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Abstract—Current techniques in protein homology testing 
involve a 1-dimensional alignment of Nucleotide or Amino acid 
sequencing. Due to its various constraints and low sequence 
identity values, a 2-Dimensional Hydrophobic Cluster Alignment 
has increasingly been used to predict the structure and 
functionality of protein.  This work proposed an algorithm based 
on a secondary-structure Hydrophobic Cluster Alignment to 
compute a similarity score of protein sequences automatically, 
which helps reduce interventions of a human expert for a manual 
alignment. Additional techniques are introduced to speed up the 
calculation, as well as to resolve some greedy-based alignment 
limitation in the previous work. The alignment results and the 
classification accuracies from the well-known HOMSTRAD 
database have demonstrated an improvement in both accuracy 
and the computation time.   
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I.  INTRODUCTION 

As biological data have grown tremendously in the past 
decade, they provide an avenue of researches in analyzing and 
extracting useful knowledge that give us better understanding 
of the rules of nature. Genome projects are parts of the largest 
resources of life science data, which mainly include nucleotide 
and amino acid sequences. However, effective retrieval of 
these data is still a great challenge. More specifically, we need 
a high-quality tool to determine protein homology via sequence 
alignment. Detection of protein homology has become a large 
research field in bioinformatics.  Several crucial analyzed 
protein databases, such as UniProt [1], PDB [2], SCOP [3], and 
PFam [4] have been created. These databases contain useful 
knowledge, e.g., protein homology, structure, or functionalities. 
By detecting protein similarity, the newly discovered protein 
sequences can be used to predict their functionalities from the 
known information in the database. 

Early methods, such as Maximum Matching, Basic 
Alignment Search Tool (BLAST) [5], and FASTA [6], 
measure protein homology from protein’s primary structure 
information. These methods still have major limitations and 
drawbacks; they are unable to provide a proof of sequence 

homology if the sequence identity appears to be too low, a 
situation that typically occurs in proteins of the same 
functionality, but belong to organism from different species.  

The similarity can generally be measured from an 
alignment of either nucleotide sequences or amino acid 
sequences. However, nucleotide sequence similarity is not 
suitable for protein function discovery; amino acid sequences 
are typically exploited instead since they contain much more 
information, such as hydrophobic and hydrophilic properties. 
Unfortunately, the current one-dimensional alignment tools 
mentioned earlier all have some limitation that yields poor 
alignment results. Therefore, higher level structures (Secondary 
(2-dimensional), Tertiary (3-dimensional), and Quaternary (4-
dimensional)) have been increasingly put into consideration. 
Functionality of a protein is generally based on its 3-
Dimensional structure. Some researchers have attempted to 
predict this protein structure by amino sequence folding based 
on each amino acid property, but this approach turns out to be 
unfeasible in practice that extremely high computational power 
is needed.  

Instead, our proposed method is based on the idea of a 2-
Dimensional structure, Hydrophobic Cluster Analysis (HCA). 
Hydrophobicity property is the key in protein folding. The 
reason is that as protein creating and folding occur in water, 
they try to preserve the structure by compacting and turning 
their hydrophobic part inside and resting the hydrophilic part 
outside for an easy access to water.  Hydrophobic Cluster 
Analysis (HCA) approach has been developed from this belief. 
HCA approach visualizes amino acid sequence as a 2-D helical 
pattern. In a Hydrophobic Cluster Analysis, amino acid 
sequences are laid into a 2-D helical pattern by twisting the 
protein into a smoothed helix, where each twist will contain 3.6 
amino acids [7]. Then, this cylinder is cut lengthwise and 
spread into a 2-Dimensional plane, and the hydrophobic amino 
acid will be highlighted and grouped together [8], as shown in 
Fig. 1. This representation is then used in protein alignment. 
However the actual hydrophobic cluster alignment requires a 
human expert to perform the alignment manually. 



 

 

Figure 1.  Two-dimensioanal representation of the amino acid sequence using HCA method. 

An earlier work of Automatic 2-D Hydrophobic Cluster 
Alignment [9] introduced the new representation of amino acid 
sequences and used dynamic programming approach to 
measure their similarity. The homologous proteins with the 
same functionalities will have a high sequence identity score 
and others with different functionalities will have a low 
sequence score.  

In more detail, the algorithm in [9] is based on a dynamic 
programming approach. Every cluster block from the test 
sequence will be compared with all cluster blocks from another 
sequence to discover the best alignment and score. First, a 
matrix as large as the number of cluster blocks in each 
sequence is created. Then each cell in the matrix is filled 
accordingly, starting from the first pair to the last pair. To 
determine a cumulative value in each current cell, the 
maximum score of the three neighboring cells (Top, Left, and 
Diagonal) is added to the current cell’s alignment score. This 
cell’s alignment score reflects the best alignment score by 
shifting residues one-by-one from left to right and updating the 
remaining residues in the matrix that will be used later. After 
the score of the last pair is calculated, the best score of the 
alignment is obtained. The actual alignment can be constructed 
by tracing the path back to the first alignment pair. Even 
though this approach achieves good accuracy improvement 
over the one-dimensional alignment approaches, its alignment 
is still not optimal and its computational complexity can be 
much improved. 

Therefore, this work proposes an extension of the previous 
technique in [9].  We revise the representation of the amino 
acid sequence and improve the dynamic programming 
algorithm. The goal is to offer a better accuracy alignment 
score and improve the efficiency of the computation.   

II. PROPOSED METHOD 

A. New representation 

We improve the representation proposed in [9], whose 
amino acids are simply transformed into binary symbols; “1” 
represents hydrophobic amino acid and “0” represent 
hydrophilic amino acid. As a result, the information regarding 
different hydrophobic amino acids is lost. Instead, our 
representation replaces only hydrophilic amino acid into “0” 
since it has no role during the alignment, and keeps the orginal 
representation of all 7 types of the hydrophobic amino acids 
(Valine (V), Isoleucine (I), Leucine (L), Phenylalanine (F), 
Tryptophan (W), Methionine (M), and Tyrosine (Y)). 
Preserving this hydrophobic information enables our approach 
to achieve a more accurate score since we can assign different 
scoring to different types of hydrophobic amino acids. Our 
substitution matrix is extended from BLOSUM62 [10]. 
Specifically, we use only the scores of hydrophobic amino acid 
pairs and the hydrophilic amino acid is substituted with the 
average score of the hydrophobic amino acids,  as shown in 
Fig. 2. 

 

 

Figure 2.  The substitution matrix for hydrophobic cluster alignment.  

 



To extract an amino acid sequence into an individual 
hydrophobic cluster, we follow the previously proposed 
method whose streak of five “0”s or more in the sequence, as 
well as the Proline amino acid symbol (“P”), indicate the end 
of the cluster. Now our amino acid sequences are transformed 
into cluster blocks and are ready to be used in our alignment 
algorithm. Fig. 3 shows our new representation. 

 

 

Figure 3.  Our proposed representation. 
(a) Original sequence. (b) Hydrophilic replaced. (c) Break to cluster block.  

In order to recognize, identify, and understand features of 
cluster blocks easily, we use the visualization tool in [9]. An 
example visualization of the 2-D clusters in our representation 
is shown in Fig. 4.  

 

 

Figure 4.  A Visualization corresponded to our representation 

B. Cluster Alignment Algorithm 

In this work, our cluster alignment algorithm also uses a 
dynamic programming approach and is based on the 2-
dimensional string matching technique similar to that in [9]. 
However, we include additional techniques as follows to 
increase accuracy and to reduce computation cost. 

1) Score Dictionary Lookup: 
The computation time for an alignment of amino sequences 

or cluster blocks is spent mostly in score calculations of the 
sequence pairs. Generally, the scores will be calculated 
between the new query sequence and each of the sequences in 
a very large database. Calculating the score of the same 
sequence repeatedly clearly wastes a lot of computational 
resources. So, we introduce the score dictionary lookup 
technique to retrieve the already existed intermediate scores. 
After we calculate the score of each sequence pair, we add all 
possible sequences and their corresponding scores into a 
dictionary. Next time a pair of the sequences with the same 
substring in the dictionary, we simply lookup without the need 
of the score’s recalculation. Fig. 5 shows an example of some 
possible subsequence added to the dictionary. 

 
 
 
 

 
 

Figure 5.  Examples of some possible subsequences created and added to a 
dictionary 

a) Query Sequence. b) Possible subsequences add to the dictionary. 

 
2) Local Window Search: 
The approach in [9] scores all pairs of cluster blocks in 

each sequence and find the best score and its path from the 
entire table, which evidently requires extremely high 
computation complexity. Moreover their approch uses a greedy 
choice in the search, where each score depends on the 
remaining residue from the previous cluster used. This leads to 
confusion when each protien sequence have similar cluster 
blocks but their positions in the sequences are very different. 
The subsequent cluster will get a mismatch score caused by 
wrong remaining residue.  

Therefore, our work introduces a Local window search to 
reduce bias from a greedy choice and to create more efficient 
remaining residue. Before we perform a dynamic programming 
step, we find a pair of clusters that obtains the maximum score 
in the window. Then we do a dynamic programing from the 
starting point to this maximum point in the window. After the 
dynamic programing step is finished, we move the starting 
point to the last maximum point. Fig. 6 illustrates an example 
of our local window search space. As a result, this local 
window search greatly improves the quality of the scores and 
reduces the computation time, as will be demonstrated in the 
experiment section.  

 
 
 
 



 
Figure 6.  Local search space in the table. The gray areas denote local 

windows.  The black areas denote the maximum score node in each local 
window. The starting point of a new local window is moved to the previous 
maximum score node. The dashed rectangles are the areas where we perform 

dynamic programing. 

III.  EXPERIMENTS AND RESULTS 

We test our approach on HOMSTRAD [11] database, 
which contains more than 300,000 annotated protein 
sequences. This database classifies their protein sequences into 
1032 families based on their structure alignments. We separate 
this database into training and test set. For each of the sequence 
in the test set, we search the training set to find the most similar 
sequence based on our alignment scores. If the best sequence 
we discover is in the same family as the test sequence, we 
denote it as a correct answer. In our experiments, test sets 
include one random sequence from each of the protein family, 
resulting in a total of 1032 sequences. The training set sizes are 
varied from 3448 sequences to the entire HOMSTRAD 
database of 336827 sequences. Note that both training and test 
data are distinct, where no sequences in the test set overlaps 
with those in the training set. We compare our classification 
accuracy with the previous method [9]; results are shown in 
Table 1. 

TABLE I.  EXPERIMNETAL RESULT 

Training size Testing size Method Accuracy 

3448 1032 Our aprroach 
Previous approach[9] 

93.50% 
91.47% 

44813 1032 Our aprroach 
Previous approach[9] 

95.05% 
94.38% 

86678 1032 Our aprroach 
Previous approach[9] 

95.93% 
95.15% 

187991 1032 Our aprroach 
Previous approach[9] 

97.18% 
96.32% 

336827 1032 Our aprroach 
Previous approach[9] 

98.64% 
97.09% 

From the results, our proposed method reports higher 
classification accuracy based on protein’s secondary structure 
and its homology. Our running time is also significantly 
improved. However, we decide not to report the raw running 
time here since it would be unfair to the previous approach as 
they are implemented under different platforms. However, a 
simple analysis of our algorithm theoretically confirms that our 
newly proposed approach will reduce the time complexity by a 
large margin, especially in massive databases.   

IV.  CONCLUSION 

In this work, we propose an improved automatic                
2-Dimensional Hydrophobic Cluster Alignment algorithm that 
yields higher classification accuracy with reduced time 
complexity. As a result, our proposed technique could facilitate 
and unveil a new opportunity of research in protein’s 
homology, its functionality, and numerous Bioinformatics 
applications. 
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