
 Coincidence Algorithm for Combinatorial Optimisation and Its Applications

Prabhas Chongstitvatana1, Warin Wattanapornprom1, Panuwat Olanviwitchai2, Ronnachai Sirovetnukul3,
Noppon Kampirom2 and Parames Chutima2

1Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, email: prabhas@chula.ac.th
2Department of Industrial Engineering, Faculty of Engineering, Chulalongkorn University

3Department of Industrial Engineering, Faculty of Engineering, Mahidol University

Abstract
This article introduces Coincidence Algorithm

(COIN). It is an algorithm in the class of Evolutionary
Algorithm, specialised to solve combinatorial problems.
COIN belongs to a subgroup of Evolutionary
Algorithms which makes use of models to generate
solutions instead of searching traditional population.
The model of COIN is a joint probability table of
adjacent events (coincidence) derived from the
population of candidate solutions. As COIN is especially
good at Combinatorial Optimisation, it has been applied
successfully to many industrial engineering problems.
A full account of COIN and its comparison to
contemporary algorithms are presented. The
application of COIN to real world problems are
illustrated to show examples how COIN can be used.

Keywords: coincidence algorithm, evolutionary
computation, estimation of distribution
algorithm, combinatorial problems

1. Introduction
 Combinatorial optimisation is the optimisation where the
domains of feasible solutions are discrete. Examples of this
domain are traveling salesman problem, minimum spanning
tree problem, set-covering problem, knapsack problem, etc.
It is also related to constraint satisfaction problem, such as
N-Queen puzzle. For a reasonable problem size, exhaustive
search is not feasible. Any searching method can not
guarantee to find an optimal solution. Combinatorial
optimisation has many applications for operational
research.

This article is a cumulative effort of our research team
to solve combinatorial problems in the past two years. It is
a summary of a number of our previous works [1][2][3].
This article presents Coincidence algorithm in fine details
and illustrates two real-world industrial problems.

2. Coincidence Algorithm
2.1 General

COIN belongs to a subgroup of Evolutionary
Algorithms that makes use of models to generate solutions.
This group of algorithms is called “Estimation of
Distribution Algorithms” [4] and also “Competent Genetic
Algorithms”. The emphasis is on using some form of model
as a repository of “trait” or knowledge extracted from
previous candidate solutions. Instead of using genetic
operations to create the next generation candidate solutions
from the current solutions, EDA sampling the new
candidates directly from this model, hence eliminate many

difficulties involved in designing and performing those
genetic operations.

The model in COIN is a joint probability matrix, H.
This matrix represents a kind of Markov Chain. An entry
in Hxy is a probability of transition from a state x to a state
y. We call xy a coincidence of the event x and event y. This
matrix, H, fits to represent combinatorial problems. Let’s
illustrate this representation using Traveling Salesman
Problem (TSP). A solution of a TSP problem is a tour, a
combination of cities which can be represented by a string
of numbers. Each number denotes a city, so, the following
string is a tour of ten cities TSP problem.

1346785290

A coincidence is an adjacent pair of cities in the tour.
There are ten coincidences in this tour. They are 1-3, 3-4,
4-6, 6-7, 7-8, 8-5, 5-2, 2-9, 9-0 and 0-1.

The joint probability matrix, H, is a square matrix of
size n × n. The sum over each row Hxy where y ranges
from 1 to n equals to 1.0. It denotes the probability of the
occurrence of xy in the tour. Each entry of Hxy has a value
0 to 1.0. The diagonal Hxx are zero.

Coincidence algorithm searches for solutions similar
to any Evolutionary Algorithm, that is, starting from a
random population of candidates; it selects some
candidates and uses them to update H; with H, a new
population of candidate is sampled; the selected candidate
again, are used to update H; this process is repeated until
satisfactory solutions are found.

Steps of the algorithm
1 Initialise H to a uniform distribution.
2 Sample a population from H.
3 Evaluate the population.
4 Select two groups of candidates: better, and worse.
5 Use these two groups to update H.
6 Repeate the steps 2-3-4-5 until satisfactory solutions are
found.

Fig. 1 Steps of the algorithm

These steps are quite standard and are similar to any
Estimation Distribution Algorithm except for the step 4
and 5. The precise reason for this step will be discussed
later. At this moment, let's discuss these steps. The joint
probability matrix, H, is central to this algorithm. It is
maintained and updated properly throughout the search
cycle.

1 Initialise H
H is initially filled with a value 1/(n-1) (where n is the size
of problem) except the diagonal Hxx is zero.

2 Sample a population
If the problem does not constrain the starting point, a
random x is chosen, then, xy is sampled according to Hxy.
The next step is then started at y. The next pair is again
sampling from H. Any element that is a repeat of element
that occurs earlier will have to be throwaway. This process
is repeated until a combination of length n is reached. Each
candidate is sampled this way. Sample a population of the
required size.

3 Evaluate the population
Each candidate in the population is evaluated for it fitness
according to some objective function.

4 Selection of candidates
The whole population is ranked. For a single objective
problem this can be simple, the candidate is ranked by its
fitness. For a multi objective problem, the most popular
choice of ranking is the Pareto ranking [5]. The unique
characteristic of COIN is that it selects two groups of
candidates: better-group and worse-group. This notion of
better/worse is relative to the average fitness of the
population. The exact selection method can be varied
according to problems, for example, best 10% and worst
10% or some other method “normalized” to the population
sizes and/or the deviation of the fitness.

5 Updating the joint probability matrix
The update of H is separated into two components: reward
and punishment. The reward is the increase of Hxy by the
occurrence of the pair xy found in the better-group
candidates. The incremental step is k/(n-1) where k denotes
the step size, n the length of a candidate. The punishment
is the decrease of Hxy by the occurrence of the pair xy found
in the worse-group candidates with similarly calculation to
the reward. Here is the equation:

H xy t1=H xy t
k

n−1 r xy− pxy
k

n−12 ∑z pxz−∑z r xz
 (1)

Where k denotes the step size, n the length of a candidate,
rxy the number of occurrence of xy in the better-group
candidates, pxy the number of occurrence of xy in the worse-
group candidates. Hxx are always zero.

The term, k/(n-1)(rxy − pxy), is the reward and
punishment of the occurrence of a xy pair found in both
groups. The last term, k/(n-1)2 (∑ pxz − ∑ rxz), represents
the adjustment step for all “others” Hxz (z ≠ y, z ≠ x) in the
opposite direction hence keeping the sum of all
probabilities in a row constant to one.

2.2 Computational Cost and Space
For the problem size n, and m candidates in each

generation, the computational cost and space complexity
are as follow:
1. Generating the population requires time O(mn2) and

space O(mn)
2. Sorting the population requires time O(m log m)
3. The generator require space O(n2)

4. Updating the joint probability matrix requires time
O(mn2)

2.3 Compare to other algorithms
There are many algorithms that use the second order

statistic and considered to be in Estimation of Distribution
Algorithms. These algorithms take dependencies between
pairs of variables into account. The algorithms in this class
include MIMIC [6], COMIT [7] and BMDA [8].

MIMIC (Mutual Information Maximizing Input
Clustering) is one of the most famous algorithms in the
bivariate dependency class, proposed by De Bonet et al. in
1997. It is a greedy algorithm that searches in each
generation for the best permutation between the variables
in order to find the probability distribution. COMIT
(Combining Optimizers with Mutual Information Tree) is
a successor of PBIL [9]. The algorithm was proposed by
Baluja and Davies. The algorithm constructs dependency
trees and incrementally learns from the good seen
solutions. Pelikan and Mühlenbein proposed an algorithm
call BMDA (Bivariated Marginal Distribution Algorithm)
using factorization of the joint probability distribution. It is
based on the construction of a dependency graph.

For multi objective problems, the most popular
algorithm is Non-dominated sorting genetic algorithm II
(NSGA-II)[10]. NSGA-II is a Genetic Algorithm that
incorporates Pareto-ranking into its selection method. It
has the ability to find multiple Pareto-optimal solutions in
one single run. In NSGA-II, the population is sorted
according to the level of non-domination. The diversity
among non-dominated solutions is maintained using a
measure of density of solution in the neighborhood.

To measure the performance of COIN, several
benchmarks on TSP problems are performed and the
results are compared to the experiment of Robles and
Larrañaga [11]. The performances of the algorithm are
measured in two main aspects: quality of the results and
the number of function evaluations. Only the result of the
well known Gröstel24 is shown, which can be obtained
from the TSPLIB [12]. The experiment of Robles and
Larrañaga use both of the discrete and continuous EDAs in
the following methods: UMDA [13], TREE [14], EBNA
[15], UMDAc, and MIMIC. Moreover the results are also
compared with GA in the literature of Larrañaga [16] in
1999 which uses GENITOR [17] algorithm. For each of
the combinations shown in the experiment, ten runs are
performed and the results are averaged.

Table I shows the best results and average results
obtained for each of population size, with and without local
optimization of EDAs. The table also shows results
obtained for the GA using the crossover operators ER and
OX2. The results show that COIN algorithm can find the
optimum of Gröstel24 without the need of local optimizer
and it is competitive with all EDAs in the experiment.

Table II illustrates the number of the generation used to
find the solutions. Again the result shows that COIN is
competitive in the larger population size.

For multi objective problems, COIN is tested with the
multi-objective TSP. The Pareto-ranking similar to NSGA-
II is used in the selection method of COIN. Two-objective
random 100-city asynchronous TSP is generated. The
behavior of the algorithm can be seen in Fig. 2 and Fig 3.
Fig. 2 shows the population in the generation 1, 100 and
300 respectively. The population migrates towards the
optimum as the algorithm progresses.

Fig. 3 shows the effect of reward and punishment.
Two curves at the upper-right hand corner are the result
from using only reward or punishment for 500 generations.
Contrast this with the rest of the curves in the lower-left
corner which use both reward and punishment together for
100 and 500 generations. The use of both reward and
punishment for just 100 generations outperforms the result
from using only either one for 500 generations.

Fig. 2 The population clouds in a random 100-city 2-obj TSP

3. Applications
COIN is especially good at combinatorial problems. In

this section, it is applied to solve manufacturing problems.
Many interesting problems in manufacturing are multi-

objectives. Two case studies are illustrated to show how
to use COIN in real world problems.

Fig. 3 The parato frontier obtained from different generation
in a random 100-city 2-objective TSP.

Proponents of the lean manufacturing and just-in-time
(JIT) philosophies assert that U-shaped assembly systems
offer several benefits over traditional straight-line layouts
[18] especially an improvement in labor productivity. U-
lines have become popular in order to obtain the main
benefits of smoothed workload, multi-skilled workforce
and other principles of the JIT philosophy.

An assembly line is a manufacturing process in which
component parts are added to a product in a sequential
manner to create a finished product. Assembly lines are
special flow-line production systems which are of great
importance in the industrial production of high quantity
standardized commodities. Recently, assembly lines have
even gained importance in low volume production of
customized products (mass customization). Balancing an
assembly line means allocating the basic assembly tasks to
be carried out to different stations to achieve specific goals
and all in compliance with given constraints. The main
assembly line balancing objective is to balance the task
workload across workstations so that no workstation has
an excessively high or low task workload.

The U-line arranges machines or tasks around a U-
shaped line in the order in which production tasks are
serial. The sequence of tasks on the U-line is not fixed,
making it possible to reallocate tasks to different line
locations. Thus, the assignment of tasks to line locations
can be altered. The system is one-piece flow
manufacturing moving one piece at a time between tasks
within a U-line. The task efficiency is proportional to the
worker’s performance. Standard operation charts specify
exactly how all work is done. Workers can be reallocated
periodically when production requirements change (or
cycle time changes). This requires workers to have multi-
functional skills to operate several different machines or
tasks. It also requires workers to work standing up and
walking because they need to operate at different
locations. Whenever a worker arrives at a task, one
performs any needed tasks at the task location, and then
walks to the next task. Following the last task of a path, the
worker returns to the starting point and works or waits for

the start of the next cycle. The characteristics of the single
U-shaped assembly line worker allocation problem are
shown in Fig. 4.

Fig. 4 A single U-shaped assembly line for j workers and k
machines on grid arrangement.

A number of cases with the number of tasks from 7 to
297 are used. Two objectives are: i) minimise the deviation
of operation times of workers (DOW), ii) minimise the
walking time (WT). The details of task description can be
found in [3].

COIN is augmented with diversity preservation
procedure when samples the population. A crowding
distance approach [10] to generate a diversified population
uniformly spread over the Pareto frontier and avoids a
genetic drift phenomenon (a few clusters of populations
being formed in the solution space). The salient
characteristic of this approach is that there is no need to
define any parameter in calculating a measure of population
density around a solution.

To keep the best solutions found and to survive in the
next generation, COIN uses an external list with the same
size as the population size to store elitist solutions. All non-
dominated solutions created in the previous population are
combined with the current elitist solutions.

The multi-objective solution is solved with hierarchical
procedure. First, the objective function of a number of
workers is minimized. Secondly, only a minimum number
of workers are selected to further evaluate a pair of
minimum DOW and WT objective values as the Pareto-
optimum frontier.

From the experimental results of symmetrical and
rectangular U-shaped layouts, incrementing a number of
workers in the former objective is sensitive to determining
the walking time at only five percent of average processing
time (or 0.14 to 65.61 seconds) in most problems. Just a
few problems are at the ten and twenty percentage of
Average Processing Time (or 0.42 to 4.08 seconds).

The results are compared to NSGA-II which is a popular
multi-objective Genetic Algorithm. Both algorithms apply
the following parameters:

Parameters of GAs [19]
Population sizes 100
Number of generations 100

Crossover probability 0.7
Mutation probability 0.3
Parameter of COIN [1]
Learning step coefficient (k) = 0.1

The results are shown in Table III and Table IV. COIN
performs better than NSGA-II for most problem sets
between Columns IV-VI. Furthermore, in terms of CPU
time in the last column, the multi-objective COIN is much
faster than NSGA-II. Their comparison for Scholl and
Klein’s 297 tasks at the cycle time of 2,787 time units is
exemplified and shown in Fig. 5. Each of the worker
allocation problem minimizes m, DOW and WT
simultaneously. The final Pareto-optimal frontier consists
of many strings that minimize the number of workers and
show several pairs of DOW and WT.

Fig. 5 Comparison of NSGA-II vs COIN for the 297-task
problem

Comparing to NSGA-II on the results of convergence to
the Pareto-optimal set, spread and ratio of non-dominated
solution, and CPU time, COIN performs better than well-
known NSGA-II for most problem sets.

The next case study, the problem sets are from [20]. The
problem is sequencing problems on mixed-model U-Shaped
assembly lines. Two objectives are: i) minimise setup times
and ii) minimise absolute deviations of workloads across
workstations (ADW). The results are compared with the
results from NSGA-II. Full details can be found in [2].
The parameters in the experiments are:

Parameters of NSGA-II
population size 100
maximum generation 500, 1000
crossover probability 0.5
mutation probability 0.05
Parameter of COIN
population size 100
maximum generation 500, 1000
reward and punishment 10% (15% for large problems)

The results are shown in Fig. 6. The comparison
criteria are: convergence to Pareto optimal set, spread of
Pareto, ratio of non-dominated solutions, and calculation
time. Again, for this problem set, COIN outperforms
NSGA-II in all criteria.

ADW

Se
tu

p
ti

m
e

38800386003840038200380003780037600374003720037000

22000

21000

20000

19000

18000

17000

16000

Variable
NSGA Obj1 * NSGA Obj2
COIN Obj1 * COIN Obj2

NSGA II VS COIN (Arcus 3)
5 Product

X-Data

Y
-D

at
a

174172170168166164162

25000

20000

15000

10000

5000

NSGA II VS COIN (KIM 5)
4 Product

ADW

Se
tu

p

122012001180116011401120110010801060

50000

40000

30000

20000

10000

NSGA II VS COIN (set 1.1)
10 Product

ADW

Se
tu

p
ti

m
e

6000590058005700560055005400530052005100

140000

130000

120000

110000

100000

NSGA II VS COIN (set 2.2)
15 Product

Fig. 6 Comparison of NSGA-II and COIN for several test sets

4. Conclusion
In this article, an evolutionary algorithm, Coincidence

algorithm (COIN), is introduced. A joint probability
matrix is used as its model. COIN searches and samples
candidates for single and multi objectives problems very
effectively. The algorithm has been benchmarked against
several algorithms. The results show that the proposed
algorithm is competitive with other discrete EDAs. Several
benchmarks on real world industrial applications have
been tested. The results show that the multiple objective
version of COIN outperforms NSGA-II in most of the test
set.

References
[1] Wattanapornprom, W. and Chongstitvatana, P.: Multi-

objective Combinatorial Optimisation with
Coincidence Algorithm, IEEE Congress on
Evolutionary Computation, May 18-21, (2009)

[2] Parames Chutima, Noppon Kampirom, Warin
Wattanapornprom and Prabhas Chongstitvattana:
Application of Combinatorial optimization with
coincidence for Multi-Objective Sequencing Problems
on Mixed-Model U-Shaped Assembly Lines in JIT
Production Systems, (Best paper award) Annual
Conference of Kasetsart University, Bangkok, (2008)

[3] Ronnachai Sirovetnukul and Parames Chutima: The
impact of walking time on U-shaped assembly line
worker allocation problems, Engineering Journal, Vol
14, issue 2, Apr. (2010)

[4] Larrañaga, Pedro; & Lozano, Jose A. (Eds.). Estimation
of distribution algorithms: A new tool for evolutionary
computation. Kluwer Academic Publishers, Boston,
(2002).

[5] Fonseca, C. M. and Fleming, P. J.: An Overview of
Evolutionary Algorithms in Multiobjective
Optimization. Evolutionary Computation, 3(1), pp. 1-
16, (1995)

[6] De Bonet, J.S., Isbell, C.L., and Viola, P.: MIMIC:
Finding Optima by Estimating Probability Densities.
Advance in Neural Information Processing Systems,
volume 9. (1997)

[7] Baluja, S. and Davies, S.: Combining Multiple
Optimization Runs with Optimal Dependency Trees.
Technical Report CMU-CS-97-157, Carnegie Melon
University (1997)

[8] Pelikan, M. and Mühlenbein, H.: The Bivariate
Marginal Distribution Algorithm. Advance in Soft
Computing-Engineering Design and Manufacturing,
pages 521-535 (1999)

[9] Baluja, S.: Population Based Incremental Learning: A
Method for Integrating Genetic Search-Based Function
Optimization and Competitive Learning. Technical
Report CMU-CS-94-163, Carnegie Mellon University
(1994)

[10] K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan.: A
Fast and Elitist Multiobjective Genetic Algorithm:
NSGA-II. IEEE Transactions on Evolutionary
Computation, 6, 2(April 2002) 182-197. (2002)

[11] Robles V. and Larrañaga P.: Solving the Traveling
Salesman Problem with EDAs. In Estimation of
Distribution Algorithm: A New Tool for Evolutionary
Computation (2002)

[12] TSPLIB, http://www.iwr.uniheidelberg.de/ groups/
comopt/ software/ TSPLIB95/ (retrieving on August
18th, 2008)

[13] Mühlenbein, H.: The Equation for Response to
Selection and Its Use for Prediction. Evolutionary
Computation, 5:303-346. (1998)

[14] Etxeberria, R. and Larranga, P.: Global Optimization
with Bayesian Networks. In II Symposium on Artificial
Intelligence. CIMAF99. Special Session on

Distributions and Evolutionary Optimization, pages
322-339. (1999)

[15] Larrañaga, P., Etxeberria, R., Lozano, J. A., and Pena,
J.M.: Optimization by Learning and Simulation of
Bayesian and Gaussian Networks. Technical Report.
KZZA-IK-4-99, Department of Computer Science and
Artificial Intelligence, University of the Basque
Country. (1999)

[16] Larrañaga, P., Lozano, J. A., and Bengoetxea, E.:
Estimation of Distribution Algorithms Based on
Multivariate Normal and Gaussian Networks.
Technical Report KZZA-IK-1-01, Department of
Computer Science and Artificial Intelligence,
University of the Basque Country. (2001)

[17] Larrañaga, P., Kujipers, C.M. H., Murga, R.H., Inza,
I., and Dizdarevic, S.: Genetic Algorithms for the
Travelling Salesman Problem: A Review of
Representations and Operators. Artificial Intelligence
Review, 13:129-170. (1999)

[18] C. H. Cheng, J. Miltenburg, and J. Motwani: The
effect of straight- and U-shaped lines on quality, IEEE
Transactions on Engineering Management, vol. 47,
no. 3, pp. 321-334. (2000)

[19] R. K. Hwang, H. Katayama, and M. Gen: U-shaped
assembly line balancing problem with genetic
algorithm, International Journal of Production
Research, vol. 46, no. 16, pp. 4637-4649. (2008)

[20] Kim, Y.K., Kim, J.K., and Kim, Y.H.: An
endosymbiotic evolutionary algorithm for the
integration of balancing and sequencing in mixed-
model U-line, European Journal of Operational
Research, 168(3), 838-852. (2006)

