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A B S T R A C T

The real options technique has emerged as an evaluation tool for investment under uncertainty. It

explicitly recognizes future decisions, and the exercise strategy is based on the optimal decisions in

future periods. This paper employs the optimal stopping policy derived from real options approach to

analyze and evaluate genetic algorithms, specifically for the new branches namely Estimation of

Distribution Algorithms (EDAs). As an example, we focus on their simple class called univariate EDAs,

which include the population-based incremental learning (PBIL), the univariate marginal distribution

algorithm (UMDA), and the compact genetic algorithm (cGA). Although these algorithms are classified in

the same class, the characteristics of their optimal stopping policy are different. These observations are

useful in answering the question ‘‘which algorithm is suitable for a particular problem’’. The results from

the simulations indicate that the option values can be used as a quantitative measurement for comparing

algorithms.
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1. Introduction

The real options approach has been applied to many economic
and financial problems. It helps investors evaluate investment risk
and guides them when to take an opportunity. Its advantages in
managerial flexibility have been widely recognized in the
literature. The novelty of this work lies in applying real options
to a computational problem, namely to analyze an optimal
stopping policy of the evolutionary algorithms.

Evolutionary algorithms are becoming a common technique to
solve difficult real-world problems. In spite of many useful
practical applications, there are little knowledge about their
behavior. Many approaches have been presented in order to
understand how evolutionary algorithms work. The analysis is
usually based on Markov chain model [34]. Time complexity has
been studied [16,22] and the first hitting time are derived [23,24].
The results lead to the question of what kinds of problems are easy
or hard for the evolutionary algorithms. Various techniques have
been proposed to measure their difficulties, such as epistasis
variance [12], fitness distance correlation [26,38], NK landscapes
[28], fitness distribution [9] and information landscape [8].
Unfortunately, these predictive measures still have a problem in
reliability, which are reported in [1,27,39,43]. The comparison
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results from the study of Naudts and Kallel [32] show that the
values of the measures can be completely unreliable. A few years
later, He et al. [21] show rigorous proof that finding a general
difficulty measure is impossible.

The problem of GA-easy and GA-hard is closely related to the
stopping problem. The first hitting time analysis [24] yields an
important insight in more understanding what makes a problem
hard for an evolutionary algorithm. The two conditions that lead
evolutionary algorithms to an exponential time are presented to
characterize what problems are hard. Similarly, the stopping time
analysis gives bounds on running an evolutionary algorithm. Aytug
and Koehler [4,5] estimated an upper bound of the number of
iterations required to achieve a level of confidence to guarantee
that a simple genetic algorithm converges. However, characteriz-
ing the hard problem is not mentioned in the paper. A critical
review of the state-of-the-art in the design of termination
conditions can be found in Safe et al. [44].

Theoretical bounds on running an evolutionary algorithm give
us a large picture of the ability to solve a problem. In practice,
evolutionary algorithms may stop early or they may not have
enough computational effort to achieve it. We typically accept a
good result with a given effort. With limited resources, the
efficiency of computation is essential. Using the real options
technique, it facilitates analyzing an optimal stopping time using
an economic approach. The analysis offers us two things: a
stopping criterion based on the bound of fitness value in each
generation and a quantitative value indicates the efficiency of the
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algorithm under investigation. In a complex algorithm, which is
hard to analyze analytically, this approach gives us a method to
investigate its behavior in searching for a solution. We propose the
real options technique as a tool to evaluate algorithms by
analyzing an optimal stopping time. It focuses on a computational
approach rather than the theoretical analysis. In computational
approach, the algorithm is run several times and its profile is
collected. From these data, the benefit of an algorithm can be
calculated. It takes a computational cost, time and the possibility to
find a solution into account. The obtained value can be used to
compare different evolutionary algorithms for their efficiency.

The optimal stopping problem is an important class of a
stochastic control problem that arises in economics and finance,
such as finding optimal exercise rules for financial options.
Fortunately, there are similarities in the problem of finding an
optimal stopping time in genetic algorithms and finding optimal
exercise rules for financial options. The concept behind this
technique is that finding an optimal stopping time of the algorithm
can be viewed as deciding when to exercise a call option. Note that
a call option is the right to buy an asset at a certain price. In this
case, exercising a call option is analogous to stopping an algorithm,
or buying an asset, same as quitting an algorithm, ignores all future
possibilities. To explore this approach, Rimcharoen et al. [42]
proposed finding an optimal stopping time in the compact genetic
algorithm. Using the compact genetic algorithm, a special class of
genetic algorithms, the underlying uncertainty can be viewed as a
probability distribution. This distribution automatically captures
the underlying uncertainty of the problem, which can be simulated
to obtain an evolutionary process of the algorithm. This forms a
basis in using the real options valuation in order to determine
when it is worth stopping the algorithm. The extensions of this
work which improved solution’s quality on the deceptive problem
were published in [40,41].

In this paper, the analysis and evaluation of univariate EDAs are
presented as an example. They include the population-based
incremental learning (PBIL) [6], the univariate marginal distribu-
tion algorithm (UMDA) [30], and the compact genetic algorithm
(cGA) [19]. The different behaviors among these algorithms are
also discussed. Although they belong to the same class, they have
their own characteristic in searching for solution, which can be
specified by their optimal stopping policies.

2. Estimation of distribution algorithm

Genetic algorithms (GAs) have been developed by Holland [25],
who was motivated to study the behavior of complex and adaptive
systems. The genetic algorithms, the branches of evolutionary
computation, are based upon the principle of natural evolution and
the principle of survival of the fittest. Evolutionary computation
techniques abstract these evolutionary principles into algorithms.
In an evolutionary algorithm, a representation scheme is chosen by
a researcher to define a set of solutions which form the search
space for the algorithm. The representation of genetic algorithm is
a fixed-length bit string. A number of candidate solutions are
created and evaluated using a fitness function that is specific to the
problem being solved. A number of solutions are chosen using their
fitness values to be parents for creating new individuals or
offspring to form a new population of the next generation.

Goldberg [17] introduced a simple genetic algorithm (sGA),
which is a simple binary coding using two genetic operators:
mutation and one-point crossover. A selection operator is applied
to the population and the appropriate solutions will survive. There
have been numerous extensions and modifications of the simple
genetic algorithm thus far.

Recently, the probabilistic model-building genetic algorithms
(PMBGAs) or the estimation of distribution algorithms (EDAs) have
been proposed. These models generalize genetic algorithms by
replacing the crossover and mutation operators with the prob-
ability model estimation. The probability distribution of the
solutions is estimated by adjusting the model according to the
good solutions. New solutions are generated from the constructed
model. The simplest way to design the distribution of promising
solutions is to assume that the variables are independent, which is
called univariate EDAs. These models include the PBIL, the UMDA,
and the cGA.

The population-based incremental learning was introduced by
Baluja [6]. It uses a probability vector to represent its population.
At each generation, using the probability vector, M individuals are
obtained. Each of these M individuals is evaluated and the N best of
them are selected to update the probability vector. The pseudo
code of the PBIL is shown below. The parameter is the learning rate
(a) where a 2 (0, 1], and xk is a value of each position in the bit
string (0 or 1).

1. Initialize probability vector (p) with 0.5 at each position.
2. Generate M individuals from the vector.
3. Select N best individuals, where N �M.
4. Update the probability vector p.

for i = 1 to l do

pi ¼ ð1� aÞpi þ a
1

N

XN

k¼1

xk

5. Go to step 2 until a termination criterion is met.

The univariate marginal distribution algorithm was proposed
by Mühlenbein and Paaß [30]. It maintains a population and
creates a new population based on the frequency of each gene. The
pseudo code of UMDA is shown below.

1. Randomly generate M individuals.
2. Select N individuals according to a selection method, where

N �M.
3. Estimate univariate marginal probabilities (pi) for each xk.

for i = 1 to l do

pi ¼
1

N

XN

k¼1

xk

4. Go to step 2 until a termination criterion is met.

Another type of this class, the cGA, was proposed by Harik et al.
[19]. It represents the population as a probability distribution over
the set of solutions. In each generation, the compact genetic
algorithm samples individuals according to the probabilities
specified in the probability vector. The individuals are evaluated
and the probability vector is updated towards the better
individual. The compact genetic algorithm has an advantage of
using a small amount of memory and achieving comparable
quality with approximately the same number of fitness evalua-
tions as the simple genetic algorithm. The pseudo code of the cGA
is shown below. The parameters are the updating step size (n) and
chromosome length (l). Notice that the parameter n is related to
the population size in the simple genetic algorithm. The detail is
provided in the original paper [19].

1. Initialize probability vector (p).
for i :¼ 1 to l do p[i] :¼ 0.5;

2. Generate two individuals from the vector.
a :¼ generate (p);
b :¼ generate (p);

3. Let them compete.
winner, loser :¼ compete(a, b);
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4. Update the probability vector towards the better one.

5. Check if the vector has converged.

Harik et al. also proposed a modification of cGA that used larger
population. A tournament selection, which is one of many selection
methods in GA, is used in this modification. A few individuals are
chosen at random from the population and compete, after which
only the winner survives. It allows the algorithm to simulate
higher selection pressure, which adds an intensity of a selection
mechanism. Selection pressure can be easily adjusted by changing
the tournament size, i.e. the number of individuals chosen to
compete. The larger the tournament size, the smaller chance weak
individuals have to survive.

For the modified cGA, if we would like to simulate a tournament
of size s, steps 2–4 of the above cGA’s pseudo code would be
replaced by the following procedures.

1. Generate s individuals from the vector and store them in S.

2. Rearrange S so that S[1] is the individual with higher fitness, and
let S[1] compete with the other individuals.

3. Real options approach

Real options approach is a financial concept that applies a
financial option theory to investments in real assets (as opposed to
financial assets that are traded in the market). A financial option is
the right, but not an obligation, to buy or sell an asset. An option that
gives the holder the right to purchase an asset at a specified price is a
call option, while an option that gives the holder the right to sell an
asset at a specified price is a put option. The financial options are
useful for managing risks in the financial world. For example, a call
option limits possible loss by paying an upfront premium to have
this right, and it opens the possibility to unlimited gains. Black and
Scholes [7] and Merton [29] have inspired the rapid development in
financial option pricing. For example, the two widely used methods
for pricing financial options are the binomial lattice [11] and the
Black–Scholes formula [7].

The financial option concept was extended to real assets when
Myers [31] identified the fact that many corporate real assets can
be viewed as call options. The real options approach addresses an
investment decision problem by analyzing not only the expected
net present value (NPV), but also considering the value of an option
to wait, expand, abandon, etc.

One of the techniques to find an option value is a dynamic
programming method. The idea of dynamic programming is to
split a whole sequence of decisions into two parts: the immediate
choice and the remaining decisions. The detailed technique is
described in Dixit and Pindyck [13].

The value Ft(xt) is the expected NPV when the firm makes all the
decisions optimally from this point onwards. The value function
called Bellman equation or the fundamental of optimality is shown
in Eq. (1).

FtðxtÞ ¼max
ut

ptðxt;utÞ þ
1

1þ r
et½Ftþ1ðxtþ1Þ�

� �
(1)

At each period t, choices available to the firm are represented by
the control variable(s) ut. The value ut must be chosen using only
the information available at the time t, namely xt. When the firm
chooses the control variables ut, it gets an immediate profit flow
pt(xt, ut). The discount factor between any two periods is 1/(1 + r),
where r is the discount rate. The term et[Ft+1(xt+1)] is the expected
value from time t + 1 on called a continuation value.

An optimal stopping time is found by selecting the maximum
value between the termination payoff V(x) and the continuation
value. The Bellman equation becomes

FðxÞ ¼ max VðxÞ;pðxÞ þ 1

1þ r
e½Fðx0Þjx�

� �
: (2)

From Eq. (2), there is a payoff value as a function of x achieved
by termination and a payoff value as a function of x achieved
through continuation. The x values that produce the boundary
payoff values, where termination is optimal on one side and
continuation is on the other, form an exercise region. This also
provides a guideline for making decision optimally called an
exercise policy.

4. Proposed option-based methodology

We employ the real options approach to determine when to
stop running a genetic algorithm, which is analogous to deciding
when to exercise a call option. In each generation, the algorithm
can stop or continue running. If the algorithm decides to stop, the
payoff from stopping is obtained. If the algorithm decides to
continue, further computation may add the value, while it must
incur a computational cost. To determine when to terminate, the
algorithm needs to know the probability distribution of the fitness
value (underlying uncertainty) and the payoff model (value
function of option). At every generation, we compute the expected
payoff from stopping and continuing using the underlying
uncertainty and the value function of option. The algorithm
should continue if the expected payoff from continuing is higher
than that of stopping. The stop or continue decision is solved
starting from the last time step and working backward to the first
generation, as in dynamic programming.

The methodology of finding an optimal stopping time in genetic
algorithm described above can be summarized in the following
process.

4.1. Modeling underlying uncertainty

In this step, we need to know the movement of fitness values in
each generation. We can obtain this distribution by running the
genetic algorithms many times. For example, suppose the average
fitness value in the first generation is 5.0. Assume that the fitness
value increases to 7.0 in the first run and falls to 4.0 in the second
run. The fitness movement of these two runs can be shown in Fig. 1.
From this example, it means that the fitness value in the second
generation is 7.0 with probability 0.5 and 4.0 with probability 0.5.

By running the genetic algorithms many times, we have fitness
values in each generation (time step). We accumulate the possible
changes of fitness values in each generation over many runs and
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then calculate the probability of all possible values in each state.
For example, running the compact genetic algorithm with a 5 � 3-
Trap problem, the possible average values are 0.0, 0.5, 1.0, . . ., 14.0,
14.5, and 15.0. Fig. 2 shows the lattice of all possible values along
with their associated transitional probability. Note that in other
algorithms and problems we can discretize these values into an
appropriate interval as well.

4.2. Defining the value function of option

In this step, we formulate a function that indicates value of a
solution in each generation. The termination payoff and the
computational cost is defined specific to the problem.

Let V(x) denote the termination payoff. The termination payoff
is shown in (3)

VðxÞ ¼ gðxÞ (3)

where g(x) is the fitness value of x. The profit term p(x) can be
discarded because the genetic algorithm does not produce any
immediate profit flow. The solution value is obtained from the
fitness value at the time the algorithm terminates. Therefore, the
optimal stopping equation becomes

FðxÞ ¼max gðxÞ; 1

1þ r
e½Fðx0Þjx�

� �
: (4)

Note that we also assume the discount factor to be zero because
in each state the genetic algorithm takes a few milliseconds to run.
In this case, the optimal stopping equation becomes quite simple
as shown in Eq. (5).

FðxÞ ¼maxfgðxÞ; e½Fðx0Þjx�g (5)

The first term of the maximization is the value if the algorithm
stops now; thus, we receive the outcome that is the value of the
current fitness value. The second term is the value if the algorithm
continues. We choose the maximum of the two, as a policy to stop
or continue the algorithm, when we reach x.
Fig. 2. Lattice of a 5 � 3-Trap problem.
4.3. Calculating the option value according to the value function of

option

Using the probability distribution of the fitness value in step 1
and the value function of option in step 2, we can calculate the
option value in each generation by working backward from the last
time step. The option value of the above example is shown in Fig. 3.

Given that the termination payoffs in the last time step are 7
and 4, we work backward one time step. In this generation, the
termination payoff is 5 for the fitness value of 5.0 whereas the
continuation value is 5.5. Therefore, the algorithm should continue
because the continuation value is greater than the termination
value.

4.4. Summarizing an option value and an exercise policy

From step 3, we obtain the maximum values that may arise
from stopping or continuing the algorithm. The underlying values,
where the termination is optimal on one side and continuation is
on the other, produce the boundary which forms the exercise
region.

The option value of this algorithm is an option value at the first
generation. From the example in Fig. 3, the option value is 5.5.

5. Experimental setting

We will explore the behaviors of cGA, PBIL and UMDA on these
five test problems: 30-bit OneMax, 3-Trap � 10, 5-Trap � 6, 27-bit
HTrap and 32-bit HIFF. These benchmark problems have been
widely used for evaluating the performance of GAs [2,3,35,36,46].
They are also used in the analysis of algorithm and problems
[10,15,33] because they are good representatives of easy and hard
problems for GAs. For the OneMax problem, it is almost always a
starting point for empirical verification. If an equation fails in such
an uncomplicated setting, it is not likely to perform well in a more
complex situation. For a variety of deceptive problems, they are
difficult test functions that are used to test performance of
algorithms. If an algorithm performs well in these benchmark
problems, it is more likely to perform well in more complex setting.
For example, there is an algorithm called hierarchical Bayesian
optimization algorithm (hBOA) [37] that can efficiently solve the
hierarchically decomposable functions such as HTrap, and it can be
applied to solve real-world problems such as ising spin glasses1

and MAXSAT2 as well [20]. The definitions of those benchmark
problems are as follows.

5.1. OneMax problem

OneMax problem is a well-known simple test problem for GA.
The problem is to find a maximum value which occurs when all bits
1 Ising spin glasses problem is a problem of statistical physics to find the value for

each pair, formed in 2D or 3D that minimizes the energy.
2 MAXSAT is a problem to find maximum satisfiability of predicate calculus

formulas in conjunctive normal form.



Fig. 4. An example of calculating fitness value of HTrap problem.
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are one. The fitness value is assigned according to the number of
bits that are one in the chromosome. Thus, the maximum value is
equal to the chromosome length. Formally, this problem can be
described as finding a string x

*
¼ fx1; x2; . . . ; xNg, with xi 2 (0,1), that

maximizes the following equation:

Fðx
*
Þ ¼

XN

i¼1

xi (6)

5.2. Trap problem

The trap function [18] is a difficult test problem for GA. The
general k-bit trap function is defined as

Fkðb0 . . . bk�1Þ ¼
f high; if u ¼ k

f low � u
f low

k� 1
; otherwise

8<
: (7)

where bi 2 {0,1}, u ¼
Pk�1

i¼0 bi, and fhigh > flow. Usually, fhigh is set at k

and flow is set at k � 1. The test function Fk�m is defined as

Fk�mðB0 . . . Bm�1Þ ¼
Xm�1

i¼0

FkðBiÞ; Bi 2f0;1gk (8)

This function fools gradient-based optimizers to favor zeroes,
but the optimal solution is composed of all ones. The k and m may
vary to produce a number of test functions.

5.3. HTrap problem

The HTrap function [36] is a kind of hierarchically decom-
posable functions, which are defined on multiple levels where the
input to each level is based on the solutions found on lower levels.
The HTrap function represents a solution as a tree. An example is
shown in Fig. 4. The solution is a 9-bit string placed at the leaf
nodes. Triple zeroes are interpreted as zero in the higher level, and
triple ones are interpreted as one. Otherwise, the interpretation is
‘‘�’’. The contribution of node i is ci which can be calculated from
the following equation:

ci ¼ 3h F3ðb0b1b2Þ; if b j 6¼ ‘‘� ’’ for all 0 � j � 2
0; otherwise

�
(9)

where h is the height of node i, and b0, b1, and b2 are the
interpretations in the left, middle, and right of child node of node i.
Fig. 5. An example of calculating fi
At the root node, the contribution is given by a 3-Trap
function with parameters fhigh = 1 and flow = 0.9 multiplied by 3h.
The other nodes use fhigh = 1 and flow = 1. Fig. 4 shows the
calculation of fitness value. The HTrap function returnsP

ci = 13.05.

5.4. HIFF problem

The HIFF function [45] is also a kind of hierarchically
decomposable functions. A solution is interpreted as a binary
tree. An example is shown in Fig. 5. The sample solution is an 8-bit
string ‘‘00001101’’ placed at the leaf nodes of the binary tree. The
leaf nodes force the higher levels of the tree. A pair of zeroes and a
pair of ones are interpreted as zero and one in the higher level,
respectively. Otherwise, the interpretation result is ‘‘�.’’ The HIFF
function returns the sum of values calculated from each node. The
value of node i is ci which can be calculated from the following
equation:

ci ¼ 2h; if node i is ‘‘0’’ or ‘‘1’’
0; if node i is ‘‘� ’’

�
(10)

where h is the height of node i. In the following example, the fitness
of ‘‘00001101’’ is

P
ci = 18. The HIFF functions do not bias an

optimizer to favor zeroes rather than ones or vice versa. There are
two optimal solutions: the string composed of all zeroes and the
string composed of all ones.

The following experiments use these problems as test
functions for comparing the behaviors among the univariate
EDAs. The numerical results are averaged over 100 runs. In the
experiments, we simulate the univariate EDAs with minimum
tness value of HIFF problem.



Fig. 6. Exercise regions from simulating cGA and PBIL with minimum population size. The left column shows the results from simulating the cGA and the right column is the

results from simulating the PBIL. The curves are plotted using an average value of 100 runs. The standard deviations are shown in gray color.
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population size in order to study behaviors of algorithm in the
simplest setting. The results are presented in Section 6. The
behaviors when using larger population size are also provided in
Section 7.
6. Univariate EDAs with minimum population

Experimenting with minimum population helps us understand
the basic behavior of algorithms. The original cGA employs



Table 1
Option values from simulating cGA and PBIL with minimum population size.

Problems Algorithms

cGA PBIL

Option value (f) Difficulty index (f/F) Option value (f) Difficulty index (f/F)

30-bit OneMax (F = 30) 30.00 1.00 30.00 1.00

3-Trap � 10 (F = 30) 27.00 0.90 26.53 0.88

5-Trap � 6 (F = 30) 24.03 0.80 24.70 0.82

27-bit HTrap (F = 81) 77.74 0.96 61.53 0.76

32-bit HIFF (F = 192) 138.34 0.72 126.01 0.66
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population of size two. Therefore, in order to compare with cGA,
we also run PBIL with population of two, while UMDA is ignored in
this experiment because it requires large population to estimate
the distribution. The comparison among these three algorithms
will be provided in the next section with large population.

In all experiments, the learning rate (a) in PBIL is set as 0.05, and
the updating step size in cGA is 0.02. Fig. 6 shows the exercise
policies of those algorithms on various test functions. Option
values of the algorithms are summarized in Table 1.

In Fig. 6, the left column shows exercise regions of the cGA,
while the right column shows those of the PBIL. Each column
shows the results from OneMax, 3-Trap, 5-Trap, HTrap and HIFF
problems, respectively.

As shown in Fig. 6, there are two lines in each graph. The line
shown in the upper position is called the upper threshold while the
lower line is the lower threshold. These lines form exercise regions.
An optimal decision is determined by these exercise regions. The
exercise regions are divided into three areas. The areas above the
upper threshold and under the lower threshold are called the
stopping region, while the area between the upper and lower
threshold is called the continuation region.

The algorithm should stop the search when the fitness value
rises above the upper threshold because the fitness value is already
high. If the fitness value is lower than the lower threshold, the
algorithm should also stop because with the current population, it
is unlikely to achieve a better result.

Note that the exercise regions of the cGA and PBIL on the
OneMax problem are quite similar, and the option values of these
algorithms are equal. Both of them can achieve the global
optimum. However, the continuation region of the PBIL is bigger
than that of the cGA during the last part of evolution. It means that
the PBIL allow more lower fit candidates to continue evolving
when compared to the cGA.

From Fig. 6, in the graphs of OneMax, 3-Trap and 5-Trap
problems (their fitness values are in the same range [0,30]), the
exercise regions suggest that, at the beginning, the OneMax
problem requires a higher solution quality for stopping than the
trap problems. This is because good solutions abound in the
OneMax problem. On the other hand, good solutions in the trap
problems are rare. The OneMax problem has a large area of lower
stopping region than the trap problem. This denotes that for a
relatively easy problem, if the population cannot improve its
quality fast enough, the algorithm should not continue.

From the upper thresholds of all algorithms, there are two main
characteristics of the exercise policies. In the OneMax problem
which known as an easy problem, the upper threshold is gradually
improving, and when it reaches the upper bound, it remains stable.
This behavior is different from the other test problems, which have
local optima. The exercise regions of those problems have some
ripples in the upper thresholds. These fluctuations in the upper
threshold reveal an uncertainty in finding a good solution in hard
problems. He and Yao [24] presented that one of the conditions
that makes a problem hard for evolutionary algorithms is a ‘‘wide
gap’’—a situation when the probability to move to higher fitness
value is very small. The fluctuations in the upper threshold of hard
problems confirm this behavior. They occur when an algorithm is
deceived into a local optimum; therefore, there is little chance in
finding the global optimal solution.

The continuation regions of the PBIL show that this algorithm
allows lower fit candidates to evolve even to later generations.
These promising areas are larger than those of the cGA, whose
upper and lower thresholds quickly join together. When the upper
and lower thresholds join together before the optimal solution is
reached, the algorithm decides to stop because the current fitness
value exceeds the expected fitness value of continuing.

Table 1 shows the option values and the difficulty level of
running the cGA and the PBIL on various problems. The results
show that almost all problems solved by the cGA have higher
values than the PBIL, except in the 5-Trap problem. The graphs of 5-
Trap problem in the third row of Fig. 6 show that the upper bound
of the PBIL reaches higher fitness value than that of the cGA. This
better result may arise from the fact that the PBIL allow more
candidates to continue, so they may get a better solution
eventually. The algorithm that has a higher option value is better
than the algorithms with lower values. This is because the option
value is the expected fitness values based on optimal decision-
making.

To determine the difficulty of the problems, the ratio of the
option value, which is the expected fitness value, to the optimal
solution is proposed as a measure, called the difficulty index. Note
that when the optimal value is unknown, this ratio can be
calculated using the best known value instead.

Specifically, let fi and fj be option values of the same algorithm
running on the problem i and j, respectively, and Fi and Fj be their
optimal values (or the best known value). The difficulty index of
solving problem i using a particular algorithm is fi/Fi. We say that
the problem i is easier to solve than the problem j, if (fi/Fi) > (fj/Fj).

By considering the values of f/F, both cGA and PBIL perform well
in a OneMax problem. They have a ratio of 1, which means that
they can reach the global optimum. The HIFF problem is the
hardest benchmark for both of them because they have the
smallest ratio, which means the solutions are far from the best
value. For the trap problems, it is obvious that 3-Trap is easier than
5-Trap.

It is interesting that the cGA is better in solving the HTrap
problem (difficulty index = 0.96) than solving the trap problems
(difficulty index = 0.90 and 0.80) while the PBIL is opposite
(HTrap’s difficulty index = 0.76, trap problems’ difficulty
index = 0.88 and 0.82). The reason comes from differences in
updating method of both algorithms. The cGA updates the vector
according to the winner bit by bit, while the PBIL updates using a
distribution of selected individuals. In the hierarchical problem,
the method of the cGA to update bit by bit is more suitable than the
method of PBIL because it considers a group of bits and assigns
fitness according to their relationships in each level. If we update
the vector according to the estimated distribution, like the PBIL, it



Fig. 7. Exercise regions from simulating cGA, PBIL and UMDA with larger population. The results from cGA, PBIL and UMDA are presented in the left, middle and right columns,

respectively. The curves are plotted using an average value of 100 runs. The standard deviations are shown in gray color.
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is more likely to guide every bit toward that distribution, so it loses
diversity. Note that, in this case where the population size is two,
only the best individual is used to estimate the distribution, the
vector is biased by this solution. The experiments using larger
population are provided in the next section.
7. Simulating with larger population

The behaviors of the univariate EDAs with large population are
provided in this section. We simulate cGA and PBIL with larger
population size in order to compare with UMDA, which is a



Table 2
Option values from simulating cGA, PBIL and UMDA with large population.

Problems Algorithms

cGA PBIL UMDA

Option value (f) Difficulty index (f/F) Option value (f) Difficulty index (f/F) Option value (f) Difficulty index (f/F)

30-bit OneMax (F = 30) 30.00 1.00 30.00 1.00 29.99 1.00

3-Trap � 10 (F = 30) 26.06 0.87 29.94 1.00 24.41 0.81

5-Trap � 6 (F = 30) 24.93 0.83 24.00 0.80 23.98 0.80

27-bit HTrap (F = 81) 45.19 0.56 76.27 0.94 51.44 0.64

32-bit HIFF (F = 192) 116.58 0.61 132.82 0.69 108.92 0.57

Table 3
Option values from simulating cGA, PBIL and UMDA with a discount rate of 5% and 10%.

Problems Algorithms

cGA PBIL UMDA

Discount 5% Discount 10% Discount 5% Discount 10% Discount 5% Discount 10%

30-bit OneMax 14.52 13.37 13.86 13.19 18.35 14.18

3-Trap � 10 9.63 8.87 9.13 8.65 10.93 8.65

5-Trap � 6 9.80 9.02 9.32 8.77 13.54 9.45

27-bit HTrap 11.70 10.73 11.00 10.48 23.40 12.09

32-bit HIFF 49.68 47.18 49.31 47.06 49.39 47.07
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population-based algorithm. The population size used in the
experiments is 50, and the tournament selection of size 8 is used.
The exercise policies are shown in Fig. 7, and the option values are
provided in Table 2.

With larger population size, the main characteristics of exercise
regions do not change. In an easy problem, OneMax, the exercise
thresholds are still gradually improving. Also, in harder problems,
there still exist some fluctuations in the upper thresholds.

From Fig. 7, it is obvious that the graphs of each algorithm have
an individual characteristic. In the cGA, the upper and lower
thresholds meet up during early generations of evolution. In the
PBIL, the thresholds seem to be parallel until the end. The exercise
region of the UMDA is quite similar to the cGA, but it converges
much faster. These characteristics can be an indicator of the type of
algorithm used.

For the option values shown in Table 2, the PBIL mostly achieves
higher values than other algorithms, and the UMDA seems to be
the worst. This is because the UMDA uses the whole selected
population to estimate the univariate marginal distribution that
causes it to converge too fast, which may not be good for deceptive-
type problems.

As proposed earlier, the difficulty index (f/F) is used to indicate
the difficulty of solving problems. From Table 2, it shows that the
hardest problem for the cGA in the experiments is the HTrap
problem, while the HIFF problem is the hardest benchmark for the
PBIL and the UMDA.

The HIFF problem is the hardest problem for the PBIL and the
UMDA because it has two optimal values: all zeroes and all ones. As
the two algorithms construct a model using marginal distribution
and the samples usually contain both one and zero in their
chromosomes, it is unlikely to achieve an all one or all zero bit
pattern. The cGA has more chance to escape this situation because
it updates the probability vector bit by bit according to the good
sampling. When using a larger population and higher selection
pressure, the HTrap problem becomes the hardest problem for the
cGA because it deceives the algorithm to fall into trap. More
selection pressure leads the cGA to quickly come close to the best
winner and loses diversity.

The insights from this study suggest that if we have limited
resources, for example, small population size, the cGA is a
promising method to solve the problem because it has the highest
option values among univariate EDAs when using small population
size. When we have more samples to construct the model, the PBIL
may be a good choice. It mostly provides the highest option values
when simulating with larger population.

Note that if time is a major constraint, the UMDA is a method
that converges fast. To account for the time value, we can set the
discount term in Eq. (4) in order to highlight the solutions that
quickly converge. In general, a discount rate is used to discount
future cash flows into the present value. We incorporate this factor
in the experiments in order to study the behaviors of algorithms
when time plays an important role in searching for a solution.

For experimental purposes, we set the discount rate to 5% and
10%. The results are shown in Table 3. The UMDA generally
provides higher option values than the other algorithms for both
5% and 10% discount rates, followed by cGA. This confirms that if
we want to get a solution quickly, the UMDA is a promising
technique.

8. Conclusions

This paper has proposed new optimal stopping policies for the
univariate EDAs using real options approach. The exercise policies
suggest the optimal stopping time of the algorithms, and their
option values are presented as a quantitative measurement for
evaluating algorithms. The option value is also useful in measuring
effectiveness of running a particular algorithm on the problem. The
higher option value shows higher fitness value that we can expect
from a particular algorithm.

The insights from the experimental analysis suggest that among
the three univariate EDAs, the cGA is a promising method for solving
a problem with small population, whereas the PBIL should be used
with large population. Moreover, when time plays an important role
in obtaining a solution, the UMDA offers a faster convergence.

The data from the experiments show the use of the real options
approach to analyze the variable independent EDAs. A different
stopping characteristic of each algorithm is presented. This
method can be applied to other algorithms. For more complex
models of EDAs, such as bivariate and multivariate, the stopping
behavior may be different, and requires further study. There are
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also non-classical EDAs such as the eigen decomposition EDA (ED-
EDA) [14]. Its procedure on tuning eigenvalue to influence the
evolution process is complicated. The optimal stopping time
analysis of these classical and non-classical EDAs is currently an
open problem. As we mentioned earlier, in the situation that
analytical method is hard, analyzing the optimal stopping time
using the real options approach is an alternative. It does not require
prior knowledge about algorithms and problems, and uses only the
fitness movement to analyze the optimal stopping time. Any
algorithms that have a fitness value in each time step can utilize
this technique, while the main evolution process remains
untouched.

The proposed method can be used as an analysis tool to
investigate the behavior of an algorithm. As a practical tool, it is
hard to accept a large number of runs required in collecting the
fitness data. As shown in the experiments, the optimal stopping
time and its policy are only obtained after performing many runs.
Future work will focus on incorporating this approach directly into
the evolutionary process so that there is no need to perform many
runs beforehand.

Nonetheless, the proposed method helps us understand the
behavior of genetic algorithms. From the experiments, the exercise
regions are the characteristics of the algorithm type. The option
value can also be used as a quantitative measurement for
comparing algorithms in terms of their effectiveness in solving
problems. The sensitivity analysis can be studied by adding costs
into Eq. (5). The analysis on discount rates can be performed as well
without requiring additional runs. We can use the obtained fitness-
movement profile and re-calculate option value with various costs
and discount rates. This opens up a new way to explore behaviors
of the algorithm in various situations.
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