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Abstract—Current techniques in protein homology testing
involve a 1-dimensional alignment of Nucleotide oAmino acid

sequencing. Due to its various constraints and loveequence
identity values, a 2-Dimensional Hydrophobic Cluste Alignment

has increasingly been used to predict the structureand
functionality of protein. This work proposed an algrithm based
on a secondary-structure Hydrophobic Cluster Alignnent to
compute a similarity score of protein sequences annatically,

which helps reduce interventions of a human expeifor a manual

alignment. Additional techniques are introduced tospeed up the
calculation, as well as to resolve some greedy-bdsalignment
limitation in the previous work. The alignment resuts and the
classification accuracies from the well-known HOMSTRD

database have demonstrated an improvement in bothcauracy
and the computation time.

Keywords-bioinformatic; hydrophobic cluster analysis; protien
homology; automatic alignment

. INTRODUCTION

As biological data have grown tremendously in tlaestp
decade, they provide an avenue of researches iyzartpand
extracting useful knowledge that give us bettereusihnding
of the rules of nature. Genome projects are pdrteolargest
resources of life science data, which mainly inelmticleotide
and amino acid sequences. However, effective velrief
these data is still a great challenge. More spdifi, we need
a high-quality tool to determine protein homologg sequence
alignment. Detection of protein homology has becanrarge
research field in bioinformatics. Several crucalalyzed
protein databases, such as UniProt [1], PDB [2[pB(3], and
PFam [4] have been created. These databases casefn
knowledge, e.g., protein homology, structure, ocfionalities.
By detecting protein similarity, the newly discosdrprotein
sequences can be used to predict their functicesmlitom the
known information in the database.

Early methods, such as Maximum Matching,

Alignment Search Tool (BLAST) [5], and FASTA [6],

measure protein homology from protein’s primaryusture
information. These methods still have major linidas and
drawbacks; they are unable to provide a proof @fusace

homology if the sequence identity appears to beltog a
situation that typically occurs in proteins of thgame
functionality, but belong to organidinom different species.

The similarity can generally be measured from an
alignment of either nucleotide sequences or amic@ a
sequences. However, nucleotide sequence similgsityiot
suitable for protein function discovery; amino asgfuences
are typically exploited instead since they containch more
information, such as hydrophobic and hydrophiliogarties.
Unfortunately, the current one-dimensional aligntnéwols
mentioned earlier all have some limitation thatldgepoor
alignment results. Therefore, higher level struesuiSecondary
(2-dimensional), Tertiary (3-dimensional), and Q@uaary (4-
dimensional)) have been increasingly put into adersition.
Functionality of a protein is generally based os B-
Dimensional structure. Some researchers have atento
predict this protein structure by amino sequendgirfg based
on each amino acid property, but this approachstout to be
unfeasible in practice that extremely high compatet power
is needed.

Instead, our proposed method is based on the ilaa2e
Dimensional structure, Hydrophobic Cluster Analy@kCA).
Hydrophobicity property is the key in protein faidi The
reason is that as protein creating and folding o@cuvater,
they try to preserve the structure by compactind tamning
their hydrophobic part inside and resting the hpdilic part
outside for an easy access to water. Hydropholbist&
Analysis (HCA) approach has been developed frosltklief.
HCA approach visualizes amino acid sequence ab &elical
pattern. In a Hydrophobic Cluster Analysis, aminoida
sequences are laid into a 2-D helical pattern bgtitvg the
protein into a smoothed helix, where each twist @ahtain 3.6
amino acids [7]. Then, this cylinder is cut lengiésv and
spread into a 2-Dimensional plane, and the hydrjehemino
acid will be highlighted and grouped together g8, shown in
Fig. 1. This representation is then used in prosignment.

BasicHowever the actual hydrophobic cluster alignmemjuies a

human expert to perform the alignment manually.
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Figure 1. Two-dimensioanal representation of the amino aeglience using HCA method.

An earlier work of Automatic 2-D Hydrophobic Cluste
Alignment [9] introduced the new representatioranifino acid

sequences and used dynamic programming approach '&o

measure their similarity. The homologous proteirith vihe
same functionalities will have a high sequence titieiscore
and others with different functionalities will have low
sequence score.

In more detail, the algorithm in [9] is based odysmamic
programming approach. Every cluster block from thet
sequence will be compared with all cluster blocksnf another
sequence to discover the best alignment and sEorgt, a
matrix as large as the number of cluster blockseath
sequence is created. Then each cell in the madrifilled
accordingly, starting from the first pair to thestigpair. To
determine a cumulative value in each current c#ig
maximum score of the three neighboring cells (Tiagft, and
Diagonal) is added to the current cell's alignmsere. This
cell's alignment score reflects the best alignmscore by
shifting residues one-by-one from left to right armtiating the
remaining residues in the matrix that will be usster. After
the score of the last pair is calculated, the Iseste of the
alignment is obtained. The actual alignment candrestructed
by tracing the path back to the first alignmentrpd&ven
though this approach achieves good accuracy imprewe
over the one-dimensional alignment approachesliggment
is still not optimal and its computational comptgxtan be
much improved.

Therefore, this work proposes an extension of te@ipus
technique in [9]. We revise the representatiorthef amino
acid sequence and
algorithm. The goal is to offer a better accuradgnanent
score and improve the efficiency of the computation

improve the dynamic programming

II.  PROPOSEDMETHOD

New representation

We improve the representation proposed in [9], whos
amino acids are simply transformed into binary sglsb“1”
represents hydrophobic amino acid and “0”
hydrophilic amino acid. As a result, the informatigegarding
different hydrophobic amino acids is lost. Insteaolr
representation replaces only hydrophilic amino aotd “0”
since it has no role during the alignment, and kebp orginal
representation of all 7 types of the hydrophobidnamacids
(Valine (V), Isoleucine (I), Leucine (L), Phenylalae (F),
Tryptophan (W), Methionine (M), and Tyrosine (Y)).
Preserving this hydrophobic information enables approach
to achieve a more accurate score since we camadiigrent
scoring to different types of hydrophobic aminodaciOur
substitution matrix is extended from BLOSUM62 [10].
Specifically, we use only the scores of hydrophaiino acid
pairs and the hydrophilic amino acid is substituteth the
average score of the hydrophobic amino acids, hass in
Fig. 2.

M | L. \ F Y W Cther
M 5 1 2 1 0 -1 -1 -2
| 4 2 3 0 -1 -3 -3
L 4 1 0 -1 -2 -2
\ 4 -1 =1 -3 -2
F 6 3 1 -2
Y 7 2 -2
W 11 -3

Figure 2. The substitution matrix for hydrophobic clustegalnent.

represent



To extract an amino acid sequence into an indiVidua

hydrophobic cluster, we follow the previously prepd
method whose streak of five “0”s or more in theusete, as
well as the Proline amino acid symbol (“P”), ind&dhe end
of the cluster. Now our amino acid sequences arestormed
into cluster blocks and are ready to be used inaignment
algorithm. Fig. 3 shows our new representation.

(@)  MASFKIALLLGVIAFVNACSQAPGTTTTTVITTVTTVSADDGSEAGLLS
(b)
(©)

MOOFOIOLLLOVIOFVO000000000000v000vV00V000000000LLO

MOOFOIOLLLOVIOFV v000ovoov LL

Figure 3. Our proposed representation.
(a) Original sequence. (b) Hydrophilic replaced.Rreak to cluster block.

In order to recognize, identify, and understanduiess of
cluster blocks easily, we use the visualization tod9]. An
example visualization of the 2-D clusters in oupresentation
is shown in Fig. 4.
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Figure 4. A Visualization corresponded to our representation

B. Cluster Alignment Algorithm

In this work, our cluster alignment algorithm algses a
dynamic programming approach and is based on the
dimensional string matching technique similar tattin [9].
However, we include additional techniques as fodoto
increase accuracy and to reduce computation cost.

1) ScoreDictionary Lookup:

The computation time for an alignment of amino sges
or cluster blocks is spent mostly in score calooiest of the
sequence pairs. Generally, the scores will be [zt
between the new query sequence and each of thersazuin
a very large database. Calculating the score of stime
sequence repeatedly clearly wastes a lot of cortipos
resources. So, we introduce the score dictionamgkup
technique to retrieve the already existed interatedscores.
After we calculate the score of each sequence wairadd all
possible sequences and their corresponding scores a
dictionary. Next time a pair of the sequences with same
substring in the dictionary, we simply lookup withhdhe need
of the score’s recalculation. Fig. 5 shows an exarnp some
possible subsequence added to the dictionary.
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‘ML, MO LL, "MOO,LLO" | "MOOF, LLOV" , "MOOFO, LLOVI™
‘0.L", "00,LO" , "DOF,LOV", 00RO, LOVI",
b) ‘00", 0ROV, "OFDOVIT
VROV
0,

Figure 5. Examples of some possible subsequences creatextided to a
dictionary
a) Query Sequence. b) Possible subsequences tdulditionary.

2) Local Window Search:

The approach in [9] scores all pairs of clusterckdoin
each sequence and find the best score and itsfrpaththe
entire table, which evidently requires extremelyghhi
computation complexity. Moreover their approch usegeedy
choice in the search, where each score dependshen t
remaining residue from the previous cluster usdis Teads to
confusion when each protien sequence have similater
blocks but their positions in the sequences arg déferent.
The subsequent cluster will get a mismatch scotesezh by
wrong remaining residue.

Therefore, our work introduces a Local window skac
reduce bias from a greedy choice and to create efficient
remaining residue. Before we perform a dynamic mgning
step, we find a pair of clusters that obtains tleimum score
in the window. Then we do a dynamic programing frthva
Starting point to this maximum point in the windoifter the
dynamic programing step is finished, we move tratisig
point to the last maximum point. Fig. 6 illustrates example
of our local window search space. As a result, bl
window search greatly improves the quality of tkerss and
reduces the computation time, as will be demorestrat the
experiment section.



Figure 6. Local search space in the table. The gray areastelécal
windows. The black areas denote the maximum sumde in each local
window. The starting point of a new local windownigved to the previous
maximum score node. The dashed rectangles aredhs @here we perform
dynamic programing.
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I1l.  EXPERIMENTS ANDRESULTS

We test our approach on HOMSTRAD [11] database
which contains more than 300,00@nnotated protein
sequences. This database classifies their prodgmesces into
1032 families based on their structure alignments.separate
this database into training and test set. For e&tte sequence
in the test set, we search the training set totfiedmost similar
sequence based on our alignment scores. If theskgsience
we discover is in the same family as the test serpiewe
denote it as a correct answer. In our experimeet, sets
include one random sequence from each of the prédeily,
resulting in a total of 1032 sequences. The trgisiet sizes are 7l
varied from 3448 sequences to the entire HOMSTRAd
database of 336827 sequences. Note that bothnigaamid test
data are distinct, where no sequences in the &stverlaps
with those in the training set. We compare our sifasition
accuracy with the previous method [9]; results sinewn in
Table 1.
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TABLE I. EXPERIMNETAL RESULT [10]
Training size Testing size Method Accuracy
Our aprroach 93.50% 1]
3448 1032 Previous approach[9 91.47%
Our aprroach 95.05%
44813 1032 Previous approach[9 94.38%
Our aprroach 95.93%
86678 1032 Previous approach[9 95.15%
Our aprroach 97.18%
187991 1032 Previous approach[9 96.32%
Our aprroach 98.64%
336827 1032 Previous approach[9 97.09%

From the results, our proposed method reports highe
classification accuracy based on protein’s secgndaucture
and its homology. Our running time is also sigmifidy

improved. However, we decide not to report the ramning

time here since it would be unfair to the previapproach as
they are implemented under different platforms. Eoer, a
simple analysis of our algorithm theoretically domf that our
newly proposed approach will reduce the time coripgldy a

large margin, especially in massive databases.

IV. CONCLUSION
In this work, we propose an

reducéiche
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improved automatic
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