bound search is presented in [10, 11]. Other optimizers are also adopted such

as evolutionary computation as in [12, 13], or generate-and-test approach as in [14]. Unlike traditional grasp

synthesis framework, this search based framework can conveniently take into account any grasp analysis method.

By developing a matching grasp analysis method, the user can compute a grasp that meets the requirement of

their grasping task at hand without having to derive from scratch a new grasp synthesis method for the particular

requirement. This advantage however arrives with the cost for assessing every candidate grasp by the grasp

analysis method. To maximize the benefit of this scheme, the grasp analysis method needs to be computationally

efficient.

This work focuses on improving the computational efficiency of a grasp analysis method. We consider a grasp

analysis approach called filtering approach [14]. A typical approach measures a grasp according to one particular

grasp analysis method. However, the filtering approach employs two-level analysis. At the first level, a grasp is

analyzed using a relatively fast method that tests for the necessity of force closure property of the grasp. If the

grasp does not pass the necessity imposed in the first level, the grasp is rejected. Since the first level imposes only

the necessity, not the sufficiency, of the force closure property, the method used in the first level can be computed

efficiently. The first level method sacrifices completeness in favor of fast rejection of non force closure grasps.

If a grasp passes all necessary requirements, the grasp is then passed to the second level where a grasp is tested

with a typical grasp analysis method that completely analyzes the quality of the grasp. In other words, the first

level acts as a filter that permit only necessary grasps to be tested with the second level.

The filtering approach is especially beneficial in the situation where there are several grasps to be considered

and a large portion of them are non force closure grasps. This is because some non force closure grasps will

be detected in the first level and rejected efficiently. Obviously, a force closure grasp is tested by both the

first level method and the second level method. Hence, the filtering approach should not be used when most

grasps being considered are force closure grasp. The search based scheme mentioned earlier, which we believe

to become the new standard practice in grasp synthesis, is a particular situation where filtering approach could

excel. Interestingly, branch and bound technique itself could be considered as a filtering approach that is applied

on a macro level. For example, see the work of Watanabe and Yoshikawa [11] where a relaxed condition which

can be computed faster are used as a relaxed heuristic to prune unnecessary candidates from being evaluated by

a more time consuming method. Another favorable situation for the filtering approach is when all force closure

grasps are to be computed from the object [15, 16, 17, 18, 19, 9].

An interesting and pervasive issue in force closure testing is the nonlinearity of the representation of friction

cones. Unfortunately, majority of force closure tests do not directly deal with the issue but choose to avoid

this hindrance by introducing linearity into the problem at the cost of some noticeable incompleteness. See for

example the condition of θ-positively span in [20, 21] or several conditions based on the linearization of the



friction model [22, 23]. It is the work of Han et al. [24] that tackles this nonlinearity problem directly. The work,

based on the research of Buss et al. [25], formulates the friction constraints as linear matrix inequalities (LMIs)

and transforms the problem into a convex optimization problem. This method is complete, i.e., it considers

directly the quadratic friction cone without linearization. However, it comes with the cost of efficiency since

convex optimization takes considerable amount of computation power.

In this paper, we propose a novel necessary condition of force closure and its efficient implementation. The

condition can be used as a first level method for the filtering approach. The condition, geometrically derived from

the nonlinear friction model, can be computed very efficiently. It is based on the fact that a force closure grasp

must be able to exert wrenches that positively span the force space and the torque space independently (the reverse

is not necessarily true). The geometry that relates friction cones to the force and torque components is analyzed

so that an efficient algorithm for testing the condition can be constructed. The condition can be evaluated much

faster (e.g., by using our proposed algorithm) than existing force closure tests that handle the nonlinear friction

cones directly. In our experiments in which large number of grasps on various objects are tested, the performance

improvement by this filtering approach compared with using a complete test alone is paramount. In some cases,

speed-up factor of 20 or greater can be achieved. The performance advantage is indeed desirable to the search

based scheme in which many queries need to be made.

The rest of the paper is organized as follows. Section 2 briefly describes past background of grasping intro-

ducing our condition of force closure. In Section 3, we describe the key idea of our method which consists of two

separated conditions. Each condition is described in Section 4 and Section 5. In Section 7 we present numerical

examples comparing efficiency gained by our approach. Finally, Section 8 concludes our work.

2 GRASPING BACKGROUND

A grasp is described by a set of contact points. A grasp is said to achieve force closure when the grasp is able to

counter any external disturbance to the grasped object. Interaction with the object is represented by forces and

torques. To represent a force and a torque simultaneously, a force f = (fx, fy, fz) and a torque τ = (τx, τy, τz)

are combined into an entity called wrench w = (fx, fy, fz, τx, τy, τz) ∈ R6.

This work assumes hard contact with Coulomb friction model [26]. As opposed to a soft contact, a hard

contact is unable to exert a pure torque. A torque from a contact must be the result of the applied force only. As

a result, a contact point at p that exerts a force f can be represented by a wrench w = (f ,p × f). Coulomb

friction model indicates that a contact point can exert some tangential force without slippage. The maximum ratio

between the magnitude of tangential force and the magnitude of the force in the normal direction is indicated by

the frictional coefficient µ between the object and the contact point of the grasping finger. In other words, the

net force exerted by a non-slipping contact must lie in a cone at the contact point whose axis lies in the normal

direction and its half angle 1 is given by θ = tan−1(µ). This force cone is referred to as friction cone. It is shown

in [27] that a force closure grasp with four hard contact points is possible for any 3D object. It is assumed in this

work that the number of contact points is limited to four and the frictional coefficient at any contact points are the

1the angle between the normal and the vector on the boundary of the cone



same.

We associate each contact point with a set of wrenches exertable by the contact point. A grasp is said to

achieve force closure when its contact points are able to produce any wrench in the wrench space R6. Canonically,

the force closure property considers only the direction of wrenches while the magnitude is neglected. A set of

wrenches are said to achieve force closure when their positive linear combination can produce a wrench in every

direction in the space. The term Rn-positive span is reserved to represent such property.

Definition 2.1 A set of n wrenches {w1, . . . ,wn} positively spans Rn if and only if, for any vector v in Rn,

there exists nonnegative constants α1, . . . , αn such that v = α1w1 + . . .+ αnwn.

2.1 Preliminaries and Notations

We denote by int(·) and ri(·) the interior and the relative interior2, respectively. Let P be an arbitrary plane

through the origin in R3. The plane P can be described by its normal vector n. Formally, P = {x|x · n = 0}.
We say that a vector x is on the positive (resp. negative) side of P when the sign of x · n is positive (resp.

negative). Two vectors are said to be on different sides of P when one of them is on the positive side and the

other is on the negative side.

In the upcoming section, we will need to describe the set of all positive combinations of vectors. For this

purpose, let us refer to the set of all positive combinations of all vectors in a vector set W (i.e., {∑αivi|αi ≥
0,vi ∈ W}) as a positive span of W . Also, let the positive span of W be denoted by Ψ(W ). When W does not

positively span Rn, Ψ(W ) forms a convex subspace that can be represented by the intersection of several half

spaces each of which is defined by a plane tangent to Ψ(W ). Each plane is called a bounding plane. The normal

vector of a bounding plane is assumed to point inward Ψ(W ).

3 NECESSARY CONDITION FOR FOUR FINGER FORCE CLOSURE

GRASP

In this section, we present a new necessary condition of force closure for a four finger grasp. Our condition is

based on the following proposition regarding the property of a positive span.

Proposition 3.1 A necessary condition for a set of vectors to positively span Rn is that the projection of the

vectors on any subspace Rk<n must positively span the subspace.

It is clear that the condition is necessary but not sufficient. Figure 1 illustrates some examples that satisfy

Proposition 3.1. Our condition is the application of the proposition on the wrench space. The wrench space

consists of two distinct subspaces: the force space and the torque space, each is R3. Our condition checks

whether the set of wrenches associated with the contact points positively span the force space and positively span

2A relative interior of a set is the interior relative to the affine hull of the set. Intuitively speaking, a relative interior are all points not on

the relative edge of the set, e.g., A relative interior of a line segment is the segment minus its endpoints, regardless of the dimension where

the line is situated.
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Figure 1: Example of vectors that satisfied Proposition 3.1. (a) the vectors do not positively span the space. (b)

the vectors positively span the space.
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Figure 2: Example of forces.

the torque space. When the wrenches fail to positively span the force space or the torque space, the wrenches

definitely fail to achieve force closure.

It should be noted that any subspace can be used in Proposition 3.1. However, a larger subspace usually has

a higher chance to catch more non force closure grasps. This fact emphasizes preference to high dimensional

subspace. Nevertheless, for the condition to be useful, it must also be computationally inexpensive. The force

space and the torque space each describes an entity whose structure can be exploited. This allows us to derive an

efficient computational implementation.

Asserting whether the force space is positively spanned is straightforward. It amounts to testing whether the

corresponding force cones of the contact points positively span the force space. Positively spanning of the torque

space is, however, more complicated to test. A torque varies according to the choice of the origin, although the

force closure property as a whole is invariant to the relocation of the origin. It is possible that for some choice of

the origin, a non force closure grasp may have its wrenches positively span the torque space. See for example the

planar case in Figure 2. In the figure, it is clear that the contact points generate only counterclockwise torques

when the origin is located at A. However, when the origin is located at B, the contact points generate both

clockwise and counterclockwise torques, thus positively span the torque space. The effect of this situation can

be reduced by considering whether the torque space is positively spanned with respect to various choices of the

origin of the workspace. A higher number of origin considered, a higher chance that we can detect a non force

closure grasp from the projection of its wrenches on the torque space.

It should be observed that when the choice of the origin is made such that the origin is located at a contact

point, that contact point produces no torque. Thus, there are one less torque set to be taken into consideration



when compared to a general choice of the origin.

3.1 The Proposed Condition

Based on the aforementioned discussion, we propose a novel necessary condition for force closure as follows.

We consider two subspaces: the force space and the torque space. For the torque space, four choices of the origin

are to be determined, each is the contact point of the grasp being considered. This results in the total of five tests:

one considers the force space and the other four consider the torque space. Let the contact point be located at

p1, . . . ,p4 and let Fi and Ti be the set of forces and the set of torques associated with the contact point at pi, Our

five tests are listed as follows.

1. F1, . . . , F4 must positively span the force space.

2. Let the origin be located at p1; T2, T3, T4 must positively span the torque space.

3. Let the origin be located at p2; T1, T3, T4 must positively span the torque space.

4. Let the origin be located at p3; T1, T2, T4 must positively span the torque space.

5. Let the origin be located at p4; T1, T2, T3 must positively span the torque space.

The detail of the test of the force space and the torque space are discussed in Section 4 and Section 5,

respectively.

In the actual implementation, the test is performed sequentially starting from the test of force space and then

proceeds to each of torque space. As soon as any test fails, it is guaranteed that the grasp does not achieve force

closure.

It should also be emphasized that the condition given in this section is a necessary condition. The condition

does not completely checking force closure grasp. Rather, it is used in a filtering approach to identify a non force

closure grasp with small computational effort.

3.2 Preliminaries for positively spanning in R3

Both the torque space and the force space are R3 subspace. It has been shown in [28] that at least four vectors are

needed to positively span R3. The following proposition describes a necessary and sufficient condition for four

vectors to positively span R3.

Proposition 3.2 Four vectorsw1, . . . ,w4 positively span R3 when the negative of any of these vectors lies inside

the relative interior of the pyramid formed by the other three vectors.

Ding et al. provided a proof of Proposition 3.2 which can be found in [29].

Proposition 3.2 indicates that if there exists at least one vector that its negative lies inside the cone formed by

the other three, the four vectors positively span R3. It also implies that if at least one vector has its negative not

lying strictly inside the cone, we can immediately conclude that they do not positively span R3. Following this



implication, the next proposition provides a simple condition for a set of vectors to not positively span the R3

space.

Proposition 3.3 Let W be a set of vectors. If there exists a plane P through the origin such that every vector in

W lies either on P or on the same side of P , then W does not positively span R3.

4 R3-POSITIVE SPAN OF FORCE COMPONENTS

This section introduces a method to test whether four 3D friction cones positively span R3. Since positively

spanning property concerns only directions of vectors, it is sufficient to represent a cone by its axis, which is the

inward normal vector of the contact point, and its half angle.

Let us denote by ni and µ the unit inward normal of contact point pi and the respective friction coefficient.

The half angle of the friction cone of pi is θ = tan(µ). The frictional coefficient is assumed to be the same for all

contact points. In other words, Fi = {f |(f ·ni)/|f | ≥ cos θ}. We also define a negative cone −Fi = {−f |f ∈
Fi} to be the cone consisting of the negative of all members of Fi. The following lemma describes a necessary

and sufficient condition for several force cones to positively span R3. The condition is essentially an extension of

Proposition 3.2.

Lemma 4.1 Let F1, . . . , Fn be force cones of contact points at p1, . . . ,pn. These force cones positively span R3

if and only if there exists an intersection between the interior of the negative of any cone and the interior of the

positive span of the other three cones.

Proof. LetW = Ψ(
⋃n

i=2 Fi). Assume that int(−F1) ∩ int(W) is not empty. Let v be an arbitrary vector

in the intersection. Since v is a member of the interior of W , we can always find three non-coplanar vectors

w1,w2,w3 in W such that v lies in the interior of the pyramid formed by these three vectors. Since v is the

negative of−v which is a vector in F1, Proposition 3.2 can be applied to deduce thatw1,w2,w3 and v positively

span R3. The condition is therefore sufficient.

To prove that the condition is necessary, we will show that if int(−F1) ∩ int(W) = ∅, no vector in −W
can be written as a positive combination of members of F1, . . . , Fn (therefore they do not positively span R3).

Let us assume oppositely that some vector in −W can be written as a positive combination of a vector a ∈ F1

and some vector in W . Since int(−F1) ∩ int(W) = ∅, −a does not lie in W . This implies that there exists a

bounding plane P ofW such that −a is on the negative side of P . In other words, a lies on the positive side of

P . Obviously, any vector in−W is on the negative side of P . Hence, it is not possible to write any vector in−W
as a positive combination of a and some vector inW . A contradiction results which indicates that the condition

is necessary. �

To test whether four friction cones positively span R3, we pick two arbitrary cones, says F1 and F2, and then

check whether these two cones positively span R3. If they do not, we pick another cone, says F3. From Lemma

4.1, the only possibility that these three cones positively span R3 is that int(−F3) ∩Ψ(F1 ∪ F2) 6= ∅. Thus, we

check for such intersection. If none such intersection exists, we take the last cone (F4) into account. Again, by
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Figure 3: Two force cones and a unit sphere. (a) The shaded area represents the intersection between the positive

span of two cones and the sphere. (b) The inner region containing the area Ψ(F ′1 ∪ F ′2))− int(F ′2)− int(F ′2)

.

Lemma 4.1, we know that these four cones positively span R3 only when int(−F4)∩Ψ(F1 ∪F2 ∪F3) 6= ∅. The

method to test whether a negative cone intersects with the positive span of one cone, two cones and three cones

are described in Section 4.1, 4.2 and 4.3, respectively.

4.1 Two Force Cones Positively Spanning R3

Let the two force cones be F1 and F2 (recall that these cones have their apex at the origin of the force space).

From Lemma 4.1, two force cones positively span R3 only when there exists an intersection between the interior

of one cone and the negative of the other cone. Two cones intersect when the angle between their axes is smaller

than the sum of their half angles. Hence, to test whether F1 and F2 positively span R3, it is to be asserted whether

the angle between n1 and −n2 is smaller than 2θ.

4.2 Three Force Cones Positively Spanning R3

Let the three force cones be F1, . . . , F3. Let us assume that two of them, namely F1 and F2, do not positively

span R3. From Lemma 4.1, to test if F1, . . . , F3 positively span R3, it has to be asserted whether int(−F3)

intersects int(Ψ(F1∪F2)). Observe that the condition is the same as asserting whether the vector−n3 intersects

int(Ψ(F ′1 ∪ F ′2)), where F ′i is the cone Fi whose half angle is increased by θ.

Since the condition concerns only the direction of force cones, let us represent a force cone by its intersection

with a unit sphere. On the surface of the sphere, the intersection of Ψ(F1 ∪F2) resembles a racetrack (see Figure

3a). Figure 4 displays the transformation.

When a vector −n3 intersects int(Ψ(F ′1 ∪ F ′2)), it must lie in one of the following areas: 1) int(F ′1), 2)

int(F ′2), and 3) the area in between F ′1 and F ′2. The method tests whether −n3 lies in one of these areas. Each

of the first two areas is simply a circular cone. The vector −n3 lies in the interior of a circular cone only when

the angle between −n3 and the axis of the cone is smaller than the cone’s half angle. The in-between area is the
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Figure 4: Force cones as seen on the surface of the unit sphere. The picture does not preserve linearity. (a) F3

and Ψ(F1 ∪ F2). (b) Enlarging of F1 and F2 by θ.

remaining area (int(Ψ(F ′1 ∪F ′2))− int(F ′1)− int(F ′2)). Instead of considering this area, we consider a four sided

pyramid which is a super set of the in-between area and is a subset of int(Ψ(F ′1 ∪ F ′2)). The pyramid, shown in

Figure 3b, is bounded by four planes through the origin: two of which are the planes that are tangent to both F ′1

and F ′2 (see Figure 5a). We call these planes the upper and the lower planes. Each of the other two bounding

planes is associated with each force cone. For each cone, we construct a bounding plane that contains the two

tangent vectors at which the upper and the lower planes touch the cone. These two bounding planes are called the

left plane and the right plane (also see Figure 5b).

Let P be the plane containing n1 and n2. Let ri be the vector lying in P that is perpendicular to ni. We

restrict r1 to point toward n2 and r2 to point toward n1, i.e., r1 ·n2 > 0 and r2 ·n1 > 0. Obviously, r1 and r2

are the normal vectors of the left and the right plane, respectively (see Figure 6a). The vectors at the intersection

between the left (resp. right) plane and F ′1 (resp. F ′2) are the vectors that also lie on the upper and lower plane.

Let t1a and t1b (resp. t2a and t2b) be such vectors. The vectors t1a and t1b (resp. t2a and t2b) can be calculated

by rotating n1 (resp. n2) around r1 (resp. r2) by −2θ and 2θ, respectively (see Figure 6b). The normal vectors

of the upper plane and the lower plane are t2b × t1a and t1b × t2a, respectively. With the normal vectors, testing

whether −n3 lies inside the pyramid is simply testing the dot products between −n3 and the normal vectors.

4.3 Four Force Cones Positively Spanning R3

Let the four force cones be F1, . . . , F4. Let us assume that three of them, namely F1, F2 and F3, do not positively

span R3. It has to be asserted whether int(−F4) intersects int(Ψ(F1 ∪ F2 ∪ F3)). Analogous to the previous

cases, it is to be asserted whether −n4 intersects W ′ = int(Ψ(F ′1 ∪ F ′2 ∪ F ′3)). Figure 7 illustrates W ′ as

observed on the surface of the sphere. Obviously, −n4 is inside W ′ when either it is inside int(Ψ(F ′1 ∪ F ′2)),

inside int(Ψ(F ′2 ∪F ′3)), or inside int(Ψ(F ′3 ∪F ′1)), or, finally, inside the pyramid defined by the axes of the three

cones. The last area is illustrated as the shaded region in Figure 7. The method described in Section 4.2 can be

employed to check the first three containments.

The intersection between −n4 and the pyramidal area can be tested by considering the dot products between

−n4 and the inward normal vectors of the facets of the pyramid. The normal vectors of the three facets are ordered

pairwise cross products of n1, n2 and n3. However, a correct order of n1, n2 and n3 has to be determined.
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Figure 5: (a) The upper and lower plane, represented by the shaded area. The dashed line and the dotted line

represent the great circles bounding the upper plane and the lower plane, respectively. The planes tangentially

touch both cones. (b) The left and right plane, represented by the shaded area. The dashed line and the dotted

line represent the great circles bounding the left plane and the right plane, respectively. The planes contain the

double tangents of the same cone.
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Figure 6: Computation of the planes bounding the pyramid. (a) The cone as viewed along n1 ×n2 which points

into the page. The vectors r1 and r2 is the normal vector of the left and right plane. The vector n1,n2, r1 and

r2 all lies on the same plane as the page. (b) The cones as viewed along n1 +n2 which points out from the page.

The vector t1a and t1b are the double tangents of F ′1 which is computed by rotating n1 around r1 by −2θ and

2θ, respectively.
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Figure 7: W ′ as seen on the surface of the sphere. The shaded region is the area need to be checked in addition

to the other checking that can be done by the previous method.

There can be only two distinct orders, namely (n1,n2,n3) or (n2,n1,n3). The correct order can be obtained

by considering the facet that contain n1 and n2. The normal vector of the facet that contains n1 and n2 is either

1) n1 × n2, or 2) n2 × n1. The correct direction is the one that has positive dot product with n3, because n3

must be on the positive side of the plane containing n1 and n2.

5 R3-POSITIVE SPAN OF TORQUE COMPONENTS

This section examines the geometric relationship between the torque space and the friction cones. Let us denote

by Ti the set of all torques generated by all forces in Fi (which is the friction cone of pi), i.e., Ti = {pi × f |f ∈
Fi}. Since any torque pi × f is obviously perpendicular to pi, Ti must lie on the plane through the origin and

perpendicular to pi. Let us call this plane Pi.

To describe how Ti occupies Pi, let us consider a plane Pf through the origin that contains pi and intersects

with Fi. Observe that a torque generated by any force in Pf ∩ Fi (a slice of Fi on Pf ) must lie in the direction

parallel to the normal of Pf . The idea is to consider all possible planes Pf so that all forces in Fi can be taken

into account (see Figure 8a). With this idea, it can be shown that Ti lies on Pi in two different ways: 1) pi is not

in int(Fi). As the plane Pf rotates around pi and continuously sweeps through Fi, correspondingly generated

torques continuously sweep Pi. As a result, the resulting torques, Ti, form a fan of torques, i.e., the set of all

positive combinations of two boundary torques. 2) When pi is in int(Fi), Ti covers the entire plane Pi. This is

the case because for each possible Pf , resulting torques span two opposite directions on Pi. Since Pf in this case

intersects with Fi in all orientations around pi, resulting torques cover all directions in Pi.

To compute the resulting fan of case 1, it is necessary to identify the two boundary torques of the fan. Since

each of these torques is generated when Pf touches Fi, let us describe how to compute the corresponding forces

fa,f b ∈ Fi at which this event occurs. Let Π be the plane lying perpendicular to ni at the distance pi · ni from

the origin. Consider the intersection of Π with Fi and the lines through the vectors ni,pi,fa,f b. Figure 8b

illustrates this intersection as observed on Π. From the figure, fa and f b can be determined from the angle φ. Let
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Figure 8: (a) A force coneFi and its position vector pi. The curved line represents planePi which is perpendicular

to pi. The plane Pfa, . . . , Pfd are planes through the origin that contains pi and intersects Fi. Pfa and Pfd

tangentially touch Fi and the intersection of which is fa and f b, respectively. Vector τa, . . . , τd represents the

direction of torque generated from Pfa, . . . , Pfd, respectively. (b) The plane Π, lying perpendicular to nf at the

distance pi · ni from the origin. The radius of the boundary of the cone is r = tan(θ)(pi · nf ). The angle φ

equals to arccos(r/|AB|).

A andB be the intersection on Π of the line through pi and the line through ni, respectively. The angle φ is equal

to arccos(r/|AB|) where r is the radius of the circle from the intersection of Fi and Π, i.e., r = tan(θ)(pi ·ni).

5.1 Three Torque Sets Positively Spanning R3

We have established that a torque set of any contact point is either a fan or a plane. The problem is to assert

whether three torque sets positively span R3. When any of the torque sets forms a plane, these sets positively

span R3 only when there exists vectors lying on different sides of this plane. Let nt be the normal vector of the

plane. If the other two sets are fans, we check whether the dot products between the boundary vectors of the fans

and nt have different signs. If the other sets are planes, we check whether the normal vectors of the other planes

are not parallel to nt.

The remaining case is when all three torque sets are fans. This is done in the same manner as in the case of

three force cones (Section 4.2). First, we check whether two of them, says T1 and T2, positively span R3. If not,

we check whether the remaining fan, says T3, and the positive span of T1 and T2 positively span R3.

A fan is a positive span of its boundary vectors. Checking whether two fans positively span R3 is equivalent

to checking whether their boundary vectors positively span R3. There are four boundary vectors. By Proposition

3.2, the four vectors positively span R3 only when the negative of one of them lies inside the interior of the

pyramid of the remaining three. The method for checking whether a vector lies inside a pyramid of three vectors,
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Figure 9: The two torque sets form a half space bounded by the plane τz = 0. The plane in the figure represents

the plane τz = 0. The shaded regions represents T1 and T2. (a) The half space case. Notice that three boundary

vectors lies on τz = 0 and the vector a being the boundary of T1 has its negative lies inside T2. (b) The plane

case. (c) the fan case.

as described in the test of four force cone (Section 4.3), can be used directly.

Now, let us assume that T1 and T2 do not positively span R3. It is to be asserted whether T3 and Ψ(T1 ∪ T2)

positively span R3. Since T1 and T2 are fans, their positive span can only be a half space, a larger fan, a plane, or

a pyramid. Each case is considered separately as follows.

5.1.1 The Half Space Case

This case can be detected by verifying that one fan, says T1, has exactly one of its boundary vectors lying on

the plane containing the other fan, says T2, and the negative of that boundary vector lies strictly inside T2 (see

Figure 9a). In such case, the half space is defined by the plane P2. The three fans positively span R3 only when

at least one of the boundary vectors of T3 lies outside the half space. This can be identified from the sign of the

dot products of the boundary vectors of T3 and the normal vector of P2.

5.1.2 The Plane and Fan Cases

When both T1 and T2 lie on the same plane, their positive span forms either a fan or a plane (see Figure 9b

and 9c). It is a plane when the boundary vectors of T1 and T2 positively span the plane. This case is identified

by checking whether one fan has its negative boundary vectors lie inside the other fan, and vice versa. In this

case, the three fans positively span R3 only when the two boundary vectors of T3 lie on different sides of P1. If

Ψ(T1 ∪ T2) is a fan, we can check whether Ψ(T1 ∪ T2) and T3 positively span R3 using the same method for the

case of two fans.



5.1.3 The Pyramid Case

The only remaining case is that Ψ(T1 ∪ T2) is a pyramid. The next lemma describes a necessary and sufficient

condition for the three fans to positively span R3 in this case.

Lemma 5.1 Let T1, T2 and T3 be three fans and Ψ(T1 ∪ T2) forms a pyramid. These fans positively span R3 if

and only if −T3 intersects the interior of the pyramid.

Proof. To prove that the condition is sufficient, let w be a member of the intersection between −T3 and the

interior of the pyramid. Since w is in the interior of the pyramid, there always exist three non-coplanar vectors

lying in the pyramid such thatw lies inside the interior of the cone formed by these three vectors. By Proposition

3.2, the three fans positively span R3.

To prove that the condition is necessary, it will be shown that the fans do not positively span R3 if −T3 does

not intersect the interior of the pyramid. A pyramid can be expressed by the intersection of several bounding half

spaces H1, . . . ,Hl. We assume that there is no vector in −T3 that intersects with the interior ofW . Therefore,

for each w ∈ T3, there exists some Hm, 1 ≤ m ≤ l that does not contain −w. This means that wrench w and

fans T1 and T2 must lie in the same half space Hm. This implies thatw and T1 and T2 do not positively span R3.

�

A pyramid is represented by the intersection of a set of half spaces, each of which is described by a bounding

plane containing the boundary torque vectors of T1 and T2. We represent the bounding planes of the pyramid by

an ordered sequence of boundary torque vectors S = (v1,v2, . . . ,vl). Each bounding plane is a plane whose

normal vector is the cross product of vi and vi+1 (with the last facet being defined by vl × v1). Let us denote

by T the pyramid and by B1, . . . , Bl the bounding facets of the pyramid. The fan −T3 can intersect the interior

of T in three possible cases: 1) −T3 does not intersect with any Bi but it lies in int(T ), 2) −T3 intersects with

ri(Bi) for some i such that −T3 and Bi do not lie on the same plane, and 3) −T3 intersects with the common

boundary vector of Bi and Bi+1 when the other boundary vectors of Bi and Bi+1 lie on different sides of the

plane containing −T3. Fig. 10 demonstrates examples of each case.

These three cases can be easily identified provided that the sequence S is known. Case 1 can be detected by

testing whether a vector in ri(−T3), says the middle vector of T3, lies in the positive side of the bounding plane

of the pyramid. This can be done easily by checking the sign of the dot product between the middle vector of

ri(−T3) and the normal vector of the plane, which is vi × vi+1. If all dot products are positive, the vectors lies

inside the pyramid. For case 2, we enumerate every Bi and test for its intersection with −T3. This is the same as

asking whether Bi and T3 positively span R3. Since Bi is a fan, the same method for testing whether T1 and T2

positively span R3 can directly be used. Case 3 occurs when a boundary vector of Bi lies on ri(−T3) and some

part of ri(−T3) lies in int(T ). Let −v3
l and −v3

r denote the boundary vectors of −T3. We can test whether an

arbitrary vector v lies on ri(−T3) by considering the cross product of v and each boundary vector of −T3, i.e.,

the vectors v × −v3
l and v × −v3

r . If these two cross products lies on the same line but pointing into different
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Figure 10: Example of intersection between ri(−T3) and T . (a) Case 1 (b) Case 2 (c) Case 3

directions and are not 0, v lies inside ri(−T3). Assume that vi lies on ri(−T3), it is to be asserted that vi−1 and

vi+1 lie on different sides of the plane through −T3.

The tests of these three cases all rely on a query for determining which side of a given plane a vector lies on.

A dot product between the vector and the normal vector of the plane can be used for this query. The remaining

problem is the computation of S. It is to be determined which boundary torque vectors constitute the sequence

and in which order. Such sequence can be shifted freely, i.e., the sequences (v1,v2,v3,v4), (v2,v3,v4,v1) and

(v4,v1,v2,v3) represent the same pyramid.

Notice that computation of S which represents a 3D convex hull is similar to the computation of a 2D convex

hull of four points. The pyramid is a 3D convex hull described by a sequence of vectors. A pair of adjacent

vectors determines a plane such that the other vectors in the sequence lie on the same side of the plane. For the

case of the 2D convex hull of four points, the convex hull is described by a sequence of points. A pair of adjacent

points determines a line such that the other points in the sequence lie on the same side of the line. Analogy exists

on the requirement of the bounding entities. The difference is that: in the case of a pyramid, the bounding entities

are 3D vectors while in the case of a 2D convex hull, the bounding entities are 2D points.

From this observation, a method that computes a 2D convex hull can be used to compute the pyramid, given

that the method relies only on an operation that determines the side of a bounding entity, e.g., the side of a vector

with respect to a facet of a convex hull. The gift wrapping algorithm or Graham’s Scan can be easily modified

to perform the task. Nevertheless, we instead propose a more efficient method tailored specifically to compute a

convex hull of four vectors. The method is described in detail in Section 5.2.

5.2 Computing the Convex Hull of Four Vectors

Let the four vectors be arbitrarily denoted by p1,p2, q1 and q2 and let us define P as a fan bounded by p1 and

p2 and also define Q as a fan bounded by q1 and q2. The underlying idea of our convex hull algorithm comes

from observing how P and Q lie with respect to each other.

To characterize how fans P andQ lie with respect to each other, let us define tpi = sgn((p1×p2)·qi), i = 1, 2,

and tqi = sgn((q1 × q2) · pi), i = 1, 2, where sgn(x) is −1, 0 or +1 when x is respectively negative, zero or



positive, respectively. From the definition, tpi (resp. tqi ) takes on the value of 0,+1 or −1 when qi (resp. pi)

is exactly on, on the positive or on the negative side of the plane containing the fan P (resp. fan Q). With this

setting, arrangement of fans P and Q can be classified into one of the following three cases.

5.2.1 When tp1 = tp2 and tq1 = tq2

This case is illustrated in Fig. 11a. For simplicity, the figure is presented in the context of 2D convex hull where

a point and a segment are analogous to a vector and a fan in our case. Side of a point with respect to the line that

contains a segment is analogous to side of a vector with respect to the plane that contains a fan.

Obviously, the resulting convex hull is a concatenation of the boundary vectors of fans P and Q, i.e.,

(pk,pl, qm, qn) where k 6= l,m 6= n and k, l,m, n ∈ {1, 2}. Assignment of k, l,m and n has to be made

such that (pk,pl, qm, qn) is in the counterclockwise order. It is easy to verify that this requirement can be satis-

fied by the following rule: When tq1 = tq2 = +1, we set k = 1 and l = 2, otherwise we set k = 2 and l = 1, and

when tp1 = tp2 = +1, we set m = 1 and n = 2, otherwise we set m = 2 and n = 1.

It should be noted that it is not possible for tp1 = tp2 = 0 or tq1 = tq2 = to be happen in this case. This is

because tp1 = tp2 = 0 implies that p1 and p2 lies on the same plane as Q, hence they do not form a pyramid.

5.2.2 When tp1 6= tp2 and tq1 6= tq2

An example of this case is shown in Fig. 11b. Since the condition indicates that fans P and Q cross each other,

the resulting convex hull is an interwoven sequence of the vectors from the two fans, i.e., (p1, qm,p2, qn) where

m 6= n and m,n ∈ {1, 2}. Assignment of m and n need to cause the sequence to follow the counterclockwise

order. This requires m and n to be chosen such that tpm = −1 or tpn = +1 (either tpm or tpn is allowed to be zero

in case of three coplanar vectors; see Fig. 11c for example).

5.2.3 When tp1 = tp2 and tq1 6= tq2, or when tp1 6= tp2 and tq1 = tq2

As illustrated in Fig. 11d, the resulting convex hull consists of only three vectors; one vector is discarded. Let us

describe only the case in which tp1 = tp2 and tq1 6= tq2 (the other case is treated likewise). In this case, either q1 or

q2 (not both) has to be discarded because it lies inside the convex hull. If q1 and q2 are on the positive side of fan

P (tp1 = tp2 = +1), the convex hull can be written in the form (p1,p2, qm),m ∈ {1, 2}. When no three vectors

are coplanar, it is easy to verify that the value of m must be chosen such that tqm = −1. However, when some

three vectors are coplanar, it is possible that tq1 6= −1 and tq2 6= −1. When this occurs, choosem such that tqm = 0

in order to correctly eliminate the redundant vector. For the case that q1 and q2 are on the negative side of fan P ,

we will have the resulting convex hull (p2,p1, qm) where the value of m must be chosen such that tqm = +1 if

possible, otherwise choose m such that tqm = 0.
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Figure 11: Arrangements of two segments forming a convex hull. The sign + and − indicates the value of tpi and

tqi . The plus sign (+) indicates that the point is on the left of the other segment while the minus sign means that

the point is on the right.

6 COMPUTATIONAL COMPLEXITY ANALYSIS

Our proposed condition is designed specifically for four finger grasp. Since the input size (the number of fingers)

is fixed, asymptotic complexity analysis (which describes the growth of the running time as a function of input

size) is irrelevant. To describe the computational complexity of our test in a somewhat more implementation

independent than actual running time, we count the number of geometric operations of 3D vectors on which our

test heavily relies.

For testing whether the force space is positively spanned, the proposed algorithm consists of three specific

methods for the case of two cones, three cones and four cones. Majority of the operations performed by each

method are cross products, dot products and rotations of a vector. Vector rotation is done by multiplication of a

rotation matrix and a vector which is equivalent to three dot products. From counting, the entire operation uses

at most 85 equivalent dot products and 11 cross products.

For the torque components, our algorithm requires four queries of positively spanning in the torque space,

each of which is done with respect to a different origin. Each query requires a calculation of three torque fans, a

testing whether two torque fans positively span the torque space and finally, a testing whether three torque fans

positively span the torque space. For the case with three torque fans, the worst case scenario is when two of

the fans form a pyramid and the negative of the remaining fan does not intersect any bounding facet causing the

method to check the first two cases as described in Section 5.1.3. In this worst case, a single query requires 25

equivalent dot products and 27 cross products.

7 NUMERICAL EXAMPLE

The presented condition and implementation are introduced as a necessary condition which guarantees that a

grasp not satisfying the condition does not achieve force closure while the force closure property of a grasp sat-

isfying the condition is undetermined. An additional complete method is therefore needed to test these satisfying

grasps. We will refer to a grasp satisfying the condition that actually is not a force closure grasp as a false positive.

Our condition sacrifices completeness in favor of an efficiency in rejection. To benefit from the condition, the
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with our condition as a filtering criteria.

time additionally taken by our condition in the case of false positive must be offset by the time saved from the

reduced number of performed complete methods.

To help justify the benefit of our approach, we compare two grasp analysis frameworks: a canonical frame-

work which uses a complete method to assert force closure and our filtering approach which uses the same

complete method together with the presented condition as a filtering criteria. We select a complete test for force

closure presented by Han et al. [24] for comparison. The method in [24] is selected because it considers directly

the quadratic friction cone without linearization, yielding most theoretical accuracy. Figure 12 illustrates the

flowchart of both methods.

7.1 Method for Force Closure Test by Han et al. [24]

Briefly speaking, the method of Han et al. formulate the problem as an LMI feasibility problem. A grasping con-

figuration and the wrenches exerted by each contact is described by a vector x = {x11, x12, . . . , xij , . . . , xnm}
and a mapping matrix G. The component xij of vector x ∈ Rmn indicates the magnitude of jth component

of intensity vector at ith contact point where n and m indicates the number of contact point and the number of

components of intensity vectors, respectively.

Let us consider a grasp with two hard frictional contacts for an example. A hard contact with friction can be

described by a force it exerts. The exerting force can be described by three components: one for the magnitude

of the normal direction and the other two for the force vector in the tangential direction. Hence, this grasp can

be described by a vector x = {x11, x12, x13, x21, x22, x23} where xi1 is the magnitude of the force in the normal

direction of the ith contact and xi2, xi3 are the magnitude of the tangential force of ith contact.

The matrix G ∈ R6×mn transforms x into a net wrench which is Gx. A nontrivial solution to Gx = 0

indicates an equilibrium grasp. We let V be a matrix whose columns are basis vectors of the null space of G.

Hence, an equilibrium grasp can be written as x = V z where z is a free variable.



Based on the work of Buss et al. [25], the Coulomb Friction model can be represented in the form of LMI

as P (x) � 0 where � 0 denotes semi-positive definiteness. When the inequality is written as positive definite

condition, i.e., P (x) � 0, the force is restricted to lies in the interior of the friction cone. Since non-marginal

equilibrium implies force closure, force closure test can be asserted from whether P (V z) � 0 has an admissible

solution. This inequalities can be solved by a traditional convex optimization technique.

7.2 Comparison and Result

For the filtering approach, an obviously preferable property of a necessary condition that is used as the filtering

criteria is a large difference in the computational effort between demanded by the criteria and that demanded by

the complete method. The difference is the run time to be saved by the approach when the criteria detects a non

force closure grasp.

Another preferable property is high specificity of the test. A specificity is the ratio between the number of

grasps not satisfying the condition and the total number of non force closure grasps. A high specificity indi-

cates that a large fraction of non force closure grasps are correctly identified by the filtering criteria, and the

computational effort is saved by the difference between that of the criteria and that of the complete method.

Aforementioned speedup is then amplified by the number of actual non force closure grasps being tested. This

number varies according to the situation that the condition is integrated into. We provide an empirical comparison

in the scenario of force closure grasp identification: given an object described by a set of discrete contact points,

the task is to identify all force closure grasps.

The comparison is conducted on the six test objects shown in Figure 13. For each object, 100 contact points

are randomly sampled to construct the set of all C100,4 four-finger grasps. The contact are sampled using the

following scheme. For a polygonal object, we randomly select a facet from the polygon and then a point on the

facet is randomly selected by repeatedly selecting a point from a smallest rectangle bounding the facet until a

point which lies inside the facet selected. This process is repeated until the desired number of contact points are

sampled. The curved object in the experiment is described in parametric form. Hence, the sampling is done in

the parametric space.

The friction coefficient is assumed to be tan(10◦). Both methods are implemented in C++ using the convex

optimization package maxdet [30] and the linear algebra package LAPACK [31]. The comparison is run on

Pentium 4 3.0GHz with 1GB of memory. The result of the comparison is shown in Table 1. The second and the

third column show the actual running time of the method in [24] and the filtered version, respectively. Speedup

factor is given in the forth column. The number of force closure grasps is given in the fifth column while the

number of false positives of our condition is given in the sixth column. The seventh column gives the specificity

of our test.

From our experiment, both methods yield the same solution, i.e., force closure grasps identified by both meth-

ods are identical. The time used per query of our condition and of the method of Han et al. is approximately

0.0056ms and 3.6783ms. This indicates that, for each true negative solution, a running time is reduced to approxi-



(a) (b) (c) (d) (e) (f)

Figure 13: Test Objects.

Table 1: Result of the Experiment

Objects Time (seconds)
#Solution #FP Specificity

Unfiltered Filtered Speedup Factor

(a) 15,486.24 709.62 21.82 253,420 110,093 0.972

(b) 15,027.49 264.77 56.76 66,654 38,357 0.990

(c) 15,207.18 248.24 61.26 42,366 32,450 0.991

(d) 14,969.37 269.55 55.53 193,242 39,279 0.990

(e) 14,024.22 513.66 27.30 203,994 115,685 0.970

(f) 11,825.03 1,041.63 11.35 916,434 635,014 0.871

Avg. 14,423.26 507.91 39.01 279,352 161,813 0.964

mately 0.15%. In the case of false positive, the running time is increased to 100.15%. From the average specificity

shown in Table 1, approximately 96.4% of the negative solutions is correctly identified by our condition.

It is clear from the result that our condition exhibits the favorable property of a good filtering criteria. This

benefit is more visible when the set of queries contains a large number of non force closure grasps. For example,

the circular object (f) has least number of non force closure grasps, i.e., least chance for the filtering criteria to

express its benefit and thus the speed up in this case is minimal. On the contrary, the complex object (c) has a

large number of non force closure grasps and the speed up in this case is the greatest. Nevertheless, the filtered

method using our condition takes one order of magnitude lower running time than the non-filtered version.

8 CONCLUSIONS

We have presented a filtering approach for four-finger force closure testing that handles the true quadratic friction

cones. The central idea is to apply a necessary condition of force closure to quickly reject non force closure

grasps. This condition states that a force closure grasp must be able to generate wrenches that positively span

the force space and the torque space independently. An efficient method for testing the condition is developed

based on an analysis of the geometric relationship between the friction cones and the force and torque spaces.

Specifically, we have presented a simple method to assert whether four force cones positively span the force



space. We have also presented a method to test whether torque sets associated with the force cones positively

span the torque space. The method is based on a geometric analysis that the torque set associated with a force

cone is either a fan or a plane. An efficiency and effectiveness of our filtering approach has been demonstrated

in numerical experiments involving force closure testing of a large number of grasps. The experiment shows that

the filtering approach combining our filtering method with a complete method provides much greater efficiency

than using a complete method alone.
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