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Abstract 
 

Since large-scale global optimization problems have 
a very large search space, most algorithms are not 
efficient to find an acceptable solution in a given 
execution time. Therefore, this paper proposes a 
performance enhancement of the Compact Genetic 
Algorithm, which is a simple evolutionary algorithm, by 
using a Graphics Processing Unit. The enhanced 
Compact Genetic Algorithm is competent for solving the 
large-scale global optimization problems because of its 
fast computation time and small memory requirement. 
The experimental results on large-scale global 
optimization problems show that this approach is able to 
find acceptable solutions within a reasonable time. We 
achieved the average performance speedup of 34.45 on 
50,000-dimension problems, and the speedup is 
increased for larger size problem. 
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1. Introduction 
 

A large-scale global optimization (LSGO) problem is 
a hard problem of finding the optimal solution from 
numerous possible solutions; hence, ordinary 
approximation algorithms are not suitable for these 
problems because the amount of memory and time 
consumed. Therefore, a specially designed algorithm is 
required to solve these problems. 

The Compact Genetic Algorithm (cGA) [1] is a 
simple evolutionary algorithm suitable for optimization 
problems. The cGA uses a vector of probabilities to 
represent the whole population; thus, it demands little 
memory space. In every generation, two individuals are 
generated from this vector, and each probability in this 
vector is independently updated toward the stronger 
individual. The cGA mimics the Simple Genetic 
Algorithm (sGA) with uniform crossover behavior, 
while using lesser memory. Therefore, the cGA achieves 
comparable solution quality as the sGA with 
approximately the same number of fitness evaluations. 
Moreover, the minimal hardware requirement makes 
cGA desirable for hardware implementation [2]. 

The Graphics Processing Unit (GPU) is a specialize 
hardware for 3D graphics rendering. The GPU contains 

many small processors operated concurrently; thus, it 
can be viewed as low cost parallel processors. Due to the 
advantage of the GPU computation power, its 
applications in scientific computing became popular [3]. 
Recently, the GPU is widely used in many domains 
included in the field of evolutionary computing [4]. 

This paper presents a parallel programming of the 
GPU in a different way. For the evolutionary algorithm 
that has small size of candidate solutions, such as the 
cGA, parallelization by number of candidate solutions 
does not utilize the computation power of the GPU 
effectively. Hence, we focus on parallelization by the 
problem size instead. Since each dimension in the 
probability vector of cGA is independent; thus, the cGA 
can be performed in parallel on GPU. Therefore, the 
performance is sufficient to solve the LSGO problems. 

The rest of this paper is organized as follows. Section 
2 is an overview of the cGA. Section 3 describes the 
implementation, and the experiments and results are 
presented in section 4. Finally, this paper is concluded in 
section 5. 
 
2. The Compact Genetic Algorithm 
 

The Compact Genetic Algorithm (cGA) proposed by 
Harik, Lobo and Goldberg [1] represents the population 
as a probability distribution over the set of solutions; 
thus, the whole population needs not to be stored. At 
each generation, cGA samples individuals according to 
the probabilities specified in the probability vector. The 
individuals are evaluated and the probability vector is 
updated towards the better individual. The cGA mimics 
the order-one behavior of Simple Genetic Algorithm 
(sGA) with uniform crossover using a small amount of 
memory, and achieves comparable quality with 
approximately the same number of fitness evaluations as 
the sGA. The process of the cGA is shown in figure 1. 

In the first step, the probability vector is initialized 
with 0.5. Each dimension in the vector represents the 
probability of each bit happened to be one. Two 
candidate solutions are sampled from this vector. After 
evaluating, the winner and loser are specified. From 
figure 1, the winner is 11100101 and the loser is 
10001100. The probability vector is updated according 
to the winner. The different bit between the winner and 
loser guides the probability to come closer to the better 



solution. Therefore, each dimension in the probability 
vector is updated toward the better solution by adding or 
subtracting the probability with an updating step size 
(1 !). In a different bit, we add probability when the 
winner is 1, and subtract the probability when the winner 
is 0. E.g. updating step size is 0.1, the probability vector 
becomes as in step 4. The process of the cGA is repeated 
until the probability vector has converged. 

The concept of the cGA is simple and it has been 
proved that it performs like the sGA with population !, 
when the updating step size in the cGA is 1 ! [1]. The 
cGA reduces the size and power requirements of the 
system by representing the population as a probability 
vector rather than a collection of bit strings. 
 
3. Implementation 
 

In order to utilize the GPU that is specialized for 
compute-intensive and highly parallel-computation, high 
degree of thread level parallelism is desirable. Hence, 
threads are parallelized by elements instead of 
individuals. Each thread generates a portion of two 
individuals and updates the same portion of probability 
vector. 

To generate new individual from probability vector, a 
random number generator is needed; thus, the Linear 
Congruential random number generator is employed. 
Every random number generator uses different random 
seed in order to maintain random characteristic. After 
generating random numbers, each random number is 
compared to the probability value in the probability 
vector to produce the corresponding element of 
individuals. Each probability in the probability vector is 
responsible to produce the element of individual in the 
same position. 

The cGA uses binary representation for its solutions, 
but the problem solutions are encoded in decimal. Thus, 
the conversion from binary individual to decimal 
candidate solution is required, and done on GPU by 
parallel reduction algorithm to reduce the memory 
transfer time between CPU and GPU. However, the 
fitness evaluation is still done on CPU because the 
fitness function is excluded from the cGA. 

To get the best performance from GPU, the GPU 
must be kept busy processing. Hence, reducing memory 
access latency can improve performance. Avoiding off-
chip memory access by using shared memory is a well-
known technique to reduce memory access latency. Due 
to the fact that shared memory is shared among the 
threads in the same block, a thread that requires data 
from another thread should group together. Computing 
each dimension of candidate solution uses several bit of 
individual from many threads; thus, these threads are put 
to the same block. 

To avoid the branch divergence, which is an 
undesirable problem in GPU, the updating direction of 
each element in the probability vector is calculated from 
the sign of the subtraction of the same position element 
of individuals and the subtracted fitness values. The 
updating equation is shown below, where !!  is a 
probability vector of !th generation. The bit string of !th 
individual is represented by !!, and !! is its fitness value. 
The update step size is 1 !, where ! is equal to sGA 
population size. 
 

!!!! = !! +
1
!
∙
!! − !!
!! − !!

∙ !! − !!  

 
4. Experiments and Results 
 

To evaluate performance of the cGA-GPU, the !!-!! 
benchmark functions from the CEC’08 competition 
session on LSGO [5] are selected because an error of 
solutions is measurable. The details of benchmark 
functions are shown in the table below. To minimize the 
performance variation, these fitness functions are done 
on CPU because the different implementation of fitness 
functions also affects the overall performance. 

 
Table 1: Details of benchmark functions from the 

CEC’08 competition session on LSGO [5] 

 Name Type Separability 

!! Shifted Sphere 
Function Unimodal Separable 

!! Shifted Schwefel’s 
Problem 2.21 Unimodal Non-

separable 

!! Shifted Rosenbrock’s 
Function Multi-modal Non-

separable 

!! Shifted Rastrigin’s 
Function Multi-modal Separable 

!! Shifted Griewank’s 
Function Multi-modal Non-

separable 

!! Shifted Ackley’s 
Function Multi-modal Separable 

1) Initialize probability vector 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

2) Generate two individuals from the vector 

1 1 1 0 0 1 0 1 
 
1 0 0 0 1 1 0 0 

3) Let them compete 

Winner 
1 1 1 0 0 1 0 1 
Loser 
1 0 0 0 1 1 0 0 

4) Update the probability vector towards the 
better one 
(The bits that are different are in gray color.) 

0.5 0.6 0.6 0.5 0.4 0.5 0.5 0.6 

5) Repeat step 2) – 4) until the vector has 
converged 

Figure 1: The procedure of the cGA 



Each dimension of solution vector is represented by 
256-bit fix-point binary to provide enough precision, and 
the update rate of each probability is 1/1,000. Every 
experiment was done on Intel Core 2 duo T8300 and 
NVIDIA GeForce 8600M GT. 

To optimize the GPU efficiently, the number of 
threads execute concurrently is constrained by the GPU 
architecture. In this work, the kernel is organized by 64 
blocks of threads. Each block contains 128 threads. 

Figure 3 shows that the cGA-GPU runs faster than the 
cGA-CPU when the problem size is increasing. The 
cGA-GPU achieves an average speedup of 34.45 over 
the cGA-CPU on 50,000-dimension problems, and it 
tends to increase in higher dimension problem. 

While achieving a great performance speedup, the 
quality of the solutions found by the cGA-GPU is also 
acceptable. Comparing to other algorithms in the 
CEC’08 competition, the quality of the solution found by 
the cGA-GPU is in the middle as shown in figure 2. 

5. Conclusion 
 

In this paper, we apply the GPU to improve the 
computation time of the cGA on LSGO problems. The 
cGA is suitable for GPU because of the independency of 
each probability in the probability vector. Therefore, our 
implementation achieved an average speedup of 34.45 
on 50,000-dimension problems. In addition, the speedup 
is increasing when the problem size is increased. 
However, the lower dimensional problems may not be 
effectively executed on GPU because of the lower 
degree of parallelism. Moreover, the cGA-GPU can 
quickly find acceptable solutions; thus, combining a 
good quality approach with a fast approach, such as 
cGA-GPU, should improve both solution quality and 
performance for solving the LSGO problems. 
 
References 
 
[1] G. R. Harik, F. G. Lobo, and D. E. Goldberg, “The compact 
genetic algorithm,” IEEE Transactions on Evolutionary 
Computation, vol.3, issue 4, pp.287-297, 1999. 
 
[2] C. Aporntewan, and P. Chongstitvatana “A hardware 
implementation of the compact genetic algorithm,” In 
Proceedings of the 2001 IEEE Congress on Evolutionary 
Computation, 2001. 
 
[3] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. 
Krüger, A. E. Lefohn, and T. J. Purcell, “A Survey of General-
Purpose Computation on Graphics Hardware,” Eurographics 
2005, pp. 21-51, August 2005. 
 
[4] Q. Yu, C. Chen, and Z. Pan, “Parallel Genetic Algorithms 
on Programmable Graphics Hardware,” Lecture Notes in 
Computer Science, vol.3612, 2005. 
 
[5] K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. P. 
Chen, C. M. Chen, and Z. Yang, "Benchmark Functions for the 
CEC'2008 Special Session and Competition on Large Scale 
Global Optimization," Technical Report, Nature Inspired 
Computation and Applications Laboratory, USTC, China, 
http://nical.ustc.edu.cn/cec08ss.php, 2007. 

10   

10   

10   

10   

10   

10   

10   

cGA-GPU MLCC EPUS-PSO jDEdynNP-F UEP MTS DEwSAcc DMS-PSO LSEDA-gl ALPSEA 

Distance F1 F2 F3 F4 F5 F6 
10 

6 

2 

-2 

-6 

-10 

-14 0.
00

 

0.
00

 
0.

00
 

0.
00

 

0.
00

 

Figure 2: Average distance from optimal fitness value of solutions found by cGA-GPU and other algorithms [5] 
on 1,000-dimension problems after 5 million function evaluations 
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Figure 3: Average execution time of cGA-CPU and 
cGA-GPU on different problem sizes for 1,000 
generations 


