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Abstract
This  article  introduces  Coincidence  Algorithm 

(COIN).  It is an algorithm in the class of Evolutionary 
Algorithm, specialised to solve combinatorial problems. 
COIN  belongs  to  a  subgroup  of  Evolutionary 
Algorithms  which  makes  use  of  models  to  generate 
solutions  instead  of  searching  traditional  population. 
The  model  of  COIN  is  a  joint  probability  table  of 
adjacent  events  (coincidence)  derived  from  the 
population of candidate solutions. As COIN is especially 
good at Combinatorial Optimisation, it has been applied 
successfully  to  many  industrial  engineering  problems. 
A  full  account  of  COIN  and  its  comparison  to 
contemporary  algorithms  are  presented.  The 
application  of  COIN  to  real  world  problems  are 
illustrated to show examples how COIN can be used.
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1. Introduction
     Combinatorial optimisation is the optimisation where the 
domains of feasible solutions are discrete.  Examples of this 
domain are traveling salesman problem, minimum spanning 
tree problem, set-covering problem, knapsack problem, etc. 
It is also related to constraint satisfaction problem, such as 
N-Queen puzzle.  For a reasonable problem size, exhaustive 
search  is  not  feasible.  Any  searching  method  can  not 
guarantee  to  find  an  optimal  solution.   Combinatorial 
optimisation  has  many  applications  for  operational 
research.

This article is a cumulative effort of our research team 
to solve combinatorial problems in the past two years. It is 
a summary of a number of our previous works [1][2][3]. 
This article presents Coincidence algorithm in fine details 
and illustrates two real-world industrial problems.

2. Coincidence Algorithm 
2.1 General

COIN  belongs  to  a  subgroup  of  Evolutionary 
Algorithms that makes use of models to generate solutions. 
This  group  of  algorithms  is  called  “Estimation  of 
Distribution Algorithms” [4] and also “Competent Genetic 
Algorithms”. The emphasis is on using some form of model 
as  a  repository  of  “trait”  or  knowledge  extracted  from 
previous  candidate  solutions.  Instead  of  using  genetic 
operations to create the next generation candidate solutions 
from  the  current  solutions,  EDA  sampling  the  new 
candidates directly from this model, hence eliminate many 

difficulties  involved  in  designing  and  performing  those 
genetic operations.

The model in COIN is a joint probability matrix,  H. 
This matrix represents a kind of Markov Chain. An entry 
in Hxy is a probability of transition from a state x to a state 
y. We call xy a coincidence of the event x and event y. This 
matrix,  H, fits to represent combinatorial problems. Let’s 
illustrate  this  representation  using  Traveling  Salesman 
Problem (TSP).  A solution of a TSP problem is a tour, a 
combination of cities which can be represented by a string 
of numbers.  Each number denotes a city, so, the following 
string is a tour of ten cities TSP problem. 
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A coincidence is an adjacent pair of cities in the tour. 
There are ten coincidences in this tour.  They are 1-3, 3-4, 
4-6, 6-7, 7-8, 8-5, 5-2, 2-9, 9-0 and 0-1. 

The joint probability matrix,  H, is a square matrix of 
size  n ×  n.  The sum over each row  Hxy where  y ranges 
from 1 to n equals to 1.0.  It denotes the probability of the 
occurrence of xy in the tour. Each entry of Hxy has a value 
0 to 1.0.  The diagonal Hxx are zero.

Coincidence algorithm searches for solutions similar 
to  any  Evolutionary  Algorithm,  that  is,  starting  from  a 
random  population  of  candidates;  it  selects  some 
candidates  and  uses  them  to  update  H;  with  H,  a  new 
population of candidate is sampled; the selected candidate 
again, are used to update H; this process is repeated until 
satisfactory solutions are found.

Steps of the algorithm
1  Initialise H to a uniform distribution.
2  Sample a population from H.
3  Evaluate the population.
4  Select two groups of candidates: better, and worse.
5  Use these two groups to update H.
6  Repeate the steps 2-3-4-5 until satisfactory solutions are 
found.

Fig. 1  Steps of the algorithm

These steps are quite standard and are similar to any 
Estimation Distribution Algorithm except  for  the  step  4 
and 5.  The precise reason for this step will be discussed 
later. At this moment, let's discuss these steps.  The joint 
probability  matrix,  H,  is  central  to  this  algorithm.  It  is 
maintained  and  updated  properly  throughout  the  search 
cycle.



1  Initialise H
H is initially filled with a value 1/(n-1) (where n is the size 
of problem) except the diagonal Hxx is zero.

2  Sample a population
If  the  problem  does  not  constrain  the  starting  point,  a 
random  x is chosen, then,  xy is sampled according to  Hxy. 
The next step is then started at  y.  The next pair is again 
sampling from H. Any element that is a repeat of element 
that occurs earlier will have to be throwaway. This process 
is repeated until a combination of length n is reached.  Each 
candidate is sampled this way.  Sample a population of the 
required size.

3  Evaluate the population
Each candidate in the population is evaluated for it fitness 
according to some objective function. 

4  Selection of candidates
The whole  population  is  ranked.   For  a  single  objective 
problem this can be simple, the candidate is ranked by its 
fitness.  For a multi  objective problem, the most popular 
choice  of  ranking  is  the  Pareto  ranking  [5].  The  unique 
characteristic  of  COIN  is  that  it  selects  two  groups  of 
candidates:  better-group and worse-group.  This  notion of 
better/worse  is  relative  to  the  average  fitness  of  the 
population.  The  exact  selection  method  can  be  varied 
according to problems, for example,  best  10% and worst 
10% or some other method “normalized” to the population 
sizes and/or the deviation of the fitness.  

5  Updating the joint probability matrix
The update of H is separated into two components: reward 
and punishment.  The reward is the increase of  Hxy by the 
occurrence  of  the  pair  xy found  in  the  better-group 
candidates. The incremental step is k/(n-1) where k denotes 
the step size,  n the length of a candidate.  The punishment 
is the decrease of Hxy by the occurrence of the pair xy found 
in the worse-group candidates with similarly calculation to 
the reward. Here is the equation:

H xy t1=H xy t 
k

n−1 r xy− pxy
k

n−12 ∑z pxz−∑z r xz
 (1)

Where k denotes the step size,  n the length of a candidate, 
rxy the  number  of  occurrence  of  xy in  the  better-group 
candidates, pxy the number of occurrence of xy in the worse-
group candidates.  Hxx are always zero.

The  term,  k/(n-1)(rxy −  pxy),  is  the  reward  and 
punishment of the occurrence of a  xy pair found in both 
groups.  The last term,  k/(n-1)2 (∑  pxz − ∑  rxz), represents 
the adjustment step for all “others” Hxz (z ≠ y, z ≠ x) in the 
opposite  direction  hence  keeping  the  sum  of  all 
probabilities in a row constant to one.

2.2 Computational Cost and Space
For  the  problem  size  n,  and  m candidates  in  each 

generation,  the  computational  cost  and  space  complexity 
are as follow: 
1. Generating the population requires time O(mn2) and 

space O(mn) 
2. Sorting the population requires time O(m log m)
3. The generator require space O(n2)

4. Updating the joint probability matrix requires time 
O(mn2)

2.3 Compare to other algorithms
There are many algorithms that use the second order 

statistic and considered to be in Estimation of Distribution 
Algorithms. These algorithms take dependencies between 
pairs of variables into account. The algorithms in this class 
include MIMIC [6], COMIT [7] and BMDA [8].

MIMIC  (Mutual  Information  Maximizing  Input 
Clustering)  is  one of the most famous algorithms in the 
bivariate dependency class, proposed by De Bonet et al. in 
1997.  It  is  a  greedy  algorithm  that  searches  in  each 
generation for the best permutation between the variables 
in  order  to  find  the  probability  distribution.  COMIT 
(Combining Optimizers with Mutual Information Tree) is 
a successor of PBIL [9]. The algorithm was proposed by 
Baluja and Davies. The algorithm constructs dependency 
trees  and  incrementally  learns  from  the  good  seen 
solutions.  Pelikan and Mühlenbein proposed an algorithm 
call BMDA (Bivariated Marginal Distribution Algorithm) 
using factorization of the joint probability distribution. It is 
based on the construction of a dependency graph. 

For  multi  objective  problems,  the  most  popular 
algorithm is Non-dominated sorting genetic  algorithm II 
(NSGA-II)[10].  NSGA-II  is  a  Genetic  Algorithm  that 
incorporates  Pareto-ranking  into  its  selection  method.  It 
has the ability to find multiple Pareto-optimal solutions in 
one  single  run.   In  NSGA-II,  the  population  is  sorted 
according  to  the  level  of  non-domination.  The  diversity 
among  non-dominated  solutions  is  maintained  using  a 
measure of density of solution in the neighborhood.

To  measure  the  performance  of  COIN,  several 
benchmarks  on  TSP  problems  are  performed  and  the 
results  are  compared  to  the  experiment  of  Robles  and 
Larrañaga  [11].  The  performances  of  the  algorithm  are 
measured in two main aspects: quality of the results and 
the number of function evaluations. Only the result of the 
well  known Gröstel24 is shown,  which can be obtained 
from the  TSPLIB  [12].   The  experiment  of  Robles  and 
Larrañaga use both of the discrete and continuous EDAs in 
the following methods: UMDA [13], TREE [14], EBNA 
[15], UMDAc, and MIMIC. Moreover the results are also 
compared with GA in the literature of Larrañaga [16] in 
1999 which uses GENITOR [17] algorithm. For each of 
the combinations shown in the experiment,  ten runs are 
performed and the results are averaged.



Table  I  shows  the  best  results  and  average  results 
obtained for each of population size, with and without local 
optimization  of  EDAs.  The  table  also  shows  results 
obtained for the GA using the crossover operators ER and 
OX2. The results show that COIN algorithm can find the 
optimum of Gröstel24 without the need of local optimizer 
and it is competitive with all EDAs in the experiment. 

Table II illustrates the number of the generation used to 
find  the  solutions.  Again  the  result  shows  that  COIN  is 
competitive in the larger population size.

For multi objective problems, COIN is tested with the 
multi-objective TSP. The Pareto-ranking similar to NSGA-
II is used in the selection method of COIN. Two-objective 
random  100-city  asynchronous  TSP  is  generated.  The 
behavior of the algorithm can be seen in Fig. 2 and Fig 3. 
Fig.  2 shows the population in the generation 1, 100 and 
300  respectively.  The  population  migrates  towards  the 
optimum as the algorithm progresses. 

Fig.  3  shows  the  effect  of  reward  and  punishment. 
Two curves  at  the  upper-right  hand corner  are  the  result 
from using only reward or punishment for 500 generations. 
Contrast  this with the rest  of the curves in the lower-left 
corner which use both reward and punishment together for 
100  and  500  generations.  The  use  of  both  reward  and 
punishment for just 100 generations outperforms the result 
from using only either one for 500 generations.

Fig. 2 The population clouds in a random 100-city 2-obj TSP

3. Applications   
COIN is especially good at combinatorial problems. In 

this section, it is applied to solve manufacturing problems. 
Many  interesting  problems  in  manufacturing  are  multi-

objectives.  Two case studies are illustrated to show how 
to use COIN in real world problems.

Fig. 3 The parato frontier obtained from different generation 
in a random 100-city 2-objective TSP.

Proponents of the lean manufacturing and just-in-time 
(JIT) philosophies assert that U-shaped assembly systems 
offer several benefits over traditional straight-line layouts 
[18] especially an improvement in labor productivity.  U-
lines  have  become  popular  in  order  to  obtain  the  main 
benefits  of  smoothed  workload,  multi-skilled  workforce 
and other principles of the JIT philosophy.

An assembly line is a manufacturing process in which 
component  parts  are  added to  a  product  in  a  sequential 
manner to create a finished product.  Assembly lines  are 
special  flow-line  production  systems  which  are  of  great 
importance  in  the  industrial  production  of  high  quantity 
standardized commodities. Recently,  assembly lines have 
even  gained  importance  in  low  volume  production  of 
customized products  (mass customization).  Balancing an 
assembly line means allocating the basic assembly tasks to 
be carried out to different stations to achieve specific goals 
and  all  in  compliance  with  given  constraints.  The main 
assembly line  balancing  objective  is  to  balance  the task 
workload across workstations so that no workstation has 
an excessively high or low task workload.

The  U-line  arranges  machines  or  tasks  around  a  U-
shaped  line  in  the  order  in  which  production  tasks  are 
serial.  The sequence of tasks on the U-line is  not fixed, 
making  it  possible  to  reallocate  tasks  to  different  line 
locations. Thus, the assignment of tasks to line locations 
can  be  altered.  The  system  is  one-piece  flow 
manufacturing moving one piece at a time between tasks 
within a U-line. The task efficiency is proportional to the 
worker’s  performance.  Standard  operation  charts  specify 
exactly how all work is done. Workers can be reallocated 
periodically  when  production  requirements  change  (or 
cycle time changes). This requires workers to have multi-
functional  skills  to operate several  different machines or 
tasks.  It  also requires  workers  to  work  standing  up and 
walking  because  they  need  to  operate  at  different 
locations.  Whenever  a  worker  arrives  at  a  task,  one 
performs any needed tasks at the task location, and then 
walks to the next task. Following the last task of a path, the 
worker returns to the starting point and works or waits for 



the start of the next cycle. The characteristics of the single 
U-shaped  assembly  line  worker  allocation  problem  are 
shown in Fig. 4.

Fig. 4 A single U-shaped assembly line for j workers and k 
machines on grid arrangement.

A number of cases with the number of tasks from 7 to 
297 are used.  Two objectives are: i) minimise the deviation 
of  operation  times  of  workers  (DOW),  ii)  minimise  the 
walking time (WT).  The details of task description can be 
found in [3].

COIN  is  augmented  with  diversity  preservation 
procedure  when  samples  the  population.  A  crowding 
distance approach [10] to generate a diversified population 
uniformly  spread  over  the  Pareto  frontier  and  avoids  a 
genetic  drift  phenomenon  (a  few  clusters  of  populations 
being  formed  in  the  solution  space).  The  salient 
characteristic  of this approach is that  there is  no need to 
define any parameter in calculating a measure of population 
density around a solution.

To keep the best solutions found and to survive in the 
next generation, COIN uses an external list with the same 
size as the population size to store elitist solutions. All non-
dominated solutions created in the previous population are 
combined with the current elitist solutions.

The multi-objective solution is solved with hierarchical 
procedure.  First,  the  objective  function  of  a  number  of 
workers is minimized. Secondly, only a minimum number 
of  workers  are  selected  to  further  evaluate  a  pair  of 
minimum DOW and WT objective  values  as  the Pareto-
optimum frontier.

From  the  experimental  results  of  symmetrical  and 
rectangular  U-shaped  layouts,  incrementing  a  number  of 
workers in the former objective is sensitive to determining 
the walking time at only five percent of average processing 
time (or 0.14 to 65.61 seconds) in most problems. Just a 
few  problems  are  at  the  ten  and  twenty  percentage  of 
Average Processing Time (or 0.42 to 4.08 seconds).  

The results are compared to NSGA-II which is a popular 
multi-objective Genetic Algorithm.  Both algorithms apply 
the following parameters: 

Parameters of GAs [19]
Population sizes 100
Number of generations 100

Crossover probability 0.7
Mutation probability 0.3
Parameter of COIN [1]
Learning step coefficient (k) = 0.1

The results are shown in Table III and Table IV. COIN 
performs  better  than  NSGA-II  for  most  problem  sets 
between Columns IV-VI.  Furthermore,  in terms of  CPU 
time in the last column, the multi-objective COIN is much 
faster  than  NSGA-II.  Their  comparison  for  Scholl  and 
Klein’s 297 tasks at the cycle time of 2,787 time units is 
exemplified  and  shown in  Fig.  5.   Each  of  the  worker 
allocation  problem  minimizes  m,  DOW  and  WT 
simultaneously.  The final Pareto-optimal frontier consists 
of many strings that minimize the number of workers and 
show several pairs of DOW and WT.



Fig. 5  Comparison of NSGA-II vs COIN for the 297-task 
problem

Comparing to NSGA-II on the results of convergence to 
the Pareto-optimal set, spread and ratio of non-dominated 
solution, and CPU time, COIN performs better than well-
known NSGA-II for most problem sets.

The next case study, the problem sets are from [20]. The 
problem is sequencing problems on mixed-model U-Shaped 
assembly lines. Two objectives are: i) minimise setup times 
and ii)  minimise absolute deviations of  workloads across 
workstations (ADW).  The results are compared with the 
results from NSGA-II.   Full  details  can be found in [2]. 
The parameters in the experiments are:

Parameters of NSGA-II
population size 100
maximum generation 500, 1000
crossover probability 0.5
mutation probability 0.05
Parameter of COIN
population size 100
maximum generation 500, 1000
reward and punishment 10% (15% for large problems)

The  results  are  shown  in  Fig.  6.   The  comparison 
criteria  are:  convergence  to  Pareto optimal set,  spread  of 
Pareto,  ratio  of  non-dominated  solutions,  and  calculation 
time.  Again,  for  this  problem  set,  COIN  outperforms 
NSGA-II in all criteria.

ADW

Se
tu

p 
ti

m
e

38800386003840038200380003780037600374003720037000

22000

21000

20000

19000

18000

17000

16000

Variable
NSGA Obj1 * NSGA Obj2
COIN Obj1 * COIN Obj2

NSGA II VS COIN (Arcus 3)
5 Product

X-Data

Y
-D

at
a

174172170168166164162

25000

20000

15000

10000

5000

NSGA II VS COIN (KIM 5)
4 Product

ADW

Se
tu

p

122012001180116011401120110010801060

50000

40000

30000

20000

10000

NSGA II VS COIN (set 1.1)
10 Product

ADW

Se
tu

p 
ti

m
e

6000590058005700560055005400530052005100

140000

130000

120000

110000

100000

NSGA II VS COIN (set 2.2)
15 Product

Fig. 6 Comparison of NSGA-II and COIN for several test sets

4. Conclusion
In this article, an evolutionary algorithm, Coincidence 

algorithm  (COIN),  is  introduced.  A  joint  probability 
matrix is used as its model. COIN searches and samples 
candidates for single and multi objectives problems very 
effectively.  The algorithm has been benchmarked against 
several  algorithms.  The  results  show  that  the  proposed 
algorithm is competitive with other discrete EDAs. Several 
benchmarks  on  real  world  industrial  applications  have 
been tested. The results show that the multiple objective 
version of COIN outperforms NSGA-II in most of the test 
set.
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