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Abstract 
 

Global optimization is required when the 

objective function and constraints are nonlinear. One 

of global optimizers, Differential Evolution, has been 

applied to constrained optimization problems 

successfully. This paper introduces a new constraint 

handling scheme using adaptive relax tolerance and 

familiar selection scheme with differential evolution 

(T-DRDE). This method is an improvement of a 

previous method, a dominance-based selection 

scheme with a repair algorithm based on the gradient 

information derived from the equality constraint 

(DRDE).  To compare T-DRDE with DRDE, several 

test problems and chemical engineering optimization 

problems are used. The results show that the 

performance of T-DRDE is competitive with DRDE. 

It can effectively handle constraints encountered in 

chemical engineering optimization problems. 

 

Keywords: Constraint handling, Differential 

evolution, Constrained optimization 

 

1. Introduction 
 

There are two methods for solving optimization 

problems [1]: 1) Deterministic method uses explicit 

estimation and branch and bound search [2], 2) 

Stochastic methods contain many methods such as 

Simulated Annealing, Tabu search and Evolutionary 

Algorithm [3].  Deterministic method guarantees 

global optimum with respect to objective functions 

and constraints such as continuity and convexity. 

Stochastic methods obtain convergence to optima but 

do not guarantee global optimum [4].  Frequently in 

practice, stochastic methods obtain the value near 

global optimum.  Stochastic methods must be able to 

manage constraints effectively. 

      Presently, Evolutionary Algorithm (EA) has been 

receiving a lot of attention because it can search for 

solutions of the complex problems effectively.  There 

are large numbers of works in applying EA for 

optimization problems in the past ten years [5]. 

Differential Evolution (DE) is one of EA. It can 

handle both non-differentiable and nonlinear 

functions [6].  DE is proved to be stable and efficient 

for many optimization problems.  However, it is 

difficult for DE to handle nonlinear constraints. 

Often, it gets stuck at local minima.  To solve this 

problem it is important to have a method to handle 

constraints effectively. 

Many algorithms have been proposed to solve 

optimization problems that focused on handling 

constraints [7, 8].  For EA, there are many techniques 

to handle constraints: 1) penalty functions [9], 2) 

special representations and operators, 3)  repair 

algorithms, 4) separation of objective and constraints, 

and 5) hybrid methods. 

      One of the most popular methods is penalty 

functions. It is based on transforming constrained 

problems to unconstrained problems by penalising 

infeasible points. Another method is repair algorithm 

[10]. This method attempts to move infeasible points 

into feasible region.  Repair algorithm uses heuristics 

to guide the repair process [11, 12].  Chootinan and 

Chen [13] proposed a heuristic that used gradient 

computed from a set of constraints to repair 

infeasible points.  Repair algorithm is effective if 

infeasible solutions are easy to adjust.   

      There are many examples of the work that used 

separation of objective functions. Coello and Montes 

[14] proposed a non-dominance based selection 

which constraints are considered as objectives.  

Takahama and Sakai [15] proposed εDE.  It is DE 

with ε mutation based on gradient.  Kheawhom [16] 

proposed a combined method of dominance-based 

and repair based on gradient.  Dominance-based 

method considers variable vectors that are better than 

constraints.  Repair-base method focuses on 

equational constraints.  Haibo Zhang [17] proposed 

C-IDE method.  This method combined DE with 

Tabu search and handled constraints similar to εDE 

method. The parameter µ is computed from the sum 

of excess constraints to determine suitable search 
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direction.  A heuristic function is used to improve µ 

in each iteration.  

This work proposes a method to handle 

constraints effectively.  The proposed method is 

based on improving the repair algorithm by extending 

Kheawhom’s method and using the parameter µ from 

C-IDE to increase flexibility. Moreover, the DE 

framework has been extended to improve the 

selection of population.  The proposed method 

reduces the computation resource while maintaining 

the quality of solutions. 

 

2. Background Theory 
 

2.1 Constrained optimization problem:  
is generally defined as: 
 

min F(x), 

s.t. gl(x) ≤ 0; l = 1, 2, …, L, 

 hm(x) = 0; m = 1, 2, …, M,           (1) 

 xn
(L)

 ≤ xn ≤ xn
(U)

; n = 1, 2, …, N 

 

where xn is an optimization variable varying in the 

range [xn
(L)

, xn
(U)

], The function F(x) is the objective 

function with gl(x) inequality constraint and hm(x) 

equality constraint. 
 

2.2 Total absolute violation (TAV) [17]: A 

total violation value of the variables in both equality 

and inequality constraints. An equality constraint 

violation is an absolute differentiate result from left 

and right side. An inequality constraint violation is 

similar but it has zero value when the differentiate 

result is negative. The TAV of constraint 

optimization problem is defined as 
 

   (2) 

 

2.3 Differential Evolution [6]:  is a typical of 

EAs which is very powerful and robust stochastic 

optimization algorithm. It is capable of handling non-

differentiable, nonlinear and multi-modal objective 

functions. The DE process works as follows: 

2.3.1 Parent vector: Assign values of the first 

parent vector randomly. The values are in the range 

of lower and upper boundary. 

Iteration process: After that, DE iteration will 

be started. The iterative process consists of two main 

functions as follows: 

2.3.2 Mutation [18]: Create the perturb vectors 

(Vi) for k individuals which originate the parent 

vectors. In this work, the amount of Vi is equal to a 

number of population (NP). Various mutation 

schemes have been proposed. We show two such 

schemes [19]: 

a) DE/rand/1/bin scheme: Randomly select 

three vectors in the populations and generated Vi as 

follows 
 

Vi = Xr3 + F(Xr2 – Xr1)            (3) 
 

where Xr1, Xr2 and Xr3 are randomly selected vectors, 

and r1 ≠ r2 ≠ r3 ≠ i are satisfied, F ∈ [0,1+] is a 

control parameter of the algorithm. 

b) Trigonometric mutation scheme: Randomly 

select vector as DE/rand/1/bin scheme. The perturb 

vector Vi is then generated by the center point, a sum 

of three weighted vector differentials, as follows 
 

          (4) 
 

where Xr1, Xr2 and Xr3 are randomly selected vectors, 

and r1 ≠ r2 ≠ r3 ≠ i and F(Xr1), F(Xr2) and F(Xr3) are 

the objective functions evaluated at Xr1, Xr2 and Xr3 

respectively. 
 

2.3.3 Crossover operator: Alternate all 

variables in perturb vector Vi(vi,1, vi,2,…, vi,n) and its 

parent vector Xi(xi,1, xi,2,…, xi,n) that generates the 

trial vector Ui(ui,1, ui,2,…, ui,n) as follows 
 

           (5) 

 

where CR ∈ [0.1] is a crossover factor. 

In this part of work, the repair algorithm has 

been introduced to improve the trial vector Ui. At 

each generation i, the trial vector Ui is compared with 

its parent vector Xi for the better fitness function then 

uses that to create the new parent vector Xi+1. In this 

work, the dominance-based selection scheme is used 

to improve effective selection. 

The evolutionary process is repeated until the 

stopping criteria are satisfied. That is, the 

differentiate minimum objective function of 

generation i
th

 and i+1
th

 are less than SC parameter 

continuously for T times.  

 

2.4 Constraint handling method: It is a 

heuristic which adjusts variables according to 

constraints to get the best objective function. The 

constraint handling methods can be adapted from 

many stochastic algorithms. DE is used in this work. 

 



2.4.1 Gradient-based repair algorithm [13]: It 

is a repairing algorithm for adjusting variables to 

reduce its violation from infeasible to feasible, when 

the violation less than a tolerance (Ɛ). Generally, the 

dimension number of the equality constraints can be 

reduced without distorting the results. 

In case of N-dimensional optimization problem 

with M equality constraints, the degree of freedom 

for this case is N – M. Any infeasible vector X 

containing N variables can be repaired by solving the 

system of M equations. In this work, a gradient-based 

repair algorithm is applied to solve the equality 

constraint violation by Newton method. 

Newton method [20]: It is the method for 

solving a root of function approximated by tangent 

line. In this work, Newton method is improved by 

adjusting violation of equality constraint, h(X), via 

approximate vector X. Assume the differential is 

available at h(X), then h’(X) or Jacobian, J(X), also 

can be found at h(Xi). The Jacobian is a slope of 

function y = h(X) at (Xi, h(Xi)), then equation is 

represented as h(Xi+1) –h(Xi) = J(Xi)(Xi+1 – Xi). 

Reduce the lowest violation, h(Xi+1) by assigning it to 

zero. Therefore, the vector X of the next generation 

can be estimated as follows 
 

Xi+1 = Xi - J
-1

(Xi)h(Xi)            (6) 
 

where J(Xi) is Jacobian matrix, and H(Xi) is the 

vector of equality constraints violation. Iteration 

stops if either the sum of the degree of constraints 

violation is less than a tolerance specified, Ɛ, or the 

maximum iteration number has been reached. 

 

In each repair iteration, Newton method estimate 

moves to zero of equality constraints violation, 

h(Xi+1) of vector Xi+1 at k
th

 individuals of all 

population, NP; k = 1, 2,…, NP. The result of h(Xi+1) 

is used to obtain the accuracy of global optimum in 

range 10
-3

 – 10
-4

 [16]. Therefore, we assign 10
-4

 as a 

minimum tolerance value (Ɛ) to be a stop criterion in 

estimation the vector X in the repair process. Another 

stopping criteria is the repair process vector X at 

individual k cannot be found within 100 times. Then 

the next individual vector X will be used. The repair 

process is ended when all individuals are repaired. 

 

Fig. 1a presents the distribution of population 

before repair process is started. Fig. 1b shows the 

distribution of population after repairing [16]. 
 

 
Fig. 1. (a) the distribution of population before repair process and 

(b) the distribution of population repaired by Kheawhom repair 

algorithm. 
 

2.4.2 Dominance-based selection scheme [14]: 

is a scheme to compare and select the vector that is 

better. In this work, the candidate vector pair are the 

parent vector, Xi and the trial vector, Ui for 

generating the next generation parent vector, Xi+1. 

We consider the total absolute violation, TAV and 

objective function.  Three possible cases are 

expected. In the first case, both Ui and Xi are feasible, 

TAV is less than or equal to Tolerance (Ɛ). The 

vector with a better objective value is picked to Xi+1. 

In the second case, one is feasible, but the other one 

is infeasible, it is infeasible when TAV is more than 

Ɛ. The feasible vector is picked to Xi+1. In the last 

case, both vectors are infeasible. The vector with 

lower TAV is picked to Xi+1. The scheme for the 

selection is defined as follows: 
 

            (7) 
 

where Xi  Ui denotes that Xi dominates Ui. That is 

Xi has better objective value than Ui and/or lower 

degree of TAV. 

 

2.4.3 Relaxation of constraint (µ) [17]: The 

method adapts the violation of equality and inequality 

constraint to decide boundary relaxation for 

constraint violation of vector X. The vector X 

indicates feasibility. When the violation is less than 

or equal to µ, it is feasible and it is infeasible when 

the violation is more than µ. When applying this 

method with differential evolution (DE), µ is reduced 

in each generation. The adjusted value of µ is 

calculated from the median total absolute violation of 

all individuals in the first generation. The other 

generation, µ is defined as follows: 

 

µi+1 = µi(1 - 
  

  
)             (8) 

 

where FF is the fraction of feasible individuals with 

respect to the relaxed constraints, in the latest 

population at generation, i. The number of population 

is NP. The main idea is to accelerate or decelerate the 

adjustment of µ dependent to FF. The greater value of 

FF will affect µi+1. 



2.4.4 Handling boundary constraints: It is 

important that the optimize variables must lie inside 

their allowed ranges. We replace each variable that 

violates boundary constraints by the upper or lower 

limits, according to the following rule: 
 

          (9) 
 

where x i,j
(L)

 and x I,j
(U) 

are the upper and lower 

bounds of each variable, respectively. This is the 

method applied in this work. However, various 

boundary constraint handling methods can be found 

in the literature [21].  
 

2.4.5 Handling integer and discrete variables: 

The original DE is incapable of handling discrete 

variables. However, it is very easy to modify the 

algorithm to deal with integers and/or discrete 

variables. First, continuous variables are converted to 

integer variables by truncation. Then, the truncated 

variables are used to evaluate the objective function. 

Discrete variables can also be easily handled. 

Instead of directly using discrete variables as the 

optimized variables, the indexes of all discrete 

variables are assigned first. The index of each 

discrete variable is then used as the optimization 

variables. The original discrete variables are still used 

to evaluate the objective function. 
 

3. Propose method 
 

3.1 Relaxation of Tolerance: This research 

proposes the method of relaxation of constraint 

applied to Tolerance (Ɛ) within the repair algorithm. 

This method selects vector X with values less than 

the value Ɛ. This is more flexible than previous 

research of Kheawhom. By assigning Ɛ constant in 

the range 10
-3

 – 10
-4

 the relaxation of tolerance is 

intended to reduce the number of function evaluation 

(NFE). The value is determined from the assessment 

of the equality constraint violation during the 

iteration of repair process of population X. 

The Ɛ in the first round will be given as a median 

of total absolute violation of all individuals.  The 

other round, it is based on the equations 10. Another 

alternative is to assign a value to Ɛ in regarded to 

Familiar selection scheme: 
 

Ɛi+1 = Ɛi(1 – 
     |             |   

                 
)         (10) 

 

where F(Xi), F(Xi-1) are the objective functions of the 

current and previous generation. Fmax and Fmin are the 

objective function of all past generations.  

The key concept of this relation is either increase 

or decrease the reduction speed of the value of Ɛ by 

the trend of convergence. If F(Xi) and F(Xi-1) are 

significantly different, F does not converge well 

enough, therefore, the Ɛ should be significantly 

reduce in the next generation. This will initiate 

convergence in early stage and then slow down to the 

normalized objective function value. 

 

3.2 Familiar selection scheme: It considers a 

condition in a model to adjust Tolerance (Ɛ). It is 

used as a criterion of the equality constraint violation. 

The Familiar selection scheme is divided into two 

cases as follows. Case 1, the difference of F(Xi) and 

F(Xi-1) value is greater than the parameter SC, the 

stopping criterion. The value of Ɛ will be assigned by 

the equation 10. Case 2, the difference of F(Xi) and 

F(Xi-1) value does not exceed SC and/or Xi with Xi-1 

are the same value. The Ɛ is assigned the value of the 

minimum total absolute violation of all individuals. 

The reason for the value adjustment of Tolerance 

(Ɛ) in the second case is that we cannot know 

whether the difference of F(Xi) and F(Xi-1) are the 

same vectors as Xi and Xi-1 or not. However, if both 

are the same vector then this could mean that the 

process of DE in the generation i
th

 cannot create a 

trial vector Ui with the objective function F(Ui) which 

is better than F(Xi-1). Thus F(Xi) and F(Xi-1) are the 

same. That is a sign that the vector Xi may be at local 

optimum under the equality constraint with an 

inappropriate Ɛ value. Therefore, the Ɛ value is set to 

the minimum total absolute violation of all 

individuals. However, the lower bound of Ɛ is located 

at 10
-4

, it means that if Ɛ is assigned a value below 

the lower bound, the value will be rounded up to the 

lower bound. 

 

4. Test problems 
 

In this section, the performance and effectiveness of a 

combination of a dominance-based selection scheme 

and gradient-based repair algorithm (DRDE) is 

compared with the proposed constraint handling 

scheme, T-DRDE. Nine different constrained 

optimization problems that have been previously 

studied in the literature are used. They consist of the 

optimization problems and nonlinear programming 

(NLP) [22], P01 and P02; mixed integer nonlinear 

programming (MINLP) [23], P03; non-convex 

MINLP [24], P04. The chemical engineering 

optimization problem are: heat exchanger network 

synthesis [24], P05; MINLP small planning [25], 

P06; reactor network design [26], P07; heat 

exchanger network design [27], P08; and separation 

network synthesis [26], P09.  Each problem was run 

20 times to check the consistency of the results. The 



parameters and mathematical characteristics of the 

problems are shown in Table 1 and 2 respectively. 

 

Table 1: The parameters of the problems 

 
 

Table 2: Mathematical characteristics of the problems 

where LI, NI, LE, and NE are linear inequality, 

nonlinear inequality, linear equality, and nonlinear 

equality constraint respectively. 

 
 

5. Results and analysis 
 

The number of function evaluation, the number 

of objectives and equality constraints of DRDE are 

compared with T-DRDE at the population size 1000 

in Table 3. 

 

From Table 3 the number of function evaluation 

(NFE) of DRDE is higher than T-DRDE in 1
st
 

problem group (P03, P04, P06, P08, and P09). For 2
nd

 

problem group (P01, P02, P05, and P07) both 

methods are similar. Observing the mathematical 

characteristic of the problem in Table 2, it shows that 

the 2
nd

 group has only equality constraint. Except the 

problem P07 which has one inequality constraint. 

DRDE is worse than T-DRDE in this problem (see 

also that the NFE ratio is 1.3). Consider the 1
st
 group, 

except the P09, it appears that this group always has 

the inequality more than or equal to equality 

constraint; the result has a high NFE ratio value about 

2 – 10. Consider to the inequality constraint, it 

appears that increasing of NFE ratio is dependent on 

the number of inequality constraint. It can be 

assumed that T-DRDE can reduce NFE if the 

problem has a large number of inequality constraints. 

However, P09 is different. It has equality constraint 

only but the NFE ratio is high about 4.65. P09 has 22 

variables and they are almost independent. That fact 

affects the efficiency of repairing process of Newton 

method. Finding the inverse Jacobian with low 

dependency variable has a high chance to be Jacobian 

matrix with a singular. That means the algorithm 

which concentrates on repairing process (such as 

DRDE) will be worse off. All results can be 

summarized as “repairing process has a low 

performance for a problem with high inequality 

constraint and low variable dependency equality 

constraint.” Not only the relaxation of tolerance 

reduces the inflexibility of repairing process but also 

increases cooperation with differential evolution in 

the mutation and crossover operations. 

 

6. Conclusions 
 

A new approach to relax the tolerance in repair 

algorithm was introduced in this paper. The proposed 

technique adopted a relax formulation and familiar 

selection scheme to adjust a tolerance in a repair 

algorithm based on the gradient information. 

The developed scheme performed well with 

respect to the number of function evaluations 

required in inequality constraint and low dependency 

variable of equality constraint. To reduce the 

flexibility of the tolerance, it can be cooperated with 

differential evolutionary on mutation and crossover 

operators which it increased performance by reducing 

the computational cost. It is considerably lower than 

the cost required by a combination of a dominance-

based selection scheme and a repair algorithm based 

on the gradient information. 
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Table 3: The number function evaluate of DRDE compared with T-DRDE at 1000 population size 

 

Equality 

Constraint

Objective 

function

Summary 

NFE

Equality 

Constraint

Objective 

function

Summary 

NFE

DRDE/  

T-DRDE

P01 27 0.053957 240,698 29,150 269,848 30 0.053953 234,654 31,450 266,104 1.01

P02 49 5126.497653 126,600 49,059 175,659 46 5126.497652 122,178 44,980 167,158 1.05

P03 44 99.239016 576,884 28,132 605,015 39 99.239031 181,081 22,945 204,027 2.97

P04 26 7.667005 175,346 27,617 202,963 28 7.667005 77,923 27,908 105,831 1.92

P05 10 36162.978241 36,134 12,000 48,134 11 36162.978241 36,952 12,000 48,951 0.98

P06 25 -1.923439 1,293,324 13,064 1,306,388 26 -1.923423 122,012 12,265 134,277 9.73

P07 32 -0.388753 129,745 22,449 152,194 28 -0.388698 95,705 18,783 114,488 1.33

P08 220 7092.492903 1,536,858 72,307 1,609,165 319 7059.817520 596,832 96,162 692,994 2.32

P09 10 1.864159 1,084,567 1,322 1,085,889 13 1.864159 232,006 1,432 233,437 4.65

NFE ratio 
Amout of evaluate Amout of evaluate

Problem
No. 

Generation
Result

T-DRDE

No. 

Generation
Result

DRDE


