
Running Compact Genetic Algorithm on Large Scale Problems Using Graphics
Processing Unit

Peera Thontirawong, Alongkot Burutarchanai, Sunisa Rimcharoen and Prabhas Chongstitvatana
Department of Computer Engineering, Chulalongkorn University

Bangkok, Thailand
{peera.t, alongkot.b, sunisa.r}@student.chula.ac.th, prabhas@chula.ac.th

Abstract

Since large-scale global optimization problems have
a very large search space, most algorithms are not
efficient to find an acceptable solution in a given
execution time. Therefore, this paper proposes a
performance enhancement of the Compact Genetic
Algorithm, which is a simple evolutionary algorithm, by
using a Graphics Processing Unit. The enhanced
Compact Genetic Algorithm is competent for solving the
large-scale global optimization problems because of its
fast computation time and small memory requirement.
The experimental results on large-scale global
optimization problems show that this approach is able to
find acceptable solutions within a reasonable time. We
achieved the average performance speedup of 34.45 on
50,000-dimension problems, and the speedup is
increased for larger size problem.

Keywords: GPU, Large scale problem, compact GA.

1. Introduction

A large-scale global optimization (LSGO) problem is
a hard problem of finding the optimal solution from
numerous possible solutions; hence, ordinary
approximation algorithms are not suitable for these
problems because the amount of memory and time
consumed. Therefore, a specially designed algorithm is
required to solve these problems.

The Compact Genetic Algorithm (cGA) [1] is a
simple evolutionary algorithm suitable for optimization
problems. The cGA uses a vector of probabilities to
represent the whole population; thus, it demands little
memory space. In every generation, two individuals are
generated from this vector, and each probability in this
vector is independently updated toward the stronger
individual. The cGA mimics the Simple Genetic
Algorithm (sGA) with uniform crossover behavior,
while using lesser memory. Therefore, the cGA achieves
comparable solution quality as the sGA with
approximately the same number of fitness evaluations.
Moreover, the minimal hardware requirement makes
cGA desirable for hardware implementation [2].

The Graphics Processing Unit (GPU) is a specialize
hardware for 3D graphics rendering. The GPU contains

many small processors operated concurrently; thus, it
can be viewed as low cost parallel processors. Due to the
advantage of the GPU computation power, its
applications in scientific computing became popular [3].
Recently, the GPU is widely used in many domains
included in the field of evolutionary computing [4].

This paper presents a parallel programming of the
GPU in a different way. For the evolutionary algorithm
that has small size of candidate solutions, such as the
cGA, parallelization by number of candidate solutions
does not utilize the computation power of the GPU
effectively. Hence, we focus on parallelization by the
problem size instead. Since each dimension in the
probability vector of cGA is independent; thus, the cGA
can be performed in parallel on GPU. Therefore, the
performance is sufficient to solve the LSGO problems.

The rest of this paper is organized as follows. Section
2 is an overview of the cGA. Section 3 describes the
implementation, and the experiments and results are
presented in section 4. Finally, this paper is concluded in
section 5.

2. The Compact Genetic Algorithm

The Compact Genetic Algorithm (cGA) proposed by
Harik, Lobo and Goldberg [1] represents the population
as a probability distribution over the set of solutions;
thus, the whole population needs not to be stored. At
each generation, cGA samples individuals according to
the probabilities specified in the probability vector. The
individuals are evaluated and the probability vector is
updated towards the better individual. The cGA mimics
the order-one behavior of Simple Genetic Algorithm
(sGA) with uniform crossover using a small amount of
memory, and achieves comparable quality with
approximately the same number of fitness evaluations as
the sGA. The process of the cGA is shown in figure 1.

In the first step, the probability vector is initialized
with 0.5. Each dimension in the vector represents the
probability of each bit happened to be one. Two
candidate solutions are sampled from this vector. After
evaluating, the winner and loser are specified. From
figure 1, the winner is 11100101 and the loser is
10001100. The probability vector is updated according
to the winner. The different bit between the winner and
loser guides the probability to come closer to the better

solution. Therefore, each dimension in the probability
vector is updated toward the better solution by adding or
subtracting the probability with an updating step size
(1 !). In a different bit, we add probability when the
winner is 1, and subtract the probability when the winner
is 0. E.g. updating step size is 0.1, the probability vector
becomes as in step 4. The process of the cGA is repeated
until the probability vector has converged.

The concept of the cGA is simple and it has been
proved that it performs like the sGA with population !,
when the updating step size in the cGA is 1 ! [1]. The
cGA reduces the size and power requirements of the
system by representing the population as a probability
vector rather than a collection of bit strings.

3. Implementation

In order to utilize the GPU that is specialized for
compute-intensive and highly parallel-computation, high
degree of thread level parallelism is desirable. Hence,
threads are parallelized by elements instead of
individuals. Each thread generates a portion of two
individuals and updates the same portion of probability
vector.

To generate new individual from probability vector, a
random number generator is needed; thus, the Linear
Congruential random number generator is employed.
Every random number generator uses different random
seed in order to maintain random characteristic. After
generating random numbers, each random number is
compared to the probability value in the probability
vector to produce the corresponding element of
individuals. Each probability in the probability vector is
responsible to produce the element of individual in the
same position.

The cGA uses binary representation for its solutions,
but the problem solutions are encoded in decimal. Thus,
the conversion from binary individual to decimal
candidate solution is required, and done on GPU by
parallel reduction algorithm to reduce the memory
transfer time between CPU and GPU. However, the
fitness evaluation is still done on CPU because the
fitness function is excluded from the cGA.

To get the best performance from GPU, the GPU
must be kept busy processing. Hence, reducing memory
access latency can improve performance. Avoiding off-
chip memory access by using shared memory is a well-
known technique to reduce memory access latency. Due
to the fact that shared memory is shared among the
threads in the same block, a thread that requires data
from another thread should group together. Computing
each dimension of candidate solution uses several bit of
individual from many threads; thus, these threads are put
to the same block.

To avoid the branch divergence, which is an
undesirable problem in GPU, the updating direction of
each element in the probability vector is calculated from
the sign of the subtraction of the same position element
of individuals and the subtracted fitness values. The
updating equation is shown below, where !! is a
probability vector of !th generation. The bit string of !th
individual is represented by !!, and !! is its fitness value.
The update step size is 1 !, where ! is equal to sGA
population size.

!!!! = !! +
1
!
∙
!! − !!
!! − !!

∙ !! − !!

4. Experiments and Results

To evaluate performance of the cGA-GPU, the !!-!!
benchmark functions from the CEC’08 competition
session on LSGO [5] are selected because an error of
solutions is measurable. The details of benchmark
functions are shown in the table below. To minimize the
performance variation, these fitness functions are done
on CPU because the different implementation of fitness
functions also affects the overall performance.

Table 1: Details of benchmark functions from the

CEC’08 competition session on LSGO [5]

 Name Type Separability

!! Shifted Sphere
Function Unimodal Separable

!! Shifted Schwefel’s
Problem 2.21 Unimodal Non-

separable

!! Shifted Rosenbrock’s
Function Multi-modal Non-

separable

!! Shifted Rastrigin’s
Function Multi-modal Separable

!! Shifted Griewank’s
Function Multi-modal Non-

separable

!! Shifted Ackley’s
Function Multi-modal Separable

1) Initialize probability vector

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

2) Generate two individuals from the vector

1 1 1 0 0 1 0 1

1 0 0 0 1 1 0 0

3) Let them compete

Winner
1 1 1 0 0 1 0 1
Loser
1 0 0 0 1 1 0 0

4) Update the probability vector towards the
better one
(The bits that are different are in gray color.)

0.5 0.6 0.6 0.5 0.4 0.5 0.5 0.6

5) Repeat step 2) – 4) until the vector has
converged

Figure 1: The procedure of the cGA

Each dimension of solution vector is represented by
256-bit fix-point binary to provide enough precision, and
the update rate of each probability is 1/1,000. Every
experiment was done on Intel Core 2 duo T8300 and
NVIDIA GeForce 8600M GT.

To optimize the GPU efficiently, the number of
threads execute concurrently is constrained by the GPU
architecture. In this work, the kernel is organized by 64
blocks of threads. Each block contains 128 threads.

Figure 3 shows that the cGA-GPU runs faster than the
cGA-CPU when the problem size is increasing. The
cGA-GPU achieves an average speedup of 34.45 over
the cGA-CPU on 50,000-dimension problems, and it
tends to increase in higher dimension problem.

While achieving a great performance speedup, the
quality of the solutions found by the cGA-GPU is also
acceptable. Comparing to other algorithms in the
CEC’08 competition, the quality of the solution found by
the cGA-GPU is in the middle as shown in figure 2.

5. Conclusion

In this paper, we apply the GPU to improve the
computation time of the cGA on LSGO problems. The
cGA is suitable for GPU because of the independency of
each probability in the probability vector. Therefore, our
implementation achieved an average speedup of 34.45
on 50,000-dimension problems. In addition, the speedup
is increasing when the problem size is increased.
However, the lower dimensional problems may not be
effectively executed on GPU because of the lower
degree of parallelism. Moreover, the cGA-GPU can
quickly find acceptable solutions; thus, combining a
good quality approach with a fast approach, such as
cGA-GPU, should improve both solution quality and
performance for solving the LSGO problems.

References

[1] G. R. Harik, F. G. Lobo, and D. E. Goldberg, “The compact
genetic algorithm,” IEEE Transactions on Evolutionary
Computation, vol.3, issue 4, pp.287-297, 1999.

[2] C. Aporntewan, and P. Chongstitvatana “A hardware
implementation of the compact genetic algorithm,” In
Proceedings of the 2001 IEEE Congress on Evolutionary
Computation, 2001.

[3] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J.
Krüger, A. E. Lefohn, and T. J. Purcell, “A Survey of General-
Purpose Computation on Graphics Hardware,” Eurographics
2005, pp. 21-51, August 2005.

[4] Q. Yu, C. Chen, and Z. Pan, “Parallel Genetic Algorithms
on Programmable Graphics Hardware,” Lecture Notes in
Computer Science, vol.3612, 2005.

[5] K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. P.
Chen, C. M. Chen, and Z. Yang, "Benchmark Functions for the
CEC'2008 Special Session and Competition on Large Scale
Global Optimization," Technical Report, Nature Inspired
Computation and Applications Laboratory, USTC, China,
http://nical.ustc.edu.cn/cec08ss.php, 2007.

10

10

10

10

10

10

10

cGA-GPU MLCC EPUS-PSO jDEdynNP-F UEP MTS DEwSAcc DMS-PSO LSEDA-gl ALPSEA

Distance F1 F2 F3 F4 F5 F6
10

6

2

-2

-6

-10

-14 0.
00

0.
00

0.

00

0.
00

0.
00

Figure 2: Average distance from optimal fitness value of solutions found by cGA-GPU and other algorithms [5]
on 1,000-dimension problems after 5 million function evaluations

10	

100	

1,000	

10,000	

100,000	

1,000,000	

Time	
 (ms)	

Dimension	

cGA-­‐CPU	

cGA-­‐GPU	

Figure 3: Average execution time of cGA-CPU and
cGA-GPU on different problem sizes for 1,000
generations

