

Abstract— This paper proposes a new algorithm to identify
and compose building blocks based on minimum mutual
information criterion. Building blocks are interpreted as
common subsequences between good individuals. The proposed
algorithm can extract building blocks in population explicitly.
The additively decomposable problems and hierarchical
decomposable problems are used to validate the algorithm.
The results are compared with Bayesian Optimization
Algorithm, Hierarchical Bayesian Optimization Algorithm, and
Chi-square Matrix. This proposed algorithm is simple, easy to
tune and fast.

I. INTRODUCTION
N Genetic Algorithms (GAs), the solutions are improved
based on the assumption that the good solutions have

some common substructures and if they can be combined
together correctly, the new solutions will be better [1,2]. The
schema theorem tells us about the properties of the good
common substructure which is "short, low-order, highly fit"
or so-called the building blocks (BBs). This leads to the
building block hypothesis (BBH) that is used to explain the
mechanism of GAs [1,2]. The crossover operation was
claimed that it works as BBs construction more than BBs
disruption [3]. Generally, one-point crossover is enough to
solve the problems. However there are many crossover
methods introduced such as two-point crossover, multiple-
point crossover, uniform crossover, etc., they work well for
different problems. The mutation operation was claimed that
it provides the new source of genetic material [1]. The
mutation rate is difficult to determine. We only know that it
should be low, conversely the crossover rate should be very
high. GAs are quite simple to use but there are many
parameters that must be tuned.

There are many ways to identify building blocks; most of
them are in the field of estimation distribution algorithms
(EDAs) [4,5]. The main concept of EDA is sharing
knowledge through a model of distribution of population
and sampling the new generation from the model. However
most of them need some knowledge to identify relationship
between individuals in a population and to build a model.

In this paper, we propose a new and simple method that
can identify and compose the BBs explicitly. The schema
theorem showed that the good schemata existed in highly fit
individuals (fitness above average). We can extract the

C. Sangkavichitr and P. Chongstitvatana are with the Department of

Computer Engineering, Faculty of Engineering, Chulalongkorn University,
Thailand (e-mail: penockio@gmail.com and prabhas@chula.ac.th).

sharing knowledge using the information theory. If we
consider any pair of individuals as two variables, we can
identify the degree of dependence through the mutual
information [6]. This can be measured with the similarity of
the physical structure (genotype). We define the good
substructures as common substructures between good
individual. This common substructure between any two
good chromosomes is the mutual information and we name
it "fragment". According to the BBH, fragments are the BBs
because they can be recombined together into a higher order
[7,8]. The proposed method called “Building Blocks
Identification and Composition" algorithm (BBIC) consists
of two main parts: the fragment identification and the
fragment composition. The fragment identification extracts
the good common substructures among good individuals and
the fragment composition assembles the fragments to create
the new offspring.

The main concept of the proposed method is to capture
and to combine the sharing knowledge between good
individuals. The main advantage of the algorithm is the
simplicity. It requires only one parameter (population-size)
for tuning. The hard problems [9] were used as the
benchmark problems and the results showed its efficiency
comparing with Bayesian Optimization Algorithm (BOA)
[10], Hierarchical Bayesian Optimization Algorithm
(hBOA) [11] and Chi-square Matrix (CSM) [12].

The paper is organized as follows. The fragment
definition is presented in the Section II. Section III describes
two main parts of the proposed algorithm: fragment
identification and fragment composition. The experiment
and benchmark results are shown in Section IV. Finally, the
concluding remarks of the proposed method are in
Section V.

II. FRAGMENT
The information theory told us about how to measure the

information from the data. In GAs, each chromosome holds
some information about the solution. We hold the belief that
good solutions can guide us to the desired solution because
they contain some useful information. The problem is how
to extract such information. We can observe the common
knowledge between good solutions from the mutual
information. In the case of two chromosomes, we consider
the similarity of bits in the same position as mutual
information between them. Although there are many
different genotypes that have the same fitness value but if

Direct and Explicit Building Blocks Identification and Composition
Algorithm

Chalermsub Sangkavichitr and Prabhas Chongstitvatana

I

we have enough a number of good solutions, the problem
will be solved because there will be some repeat pattern
between them. This increases the chance to find common
subsequence and maintains diversity of common patterns.

We will define the fragment as common substructures of
any two chromosomes. Given sequence of chromosomes
length l

lnckcccC k
n

k
l

kkk ≤≤∈Ι∈= + 1},1,0{,:21 K (1)

Given set of position indices in chromosome length l from
position f to position t

{ }+Ι∈≤≤≤≤= iiiiiiiii ztfltzfztf ,,,1:),(

and φ=∩≠Ι∈∀ +),(),(,:, jjii tftfjiji
(2)

Given common subsequence between two chromosomes

1kC and 2kC

2111121 thatsuch1
, k

z
k
z

k
t

k
f

k
f

kk
i iiiii

cccccF == + K (3)

The set of contiguous common subsequences between

two chromosomes or the fragments are defined as:

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎥
⎤

⎢⎢
⎡≤=
2

:2121 ,, liFS kk
i

kk (4)

The definition above will be illustrated by an example in

Fig.1. Note that the string is indexed from left to right
started with the index 1. Given two 10-bit chromosome
sequences 1C = (1,0,1,1,0,1,0,1,0,1) and 2C =

(1,1,1,1,0,0,0,0,0,1), then the common index ranges of 1C

and 2C are =),(11 tf (1), =),(22 tf (3,5), =),(33 tf (7),

and =),(44 tf (9,10) and then the fragments of the template
2,1S are 2,1

1F =)(1
1c = (1), 2,1

2F =),,(1
5

1
4

1
3 ccc = (1,1,0),

2,1
3F =)(1

7c = (0), and 2,1
4F =),(1

10
1
9 cc = (0,1)

consecutively.

 Bit Position : 1 2 3 4 5 6 7 8 9 10

Chromosome 1: 1 0 1 1 0 1 0 1 0 1

Chromosome 2 : 1 1 1 1 0 0 0 0 0 1

Common Schema : 1 * 1 1 0 * 0 * 0 1

 Fragment : F1 F2 F3 F4

Fig. 1. The common subsequences between two chromosomes (fragments).

The common schema defines as similarity between two
chromosomes. The fragment can be interpreted as
contiguous common subsequences or common subschema
between two chromosomes. The length of each fragment

must be longer or equal to one bit. The order and length of
the fragment are defined similar to GAs. The order of
schema is the number of fixed bit position and the fragment
composed of all fixed bit position, thus the size of fragment
is the order e.g. in the Fig.1 F2 = (1,1,0) so
order(F2) = size(F2) = 3. The length of schema is the
distance between the first fixed bit position to the last fixed
bit position e.g. in Fig.1 F2 beginning at position 3 and
ending at position 5 so length(F2) = 5-3 = 2. The definition
of fragment shares the BBs properties that the short and
low-order schemata have high potential to survive and then
will be recombined to create better solutions. The fragments
can be considered as independent contiguous building
blocks that have tightly linkage on each fragment.

III. FRAGMENT IDENTIFICATION AND FRAGMENT
COMPOSITION

In this section, we will describe in details of the proposed
algorithm. The BBIC consists of two main parts: fragment
identification and fragment composition. The fragment
identification extracts the fragments from the selected
individuals (good solutions) and the fragment composition
recombines the fragments into new individuals (new
offspring). The algorithm is illustrated in Fig.2 and Fig.5.
Firstly, the good solutions are selected from the population.
Related to the schema theorem and BBH, the opportunity of
schemata survival will increase in chromosome that has
fitness above average. Thus the upper half (above average)
individuals should be selected. Secondly (Fig.3), the
fragments are extracted using the minimum mutual
information criterion mentioned previously. In this step,
every individuals will be collated together to explore every
possible fragments. Thirdly, all fragments will be labeled by
their position in the original individual for example in Fig.1
the fragment F2 begin at position 3 in the chromosome.
Fourthly (Fig.4), the fragments are selected to build new
offspring one by one. There are many ways to compose the
fragments however a simple method suffices. The
fragments are combined in sequence from the first position
to the last position. There are many fragments that begin
with the same position. If there is no guideline to tell that
which one is better, a random selection seems to be a useful
solution because it avoids deceptive biases. When the first
fragment is selected from the first position the next fragment
is concatenated to the prior fragment and the process repeats
until complete a chromosome. If there is no fragment
starting at any position, bit value will be drawn from a
selected individual because this value comes from a good
chromosome. This may occur if the diversity in the
population is too low due to lacking of mutual information
or the population is too small.

The time complexity of fragment identification and
fragment composition are O(n2·l) and O(n) respectively
where l is the chromosome length and n is the number of
selected chromosomes. The proposed algorithm uses only

Fig. 2. Pseudocode for BBIC algorithm

Fig. 3. Pseudocode for Fragment Identification

Fig. 4. Pseudocode for Fragment Composition

F31 F12 F32 F11

After fully comparison of all individuals

Chromosome 1 1 0 1 0 1 0 1 0 1 0
1 0 1 1 0 1 1 0 0 1

1 0 1 1 0 Fragment F1 Fragment F2

1 2 3 4 5 6 7 8 9 10 Bit Position

Fragment Archive
No. \ Position 1 2 3 4 5 6 7 8 9 10

1 F1 F2
2
…

Fragment Archive
No. \ Position 1 2 3 4 5 6 7 8 9 10

1 F1 F6 F12 F4 F7 F10 F2 F5 F14
2 F3 F22 F25 F15 F20 F13 F26 F8 F11
3 F9 F27 F17 F37 F23 F28 F18 F16 F21
4 F19 F29 F35 F30 F24 F34
5 F31 F33 F39 F32 F38
6 F36 F40
…

Fragment composition (new individual)

F9 F37 F13 R

1 2 3 4 5 6 7 8 9 10 Bit Position

Random (if there is no member)

New Chromosome

Bit Position

New Chromosome

1 2 3 4 5 6 7 8 9 10

Fragment Identification

Fig. 5. The BBIC algorithm

one parameter that is population size. So it is very easy to
tune compared to other GAs or EDAs algorithms.

The mechanism behind the BBIC can be related to
exploitation and exploration [13]. In GAs, it is important to
balance them to achieve good results. In canonical GAs,
selection is interpreted as exploitation, crossover and
mutation are regarded as exploration. For the BBIC,
fragment identification captures the mutual information
(common substructure) between selected chromosomes as
fragments. This part provides exploitation power to extract
the good fragments that may be parts of a desired solution.
The fragment composition is considered as exploration
because it recombines the fragments into all possible
patterns without bias. In Fig.5, we can notice that the
number of fragment of each position in the archive is
different. Normally, the first position has a lot of members
because the fragment identification proceeds from left to
right. Therefore the next positions from the first have less
members. The number of members is increasing in the
middle and decreasing in the end. In the early generation,
the fragments will be short because it is hard to exploit
common information in a highly diverse population. The
proposed algorithm keeps mutual information between every
chromosome. Moreover it needs to observe enough good

R denotes an individual (chromosome).
Fi denotes set of common subsequences (fragments)

begin with bit at position i.
C denotes a fragment

Algorithm Fragment_Composition
{The composition of new individual R}

i = 1 {first position}
While i < individual_size do

if Fi ≠ ø then {if has a fragment or more}
C random_select(Fi)
R R + C {concatenation}
i i + size(C) {assign next position}

else {if there is no member}
R random(0,1) {random from 0 or 1}
i i + 1

endif
EndWhile

End.

R denotes an individual (chromosome).
F denotes common subquences (fragments).

Algorithm Fragment_Identification
{The comparison between individual Ri to R1, …, Ri-1}

For i = 2 to (population_size / 2) do

For j = 1 to (i-1) do
F Compare Ri to Rj

(search for common substructure)

EndFor
EndFor

End.

D denotes a population.
F denotes common subsequence (fragments).
T denotes an archive of common subsequences.

Algorithm Fragmentation

D0 Generate R individuals (the initial population) at random

Repeat for g = 1, 2,…, until the stopping criterion is met

N
gD 1− Select N from Dg−1 using truncation

selection (Upper half good solutions)
F Find the common substructures (fragments)

among N
gD 1−

T Label F and record
N
gD Sample Rg individuals (the new population) from T

EndRepeat
End.

Drawn from a selected chromosome

solutions to capture good common substructures. The
required population size depends on the problem. During
evolution process, the solution distribution is converged
gradually to an optimal point. The fragment will be longer
because the mutual information is growing.

IV. BENCHMARKS AND PERFORMANCE
In this section, we explain the test problems and show the

experimental results. The test problems can be separated into
two classes: additively decomposable problems (ADFs) and
hierarchical decomposable problems (HDFs). In general the
hierarchical structure is harder to solve than additive
structure however it also depends on a particular algorithm.
It is hard to claim that what algorithm is suitable for a
particular class of problem. Nevertheless the experimental
results can be conducted to support the statement.

There are four test problems in this experiment as follows:
OneMax problem is the general widely-use to measure the

based performance of GAs to achieve the optimal solution
that composed of all one. This problem is the representative
of simple problems.

The well-known trap functions are designed for studying
the BBs and linkage problems in GAs [14]. The general k-
bit trap functions are defined as:

()⎩
⎨
⎧

−×−
=

)1/()(
),,(1 kfuf

f
bbF

lowlow

high
kk K ; if u=k

; otherwise
(4)

Where bi is in {0,1}, ∑ =
=

k

i ibu
1

 and fhigh > flow.

Usually, fhigh is set at k and flow is set at k-1. The additively
decomposable functions, denoted by Fm×k are defined as:

∑
=

× ∈=
m

i

k
iikmkm kkFkkF

1
1 }1,0{),()(K (5)

The m and k are varied to produce a number of test

functions. The Trap functions fool the gradient-based
optimizers to favor zeros, but the optimal solution is
composed of all ones.

The commonly used hierarchical decomposable functions
are hierarchical if-and-only-if (HIFF) [15] and hierarchical
trap-1 (HTrap-1) [16] functions. The HIFF function is
represented as a binary tree. An example is shown in Figure
6 (left). There are three possible values “0”, “1” and “-” for
 each node in the tree and they are interpreted according to
the definition as follows:

⎩
⎨
⎧

=
0
2i

ic
 ; if node i is “0” or “1”

 ; if node i is “-”
(6)

Where l is the level (height) of node i and ic is the fitness
value of node i.

The value of parent node depend on their children node, if
the children node value is all “0” or all “1”, the parent node
value is “0” or “1” respectively, and if children value are
different the parent node value will be “-”. The HIFF
functions denote by Hiff(X) is defined as

∑ ∑
= =

−

=
h

l i

l
i

lh

cXHiff
0

2

1

)(

)((7)

Where h is the height of the binary tree and l

ic is the
value of node i in level l. The optimal solutions of this
problem are all zeroes and all ones.

The hierarchical trap (HTrap-1) function evaluates a
solution as a tree that the number of branches is greater than
two. An example is show in Figure 6 (right). The left nodes
will not be evaluated in the function. The evaluation rules
are the same as HIFF function. The fitness value of each
node is defined as:

⎩
⎨
⎧ ×

=
0

),,(3 3213 bbbF
c

l

i
 ; if jb “-” for all 31 ≤≤ j

 ; otherwise
(8)

Where l is the level (height) of node i and b1, b2, b3 are the

children of node i from left to right respectively. At the root
node, the parameters of trap function are highf ′ = 1 and

lowf ′ = 0.9. The other nodes use highf ′ = 1 and lowf ′ = 1. The

Htrap-1 functions denote by Htrap(X) is defined as

∑ ∑
= =

−

=
h

l i

l
i

lh

cXHtrap
1

3

1

)(

)((9)

The optimal solution is composed of all ones.
All five benchmark problems are tested with the sizes (in

bit) as follows:
OneMax: 100, 150, 200 and 250
Trap-3: 60, 120, 180 and 240
Trap-5: 100, 150, 200 and 250
HIFF: 32, 64, 128 and 256
Htrap-1: 27, 81 and 243

The benchmark problems are designed to test the

performance of algorithm to detect and to compose BBs.
There are many powerful algorithms solving BBs
identification problems. The BOA is a powerful algorithm to
solve ADFs problems that uses Bayesian network to learn
and to identify BBs relationship. Later it is developed to
hBOA for solving HDFs problems efficiently. The CSM
algorithm uses chi-square matrix to find the dependency
structure and can solve both ADFs and HDFs problem
effectively. The CSM claimed to consume less time and

 h=3

h=2

h=1

h=0

 h=2

h=1

h=0

Fig. 6. An example of HIFF problem is represented as a binary tree (left), and an example of HTrap-1 is represented as a 3-branch tree (right)

1E+03

1E+04

1E+05

100 150 200 250N
um

be
r o

f
ev
al
ua
ti
on

 i
n
lo
g
sc
al
e

Problem size (number of bits)

OneMax

BBIC

BOA

CSM

200

400

600

800

60 120 180 240

Po
pu

la
ti
on

 s
iz
e

Problem size (number of bits)

OneMax

Trend

1E+03

1E+04

1E+05

1E+06

60 120 180 240N
um

be
r o

f
ev
al
ua
ti
on

 i
n
lo
g
sc
al
e

Problem size (number of bits)

Trap‐3

BBIC

BOA

CSM

0

200

400

600

800

60 120 180 240

Po
pu

la
ti
on

 s
iz
e

Problem size (number of bits)

Trap‐3

Trend

1E+04

1E+05

1E+06

100 150 200 250N
um

be
r o

f
ev
al
ua
ti
on

 i
n
lo
g
sc
al
e

Problem size (number of bits)

Trap‐5

BBIC

BOA

CSM

1000

1500

2000

2500

3000

100 150 200 250

Po
pu

la
ti
on

 s
iz
e

Problem size (number of bits)

Trap‐5

Trend

1E+03

1E+04

1E+05

1E+06

0 32 64 96 128 160 192 224 256 288N
um

be
r o

f
ev
al
ua
ti
on

 i
n
lo
g
sc
al
e

Problem size (number of bits)

HIFF

BBIC

hBOA

CSM

0

500

1000

1500

2000

2500

0 32 64 96 128 160 192 224 256 288

Po
pu

la
ti
on

 s
iz
e

Problem size (number of bits)

HIFF

Trend

1E+03

1E+04

1E+05

1E+06

0 27 54 81 108 135 162 189 216 243 270N
um

be
r o

f
ev
al
ua
ti
on

 i
n
lo
g
sc
al
e

Problem size (number of bits)

Htrap‐1

BBIC

hBOA

CSM

0

3000

6000

9000

12000

15000

0 27 54 81 108 135 162 189 216 243 270

Po
pu

la
ti
on

 s
iz
e

Problem size (number of bits)

HTrap‐1

Trend

Fig. 7. Performance comparison between BOA, hBOA, CSM and BBIC (left), and Population size using in BBIC method (right)

memory usage than the BOA and the hBOA. However the
suitable threshold value for partitioning in CSM varies
according to problems. The time complexity of BBIC is
lower than CSM and it uses only one parameter for tuning
(population size). The performance of the proposed
algorithm is shown in Fig. 7

All tested problems are performed with 30 independent
runs and it is required to find the optimal solution in all of
30 runs. The results as shown in Figure 7 (left) are the
average number of function evaluation of all runs compares
with the BOA, hBOA and the CSM. The minimum
population size uses to achieve the optimum in 30 runs is
shown in Figure 7 (right). The results show that the BBIC
outperforms the BOA, the hBOA and the CSM in the Trap-
3, the Trap-5 and the HIFF problems. For the OneMax
problem, the result is inferior to the BOA but outperforms
the CSM. For the Htrap-1 problem, the result is inferior to
the hBOA and the CSM. The population size for all
problems grows as linear relationship. The efficiency of the
BBIC on the tested problems ordered from high to low is as
follows: OneMax, Trap-3, HIFF, Trap-5 and HTrap-1.

The fragment is defined as common subsequences between
two chromosomes and is interpreted as contiguous building
blocks. In Fig.7, we can notice that the performance of
BBIC in OneMax problem is close to Trap-3 problem. In the
OneMax problems, it is hard to say that it has BBs. If we
consider BBs in OneMax problem as one allele, it will have
a quantity of BBs equal to the problem size. Although the
OneMax is not the deceptive problem, combining the
amount of BBs seems to be more complicated in the higher
problem dimension. The difficulty of Trap problem depends
on the size and the number of BBs. For the hierarchical
problem, the HIFF problem is not deceptive; however there
are two opposite optimal solutions (all ones and all zeroes).
This conflict disrupts each other to achieve an optimal
solution. The result of HIFF problem shows that it is easier
than Trap-5 problem but harder than Trap-3 problems. The
BBIC performs worst in the HTrap-1 problem because the
problem combines a Trap problem with a hierarchical
problem.

I. CONCLUSION
 The good substructures can be interpreted as common

subsequences between two chromosomes called fragments.
We can regard these fragments as BBs because they are
short, low-order and come from the highly-fit above average
chromosomes. Therefore the building block can be
identified explicitly. The results indicate that there are good
substructures existed in good individuals and the BBIC can
identify and recombine them to create better solutions. This
shows the existing of the BBs and supports the
understanding of the mechanism in evolutionary process
based on BBH. The time complexity of fragment
identification and composition are O(n2·l) and O(n)
respectively where l is the chromosome length and n is the

number of selected chromosomes. This is far lower than the
BOA, the hBOA and the CSM. The proposed method is very
simple for implementation and tuning. It is also efficient to
solve hard problems. We want to eliminate the bias in
fragments recombination process so the uniform random is
chosen. However the extra knowledge can be integrated in
the part of fragment composition to tell that which fragment
is fitter or how are they related.

REFERENCES
[1] David E. Goldberg, Genetic Algorithms in Search, Optimization &

Machine Learning, Addison Wesley, 1989.
[2] D. E. Goldberg, The Design of Innovation: Lessons from and for

Competent Genetic Algorithms. Kluwer Academic Publishers, 2002.
[3] M. Mitchell., S. Forrest and J. H. Holland, “The RoyalRoad for

genetic algorithms: Fitness landscapes and GA performance”, Proc. of
the First European Conf. on Artificial Life. 1992.

[4] P. Larrañaga, J. A. Lozano, Estimation of Distribution Algorithms. A
New Tool for Evolutionary Computation. Kluwer Academic
Publishers, 2002.

[5] M. Pelikan, K. Sastry, E. Cantú-Paz, Scalable Optimization via
Probabilistic Modeling, Springer, 2006.

[6] Dong-il Seo, Yong-Hyuk Kim, and Byung-Ro Moon, “New Entropy-
Based Measures of Gene Significance and Epistasis”, Genetic and
Evolutionary Computation Conference- Lecture Notes in Computer
Science 2724, 2003, pp. 1345-1356.

[7] C. R. Stephens, H. Waelbroeck, “Schemata Evolution and Building
Blocks”, IEEE Congress on Evolutionary Computation, 1999, pp.
109-124.

[8] C. R. Stephens, H. Waelbroeck, R. Aguirre, “Schemata as Building
Blocks: Does Size Matter?” Foundations of Genetic Algorithms 5
(FOGA), June, 1999.

[9] F. Stephanie, M. Mitchell, “What makes a problem hard for a genetic
algorithm? Some anomalous results and their explanation.” Machine
Learning 13 (2-3), 1993, pp. 285-319.

[10] M. Pelikan, D. E. Goldberg & E. Erick Cantu-Paz. “BOA: The
Bayesian optimization algorithm.” Proc. of the Genetic and
Evolutionary Computation Conf. (GECCO), 1999, pp. 525-532.

[11] M. Pelikan, “Bayesian optimization algorithm: From single level to
hierarchy.” Doctoral dissertation, University of Illinois at Urbana-
Champaign, 2002.

[12] C. Aporntewan and P. Chongstitvatana, "Chi-Square matrix: an
approach for building-block identification", M.J. Maher (Ed.): 9th
Asian Computing Science Conference, 2004, pp. 63-77.

[13] A. E. Eiben , C. A. Schippers, “On evolutionary exploration and
exploitation”, Fundamenta Informaticae, 1998, pp. 35-50.

[14] G. R. Harik, “Learning linkage”, Foundation of Genetic Algorithms 4,
1997, pp. 247–262

[15] R. A. Watson, G. S. Hornby and J. B. Pollack, “Modeling Building
Block Interdependency”. Proc. of Parallel Problem Solving from
Nature V (PPSN V), 1998, pp. 97-106.

[16] R. A. Watson and J. B. Pollack, “Hierarchically consistent test
problems for genetic algorithms”. Proc. of Congress on Evolutionary
Computation, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

