
An Implementation of Coincidence Algorithm on

Graphic Processing Units

Thitipan Tongsiri and Prabhas Chongstitvatana
Department of Computer Engineering

Chulalongkorn University Bangkok, Thailand
Thitipan.T@student.chula.ac.th and prabhas.c@chula.ac.th

Abstract—Genetic Algorithms (GAs) are powerful search

techniques. However when they are applied to complex problems,

they consume large computation power. One of the choices to

make them faster is to use a parallel implementation. This paper

presents a parallel implementation of Combinatorial

Optimisation with Coincidence Algorithm (COIN) on Graphic

Processing Units. COIN is a modern GA. It has a wide range of

applications. The result from the experiment shows a good

speedup in comparison to a sequential implementation on

modern processors.

Keywords — Genetic Algorithm; Parallel Processing; Graphic

Processing Unit

I. INTRODUCTION

Genetic Algorithm (GA) is a popular technique to solve
complex problems. GA can find optimal solutions but it
consumes large computation power. There are many works on
parallel GAs [1]. They make GAs run faster by performing
parallel execution on multiple processors. This work presents
an implementation of a modern Genetic Algorithm called
Coincidence Algorithm (COIN) [2]. This algorithm is based on
a second generation of GAs, Estimation of Distribution
Algorithm (EDA). COIN is shown to be competitive with well-
known EDA algorithms such a MIMIC[3], TREE[4],
EBNA[5], UMDA[6]. In COIN, besides the usual positive
knowledge where the evolution depends on the recombination
of the better solutions, the negative knowledge is also
exploited. The worse solutions are used to enhance the search
by avoiding the reproduction of undesired solutions. The
speedup of COIN comes from parallel programming on
Graphic Processing Units (GPU).

This paper is organized as follows. In the preliminary
section, an overview of COIN algorithm is given. The GPU
used in this work is introduced. Then, in the implementation
section, the detail of the method to parallelize the COIN
algorithm on GPU is explained. The next section describes the
experimental setup. The results are discussed based on a
comparison of the execution time between CPU and GPU and
the quality of solutions from both methods. The last section
presents the conclusion.

II. PRELIMINARIES

A. GPU and CUDA Architecture

Graphic Processing Units are powerful and inexpensive.
This explains why many researchers and developers have
interest in this computation device. GPU has tremendous
computation and memory bandwidth. Therefore, many well-
known algorithms can be speed up against the implementation
on CPU. For example, Manavski [7] showed speed up 541%
for AES cipher on GPU. Su Chang [8] showed the speed up
525% of the implementation of MD5 cipher. The
implementation on GPUs shows a very high speed-up against
the implementation on CPU. GPU is also low cost so it is
attractive for researchers.

A Graphic Processing Unit (GPU) has two key advantages.
First it has many core processors which dedicate to compute-
intensive therefore it is highly parallel. The performance
advantage of a GPU is illustrated in Fig. 1. Second, GPU has a
very high memory bandwidth, for example 141 GBps on the
NVIDIA GeForce GTX 280 [9]. This allows high data transfer
rate and high throughput between its device memory. However
there is some overhead such as the slow speed data transfer
between host memory and device memory (8 GBps on the
PCIe x16 Gen2) [9]. This must be minimized to gain the speed
up as much as possible.

Figure 1. Floating-Point operation per second for the CPU and GPU

126

USER UTCC
Text Box
2012 Ninth International Joint Conference on Computer Science and Software Engineering (JCSSE)

USER UTCC
Text Box
978-1-4673-1921-8/12/$31.00 ©2012 IEEE

NVIDIA introduced Compute Unified Device Architecture
(CUDA) in 2006. It is a general purpose parallel computing
architecture. CUDA introduces a new parallel programming
model and an instruction set architecture. This facilitates the
use of the parallel computing engine in NVIDIA GPUs to solve
many complex computational problems.

CUDA architecture consists of a host which is a CPU side
and one or more computing device (GPU) side. They work
together to produce high throughput of data computation. The
computing structure in devices is arranged in a hierarchy of
blocks and threads as shown in Fig 2. The data can be
simultaneously computed on GPU. The kernel calling from
host side will trigger GPU to execute tasks on its processors
which are arranged in blocks and threads.

Host

Kernel call 1

.

.

.

Kernel call n

PCI Express Bus

Grid

Block(0,0) Block(1,0)

Block(0,1) Block(1,1)

Block(0,0) Block(1,0)

Block(0,1) Block(1,1)

thread(0,0) thread(1,0)

thread(0,1) thread(1,1)

thread(2,0)

thread(2,1)

thread(0,2) thread(1,2) thread(2,2)

Figure 2. Hierarchy of computing structure in a GPU. Kernel function can be

executed by calling from host. A number of blocks and threads are assigned

to the kernel function.

B. Coincidence Algorithm

The Coincidence algorithm (COIN) was introduced by
Wattanapornprom W. et al. in 2009 [2]. The main idea is to
model combinatorial problems as Markov Chain. This
representation can be realised by a matrix. This matrix is used
as a distribution model of solutions. A population is drawn
from this model. The evolution of solutions progresses by
sampling from this matrix and adjusting the weights in the
matrix according to the patterns learned from the population.

The learning is derived from selected subpopulation to
apply reward and punishment to adjust the weights in the
matrix. The distinct character of COIN is that besides learning
from the better subpopulation, it also learns a negative
knowledge from the worse subpopulation. This allows the
algorithm to avoid sampling the undesired population.

COIN consists of six steps. In the first step, the matrix is
initialized. In the second step, the population is sampling from
the matrix. The population is evaluated by a fitness function
(problem dependent) in the third step. In the fourth step the
selected population is divided into two groups, good and bad
according to fitness values. The fifth step, the matrix is updated
dependent on the patterns found in good and bad population.
The final step repeats the second step to the last step until the
terminating condition is met.

Figure 3. The steps of COIN algorithm

The Markov Chain is modeled as a matrix of size n×n.

Each column in a row contains the joint probability ().
 indicates the row of the matrix, while indicates the

column. , is a coincidence of the event. A coincidence .

 , means the event is followed by the event . The

coordinate indicates the joint probability (). For

example, the solution of Traveling Saleman Problem (TSP) is

the shortest paths which we can travel through all cities

without visiting the same city twice. The solutions for TSP

five cities are represented by X1X2X3X4X5 where = {A, B, C ,

D, E} we can go to every cities B, C, D or E from A. The

path from A to B is represented by and joint

probability () is written as ().

Next, the detail of each step of the algorithm is explained.

Initializing the generator

The generator is initialized by filling ()with

()

except where i = j. This initialization represents a uniform

distribution of each coincidence.

0 0.25 0.25 0.25

0.25 0 0.25 0.25

0.25 0.25 0 0.25

0.25 0.25 0.25 0

0.25

0.25

0.25

0.25

0.25 0.25 0.25 0.25 0.25

A

B

C

D

E

A B C D E

0 0.40 0.20 0.20

0.25 0 0.25 0.25

0.25 0.25 0 0.25

0.25 0.25 0.25 0

0.20

0.25

0.25

0.25

0.25 0.25 0.25 0.25 0.25

A

B

C

D

E

A B C D E

(a) (b)

0 0.10 0.30 0.30

0.25 0 0.25 0.25

0.25 0.25 0 0.25

0.25 0.25 0.25 0

0.30

0.25

0.25

0.25

0.25 0.25 0.25 0.25 0.25

A

B

C

D

E

A B C D E

(c)

Figure 4. the matrix 5x5 filled up with an initial joint probability

Sampling the population
To generate a solution, () is sampling as follows:

127

(1)

(2)

(3)

1. Begin with the first node, chosen by its empirical

probability ().

2. Sampling the next node , i ≠ j from the matrix.

3. Start from the node repeat Step 2 until a solution

with length n is attained. The solution is composed of
 , , ..., where all indexes are distinct.

4. The population is sampling by drawing each solution
until the desired size is reached.

Evaluate the population
To Each solution in the population is evaluated for its

fitness value. The fitness evaluation function is dependent on
the problem. For example, in Traveling Salesman Problem, the
fitness value is a summation of all paths in the tour.

Selection of the candidates
After all members in the population have their fitness

values. They are ranked and divided into two groups: above
and below average fitness. The above average group is a better
group. The below average group is a worse group. The size of
each group is determined so that its member's fitness is ranged
±2σ (of the fitness value).

Update the matrix
Both better and worse groups are used to update the

weights in the matrix. For each coincidence , found in
the better group, the matrix () is rewarded according to

the equation (1) where k is the learning step size, is the

total number of coincidence. Vice versa for the worse group,
the matrix is punished according to the equation (2)

 () ()

()
(())

()
(∑ ()

)

 () ()

()
(())

()
(∑ ()

)

The reward and punishment can be combined into one
equation. Given a coincidence , found in both better
and worse group then the combined equation is:

 () ()

()
(() ())

()
(∑ () ∑ ()

)

The code for COIN on a generic CPU can be found at
http://www.cp.eng.chula.ac.th/faculty/pjw/project/coin/index-
coin.htm

III. IMPLEMENTATION ON GPU

COIN algorithm can be implemented by breaking down a
task in each original step to many parallel tasks as follows.

i. The population generation

Each solution in the population is sampling independently
so generating population task can be distributed into k threads
which reside in n blocks where n is calculated from population
size m divided to k threads. Fig 5 illustrates this step with the
task distribution of m population to n blocks and k threads. The
important point is to make sure that the number of threads
assigned to each block is sufficient to exploit multiprocessor in
GPU. Each task in k threads is the same as the original task, a
solution is sampling from the matrix.

n blocks

k threads

Generating

a population

Generating

a population

Generating

a population

Generating

a population
Gen...

Generating

a population

Generating

a population

Generating

a population

Generating

a population
Gen...

Generating

a population

Generating

a population

Generating

a population

Generating

a population
Gen...

Figure 5. The population generation task can be assigned to n blocks and k

threadswhere n is calculated from population size divided to number of thread.

ii. The fitness evaluation

The fitness of each solution (a tour in TSP) is calculated.
Each solution is also independent therefore the whole
population can be done in parallel. Again, n blocks and k
threads is assigned to evaluate the fitness of a solution.

A->C

4
C->D

6

D->B

4

B->E

6
E->A

7

C->B

3
B->A

1
A->E

7
E->D

6

D-

>C

2

C->D

2
D->E

6
E->A

7
A->B

1

B->C

3

+ + + +

+ + + +

+ + + +
……...

……...

……...

27

19

19

k

threads

n blocks

k

threads

Figure 6. The evaluation of population can be assigned to n blocks and k

threads.

iii. The population sorting

An important task which is not mentioned on the original
paper on COIN is the sorting. Sorting the population is done
before selection. The comparison function is the fitness value.

For population size 500 and 1000, it is considered as small
for sorting and CPU can outperform GPU. The roundtrip time
for memory transfer between CPU and GPU is fast, it is in
microsecond.

128

iv. The matrix update

The last two key steps for COIN algorithm are selecting
candidates from the population and updating the matrix. The
uniform selection divides the population into two groups: better
and worse. An implementation of the selection method is
simply by marking the candidates. When updating the matrix,
these candidates can be accessed.

The implementation of the matrix update is divided into
two steps. The first step begins from counting coincidences

found in each candidate. Both and are stored into a

temporary matrix of size 2jk
2
 to the co-ordinate , as

illustrated in Fig. 8. The second step is the calculation of the
equation (3) and updates the matrix.

k blocks

j blocks

(Bad

candidate

C% of m

population)

j blocks

(Good

candidate

C% of m

population)

k blocks

Temporary Matrix size 2jk
2

 Population matrix size i x (k+1)

i population

2j
 b

lo
ck

s

 (a) Generate temporary matrix

k blocks

k blocks

2j

th
re

ad
s

 (b) Update generator matrix

Temporary Matrix size 2jk
2

Generator size k x k

Update generator

Figure 7. (a) Selecting the candidates and counting the coincidence. (b)

Update the matrix.

IV. EXPERIMENTS

A. Experimental setup

To evaluate the parallel version of COIN on GPU, TSP
problems are used. There are four problems with different size:
Grostel24, Grostel48, Padberg/Rinaldi76, kroA100 [10]. Two
population sizes are tested: 500 and 1000.

For the comparison, the sequential COIN runs on the CPU
Intel core i3-2310M 2.1GHz, with memory 8 GB. The parallel
COIN uses GPU GEFORCE 540M, clock 672 MHz, with
memory DDR3 2GB. Each problem is iterated to 200
generations. To report the execution time, each experiment is
repeated 10 times and the results are averaged.

B. Results

The execution time from the sequential and parallel version
is compared. The speedup is calculated as timeseq/timepar.

Table I shows the results of the speedup values of four
problems, each with two population sizes. To ascertain the
quality of the solutions, Table II records the actual values of
the tours, best and average. The optimum solutions for these
benchmarks are known.

TABLE I. SPEEDUP IN TSP PROBLEM

Problem Population Platform Avg .Time(s)

grostel24

500

CPU 2.360

GPU 0.333

speedup 7.083

1000

CPU 4.672

GPU 0.534

speedup 8.746

grostel48

500

CPU 6.017

GPU 0.878

speedup 6.854

1000

CPU 12.815

GPU 1.349

speedup 9.503

pr76

500

CPU 14.121

GPU 2.179

speedup 6.481

1000

CPU 29.901

GPU 3.835

speed up 7.796

kroA100

500

CPU 18.776

GPU 3.536

speedup 5.311

1000

CPU 41.662

GPU 6.338

speedup 6.574

From Table I, it is clear that the larger size of population
yields higher speedup by GPU. It is also true that the more
computation load the higher speedup by GPU. This fact can be
observed by comparing the speedup of two population size
(500 and 1000) across all benchmark problems.

TABLE II. SOLUTION OF TSP PROBLEM

*Optimal Grostel24 1272

 Grostel48 5046
 Pr76 108159

 kroA100 21282
**Total runs 200 generations

Problem Population Platform Best Avg.

Grostel24

500
CPU 1272 1318

GPU 1272 1283

1000
CPU 1272 1291

GPU 1272 1275

Grostel48

500
CPU 5648 5975

GPU 5414 5529

1000
CPU 5606 5909

GPU 5170 5379

Padberg/Rinaldi

76

500
CPU 135218 142694

GPU 137041 143889

1000
CPU 124292 134268

GPU 131592 135548

kroA100

500
CPU 38698 39950

GPU 36127 37309

1000
CPU 35616 38417

GPU 33065 34172

129

V. CONCLUSION

This paper presents an implementation of COIN algorithm
on Graphic Processing Units. A parallel version of COIN has
been designed to minimize data transfer between a host and
devices. The experiment is carried out to compare the
execution time of the sequential COIN runs on CPU and the
parallel COIN runs on GPU. The results show that a good
speedup can be achieved on a large population.

REFERENCES

[1] John, D.O., David, L., Naga, G., et al.: “A survey of general-purpose

computation on graphics hardware,” In: Eurographics, 2005, State of Art
Reports, pp.21-51.(2005)

[2] Wattanapornporm, W., et al.: “Multi-objective Combinatorial
Optimisation with Coicidence Algorithm,” IEEE Congress on
Evolutionary Computation, May 18-21,pp. 1675-1682. (2009)

[3] De Bonet J.S, Isbell, C.L., and Viola, P.: “MIMIC: Finding Optima by
Estimating Probability Densities,” Advance in Neural Information
Processing Systems, volume 9. (1997)

[4] Chow, C. and Liu, C.: “Approximating Discrete Probability with
Dependency Trees,” IEEE Transactions on Information Theory, 14:462-
467. (1967)

[5] Etxeberria, R. and Larrañaga, P.: “Global Optimization with Bayesian
Networks,” Symposium on Artificial Intelligence. CIMAF99. Special
Session on Distributions and Evolutionary Optimization, pages 322-339.
(1999)

[6] Robles, V. and Larrañaga, P.: “Solving the Traveling Salesman
Problemwith EDAs,” Estimation of Distribution Algorithm: A New Tool
for Evolutionary Computation. (2002)

[7] Manavski, S. A.: “CUDA compatible GPU as an efficient hardware
accelerator for AES cryptography,” IEEE International Conference on
Signal Processing and Communication, pp. 65-68. (2007)

[8] SU Chang: “Fast operation of large-scale high-precision matrix based on
GPU,” Journal of Computer Applications, pp.1179. (2009)

[9] NVIDIA CUDA Programming Guide v4.0, 1:10-11. (2011)

[10] Larrañaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I. and Dizdarevic,
S.: “Genetic algorithms for the travelling salesman problem: A review of
representations and operators,” Artificial Intelligence Review, 13:129-
170. (1999)

130

